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Abstract

A phenomenological theory is presented for describing the anisotropic plastic flow of ortho-

tropic polycrystalline aluminum sheet metals under plane stress. The theory uses a stress expo-

nent, a rate-dependent effective flow strength function, and five anisotropic material functions

to specify a flowpotential, an associated flow rule of plastic strain rates, a flow rule of plastic spin,

and an evolution lawof isotropic hardening of a sheetmetal. Eachof the five anisotropicmaterial

functionsmay be represented by a truncatedFourier series based on the orthotropic symmetry of

the sheetmetal and their Fourier coefficients canbe determinedusing experimental data obtained

from uniaxial tension and equal biaxial tension tests. Depending on the number of uniaxial ten-

sion tests conducted, three models with various degrees of planar anisotropy are constructed

based on the proposed plasticity theory for power-law strain hardening sheetmetals. Thesemod-

els are applied successfully to describe the anisotropic plastic flow behavior of 10 commercial

aluminum alloy sheet metals reported in the literature.
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1. Introduction

Many secondary forming operations of rolled sheet metal have nowadays been

numerically simulated for both improving existing and developing newmanufacturing

technologies and for applications of thesemanufacturing technologies using newmetal
alloys such as automotive aluminum sheets. As textured sheet metals produced by hot

and cold rolling exhibit significant anisotropic plastic flow characteristics, effective and

accuratemodeling of yielding andplastic flowbehaviors of sheetmetals under a general

stress state or strain path has long been an important research topic in plasticity (Hill,

1948, 1950; Hosford, 1993; Hosford and Caddell, 1993). Nevertheless, existing aniso-

tropic plasticity models such as Hill�s classical quadratic theory are found to be inad-

equate in describing the plastic flow behavior in most of commercial aluminum sheet

metals (Lademo et al., 1999;Wu et al., 2003). Research efforts have continued towards
further improving the accuracy and robustness of anisotropic plasticitymodels of sheet

metals (Hill, 1979, 1990, 1993; Graf and Hosford, 1993, 1994; Karafillis and Boyce,

1993; Barlat et al., 1997a,b, 2004, 2005; Wu et al., 1999; Wu, 2002; Van Houtte and

Van Bael, 2004; Banabic et al., 2005; Chung et al., 2005; Hu, 2005).

Hill (1948, 1950) proposed an elegant anisotropic plasticity theory for orthotropic

sheet metals by generalizing the classical von Mises isotropic flow potential. Hill�s
quadratic anisotropic flow potential is analytically very simple and captures the es-

sence of the anisotropic plastic flow behavior by differentiating the in-plane and
out-of-plane plastic deformation modes in a sheet metal. Parameters in Hill�s
(1948) model can also be easily determined from simple tests as they are explicitly

related to material properties such as uniaxial tensile flow stress and uniaxial plastic

stain ratio in a simple manner. Various new phenomenological flow potentials have

since been proposed to improve Hill�s (1948) anisotropic plastic flow theory (Bassani,

1977; Gotoh, 1977; Hill, 1979, 1990, 1991, 1993; Logan and Hosford, 1980; Budian-

sky, 1984; Jones and Gillis, 1984; Hosford, 1985; Barlat and Richmond, 1987; Barlat,

1987; Barlat and Lian, 1989; Barlat et al., 1991; Montheillet et al., 1991; Karafillis and
Boyce, 1993; Lin and Ding, 1996; Barlat et al., 1997a,b, 2004, 2005; Wu et al., 1999;

Wu, 2002). In general, most of these stress-based flow potentials are non-quadratic

and some use rather complicated functional forms to model more effectively planar

anisotropy and the ‘‘anomalous’’ flow behavior as exhibited in some aluminum alloys

(Pearce, 1968; Woodthorpe and Pearce, 1970; Dodd and Caddell, 1984). The number

of material parameters in those flow potentials in plane stress condition is usually five

or more and these material parameters are often estimated using uniaxial and biaxial

tensile stress–strain curves as well as uniaxial plastic strain ratios (Hill, 1993; Lin and
Ding, 1996). More recently, even more generalized anisotropic flow potentials (Barlat

and Richmond, 1987; Barlat, 1987; Barlat and Lian, 1989; Barlat et al., 1991; Month-

eillet et al., 1991; Karafillis and Boyce, 1993; Barlat et al., 1997a,b, 2004; Cao et al.,

2000; Yao and Cao, 2002) have been developed using the so-called isotropic plasticity

equivalent (IPE) stress tensor (Karafillis and Boyce, 1993), which is often defined as a

linearly transformed stress tensor S = Lr (where r is the Cauchy stress tensor and L is

a four-order tensorial operator accounting for the material symmetry such as ortho-

tropic, triclinic, monoclinic, and so on).
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While the introduction of an isotropic plasticity equivalent stress tensor seems to

provide a very good basis for developing general anisotropic plasticity theories, the

formulation of a particular model for a given class of sheet metals such as

aluminum alloys still requires additional orientation-dependent weighting functions

(Barlat et al., 1997a,b) and may need either a nonlinear stress transformation or at
least two isotropic plasticity equivalent stress tensors defined by two different four-

order linear tensorial operators (Barlat et al., 1997b, 2004). The generalized aniso-

tropic plasticity models using the isotropic plasticity equivalent stress tensors are

analytically complicated and thus not user-friendly. The linear transformation coeffi-

cients and weighting coefficients in these generalized models are not explicitly related

to easilymeasurable material properties as they are coupled in a highly nonlinear man-

ner. Nonlinear equations involving these material parameters are often solved by an

iterative numerical technique. The solution is found to be rather sensitive to the types
of experimental data selected (Barlat et al., 2004) and is often non-unique (Cao et al.,

2000) as most models admits no more than seven independent material parameters if

not considering the kinematic hardening via a back stress tensor (Karafillis and Boyce,

1993; Barlat et al., 1997a,b, 2004; Cao et al., 2000). For orthotropic sheet metals that

may need more than seven material parameters to accurately characterize its planar

anisotropy, there have been some efforts to further extend these models (Bron and

Besson, 2004; Barlat et al., 2005).

In this investigation, an anisotropic plastic theory of orthotropic sheet metals for-
mulated in terms of the intrinsic variables of principal stresses and a loading orien-

tation angle is presented. The constitutive equations in the theory are first

summarized in Section 2 (a detailed derivation of these constitutive equations based

on effective macroscopic slips is given in Appendix A of this paper for the complete-

ness of the presentation). The procedure for determining the anisotropic material

functions in the theory is detailed in Section 3 using a single equal-biaxial tension test

and multiple uniaxial tension tests of a sheet metal. Three models with various

degrees of planar anisotropy constructed from the theory are then used to describe
the anisotropic plastic flow behavior of 10 commercial aluminum sheet metals in Sec-

tion 4. A discussion about the proposed anisotropic plasticity theory and its further

experimental evaluations are presented in Section 5. Conclusions are summarized in

Section 6 on the current investigation of anisotropic flow modeling of aluminum

sheet metals.
2. A plane-stress anisotropic plasticity theory based on macroscopic slips

As the anisotropic plasticity model is intended for sheet metal forming applica-

tions, we seek to describe the plastic flow behavior of sheet metals beyond the initial

yielding and up to a strain level before localized necking. Similar to the reasoning

given by Barlat et al. (1997a,b, 2004), Bauschinger effects and non-isotropic harden-

ing associated with the initial yielding and small-strain anisotropy and the deforma-

tion induced significant texture changes and back-stresses associated with very

large strains are not considered here (Phillips et al., 1972; Eisenberg and Yen,
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1981; Karafillis and Boyce, 1993; Wu et al., 1999). Strain hardening of sheet metals

will thus be considered to be proportional or isotropic but its evolution may be

dependent of both the loading orientation and the stress state. Throughout this

investigation, flow potentials (surfaces) instead of yield functions (surfaces) will be

used to emphasize modeling of plastic flow behavior of sheet metals well beyond
the initial yielding and the flow surface should be experimentally defined by the

back-extrapolation method or a big offset strain (Hill, 1979; Wu, 2002).

2.1. Summary of the constitutive equations

The sheet metal material element is defined by a Cartesian material texture

coordinate system in terms of the rolling direction (x), the transverse direction

(y) and the normal direction (z) of an orthotropic sheet metal. A plane stress state
can be described by the two principal stress components r1 and r2 in the x–y

plane with |r1| P |r2| and a loading orientation angle h. The loading orientation an-

gle is defined as the angle between the direction of the major principal stress com-

ponent r1 and the rolling direction of the sheet metal. When r1 = r2, the principal

axes of stress are set to coincide with the principal axes of strain rates, which cor-

respond naturally to the orthotropic axes of the sheet metal. Such a selection of

the principal axes of stress avoids the ambiguity of defining the loading orienta-

tion angle h under equal biaxial loading (it is zero when r1 = r2). The definition
of the major principal stress |r1|P |r2| also excludes the consideration of the

Bauschinger effect. Based on the recent developments of an anisotropic plasticity

theory of sheet metals derived from the concept of effective macroscopic slips

(Tong, 2005), a simplified version of that theory is proposed in the following (a

detailed derivation of the constitutive equations in the original theory is given

in Appendix A.)
s ¼ F ðhÞjr1ja þ GðhÞjr2ja þ HðhÞjr1 � r2jaf g1=a

¼ s0ðn; _cÞ ðthe flow potential and flow surfaceÞ; ð1Þ

_e1 ¼ _c
os
or1

¼ _c F ðhÞ jr1j
s

� �a�2 r1

s
þ HðhÞ jr1 � r2j

s

� �a�2 r1 � r2ð Þ
s

" #
;

_e2 ¼ _c
os
or2

¼ _c GðhÞ jr2j
s

� �a�2 r2

s
� HðhÞ jr1 � r2j

s

� �a�2 r1 � r2ð Þ
s

" #
;

_e3 ¼ �_e1 � _e2;

_e12 ¼
_c

2 r1 � r2ð Þ
os
oh

¼ _cs
a

F 0ðhÞ
2 r1 � r2ð Þ

jr1j
s

� �a

þ G0ðhÞ
2ðr1 � r2Þ

jr2j
s

� �a�

þ H 0ðhÞ
2ðr1 � r2Þ

jr1 � r2j
s

� �a�
;
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_x12 ¼ _c � F 0ðhÞs
2aðr1 � r2Þ

jr1j
s

� �a

þ G0ðhÞs
2aðr1 � r2Þ

jr2j
s

� �a�

þWðhÞ jr1 � r2j
s

� �a�2 ðr1 � r2Þ
s

�
; ðthe flow rulesÞ ð2Þ

_n ¼ _c F ðhÞ jr1j
s

� �a

þ GðhÞ jr2j
s

� �a

þ Qð; hÞ jr1 � r2j
s

� �a� �ða�1Þ=a

;

ðthe evolution law of isotropic hardeningÞ; ð3Þ

s0ðn; _cÞ ¼ g0ðnþ n0Þn
_c
_c0

� �1=m

;

ðpower� law strain hardening and rate� dependenceÞ; ð4Þ

where _e1, _e2, _e3, and _e12 are plastic strain rates on the principal axes of stress, _x12 is

the in-plane plastic spin, s and _c are the effective flow stress and its work-conjugate

effective plastic strain rate, a (>1) is the stress exponent, F(h), G(h), H(h), W(h), and
Q(h) are five anisotropic material functions of the loading orientation angle, n is a
certain internal state variable characterizing the isotropic hardening state of the

material with its offset value as n0, s0ðn; _cÞ is the effective flow strength, g0 and _c0
are, respectively, the reference flow strength and the reference strain rate, and n

and m are, respectively, strain hardening and rate-sensitivity exponents (with

m ! 1 corresponding to the rate-independent limit). Except different names are

used for the anisotropic material functions, the above constitutive equations are di-

rectly obtained from Eqs. (A.24)–(A.30) by assuming a flow potential with an asso-

ciated flow rule (Eq. (A.35)), and c1ðn; _c; hÞ ¼ c2ðn; _c; hÞ ¼ 1. The dependence of
anisotropic material functions on n and _c is assumed to be negligible.
2.2. Anisotropic material functions and their representations

For orthotropic sheet metals, twofold symmetry exists in each plane along the

material symmetry axes. All anisotropic material functions should thus satisfy the

following conditions due to the equivalency of the loading orientation angles be-

tween h and h ± p (the symmetry of mechanical loading) and h and �h (the ortho-
tropic symmetry of the material)

F ðhÞ ¼ F ð�hÞ; F ðhÞ ¼ F ðh� pÞ; GðhÞ ¼ Gð�hÞ; GðhÞ ¼ Gðh� pÞ;

HðhÞ ¼ Hð�hÞ; HðhÞ ¼ Hðh� pÞ; QðhÞ ¼ Qð�hÞ; QðhÞ ¼ Qðh� pÞ;

WðhÞ ¼ �Wð�hÞ; WðhÞ ¼ Wðh� pÞ.
ð5Þ

These anisotropic material functions need to be defined only for 0 6 h 6 p/2 and
each of them may be represented by a cosine or sine Fourier series



502 W. Tong / International Journal of Plasticity 22 (2006) 497–535
F ðhÞ ¼
X

k¼0;1;...

F k cos 2kh ¼ F 0 þ F 1 cos 2hþ F 2 cos 4hþ � � � ;

GðhÞ ¼
X

k¼0;1;...

Gk cos 2kh ¼ G0 þ G1 cos 2hþ G2 cos 4hþ � � � ;

HðhÞ ¼
X

k¼0;1;...

Hk cos 2kh ¼ H 0 þ H 1 cos 2hþ H 2 cos 4hþ � � � ;

QðhÞ ¼
X

k¼0;1;2...

Qk cos 2kh ¼ Q0 þ Q1 cos 2hþ Q2 cos 4hþ � � � ;

WðhÞ ¼
X

k¼1;2...

Wk sin 2kh ¼ W1 sin 2hþW2 sin 4hþ � � � .

ð6Þ

On the other hand, simple mechanical tests such as uniaxial tension and equal biaxial

tension tests are often conducted to evaluate the anisotropic plastic flow behavior of

a sheet metal. The relationships between the anisotropic material functions and the

experimental measurements are summarized in the following (their derivations are

straightforward from Eqs. (1) and (2))

Flow stress under uniaxial tension ðr1 ¼ rh > 0; r2 ¼ 0Þ:
rh ¼ s0ðn; _cÞfF ðhÞ þ HðhÞg�1=a

. ð7aÞ
Plastic axial strain ratio under uniaxial tension:

Rh ¼
_e2
_e3

����
rh

¼ HðhÞ
F ðhÞ . ð7bÞ

Plastic shear strain ratio under uniaxial tension:

Ch ¼
_e12
_e1

����
rh

¼ 1

2a
F 0ðhÞ þ H 0ðhÞ
F ðhÞ þ HðhÞ . ð7cÞ

Plastic spin ratio under uniaxial tension:

Ph ¼
_x12

_e1

����
rh

¼ �F 0ðhÞ=4þWðhÞ
F ðhÞ þ HðhÞ . ð7dÞ

Flow stress under equal biaxial tension ðr1 ¼ r2 ¼ rB > 0Þ:
rB ¼ s0ðn; _cÞfF ð0Þ þ Gð0Þg�1=a

. ð7eÞ
Plastic axial strain ratio under equal biaxial tension:

X0 ¼
_e2
_e1

����
rB

¼ Gð0Þ
F ð0Þ . ð7fÞ

According to Eq. (A.36), the continuity of the flow surface at equal biaxial loading

(r1 = r2 = rB > 0) requires

F ðhÞ þ GðhÞ ¼ s
rB

� �a

; so F 0ðhÞ þ G0ðhÞ ¼ 0. ð8Þ

Furthermore, if one imposes the more restrictive condition of smoothness on the

flow surface under equal biaxial loading (see Eqs. (A.38)–(A.40)), one obtains
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F ðhÞ ¼ G hþ p
2

� �
¼ 1

2
þ 1� X0

1þ X0

cos 2h
2

� �
s
rB

� �a

. ð9Þ
2.3. Some special cases of the proposed anisotropic plastic flow theory

2.3.1. Isotropic plasticity theory by von Mises

With the assumptions of a = 2, F(h) = G(h) = H(h) = Q(h) = 1, the proposed the-

ory becomes identical to that of the von Mises isotropic plasticity flows theory in

plane stress condition with n = c and

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
1 þ r2

2 þ ðr1 � r2Þ2
q

¼
ffiffiffi
2

p
�r; ð10Þ

where �r is the von Mises effective stress (Hill, 1950; Hosford and Caddell, 1993).

2.3.2. Anisotropic plasticity theory by Hill (1948)

If one prescribes the anisotropic material functions as following (a = 2)

F ðhÞ ¼R90 þ R0

2
þ R90 � R0

2
cos 2h ¼ R0sin

2hþ R90cos
2h;

GðhÞ ¼F hþ p
2

� �
; QðhÞ ¼ HðhÞ; ð11aÞ

HðhÞ ¼ 2R0R90 þ R45ðR0 þ R90Þ
4

þ 2R0R90 � R45ðR0 þ R90Þ
4

cos 4h

¼ 1

2
R45ðR0 þ R90Þsin22hþ R0R90cos

22h; ð11bÞ

where R0, R45 and R90 are the plastic strain ratios measured at 0�, 45�, and 90� from
the rolling direction of the sheet metal, respectively, the proposed theory becomes

exactly the Hill�s (1948) anisotropic plastic flow potential in the plane stress condi-

tion expressed in terms of the two principal stresses and the loading orientation angle
(Hill, 1948, 1950; Hosford, 1993).

2.3.3. Anisotropic plasticity theories by Hill (1979), Logan and Hosford (1980) and

Hosford (1985)

When the principal stress axes coincide with the material symmetry axes, Hill

(1979) and Logan and Hosford (1980) proposed a non-quadratic flow potential as

f jry ja þ gjrxja þ hjrx � ry ja ¼ 2ra; ð12Þ
where r is the effective flow stress, and f, g, and h are material constants. If one sets

f ¼ F ð0Þ; g ¼ Gð0Þ; h ¼ Hð0Þ; and ra ¼ sa=2; ð13Þ
then the flow potential given by Eq. (1) is equivalent to their flow potential. In an

attempt to accommodate planar anisotropy and loading without principal stress

directions coinciding with material symmetry axes, Hosford (1985) suggested a flow
function as

Rhþp=2r
a
1 þ Rhr

a
2 þ RhRhþp=2ðr1 � r2Þa ¼ Rhþp=2½1þ Rh�ra

h; ð14Þ
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where rh and Rh are, respectively, the flow stress and the plastic axial strain ratio in

the h-direction tension test. If one assumes (noting the results given in Eqs. (7a) and

(7b))

GðhÞ ¼ F ðhþ p=2Þ HðhÞ
Hðhþ p=2Þ ; ð15Þ

then Eq. (14) is identical to the flow function given by Eq. (1). However, Hosford

(1985) did not use the associated flow rule Eq. (2) for the plastic shear strain rate
_e12. Instead he assumed the principal axes of stress always coincide with those of

strain rates so _e12 is set to be zero for any loading orientation angle. Possible analyt-

ical representations based on a number of uniaxial tension test data rh and Rh were

not discussed at all by Hosford (1985) to describe a flow surface at any loading ori-

entation angle.

2.3.4. Anisotropic plasticity theories by Barlat et al. (1997a,b)

Barlat and colleagues have developed several stress-based anisotropic flow poten-

tials (Yld91, Yld94, Yld96 and Yld2000-2D, etc.) for aluminum sheet metals (Barlat

et al., 1991, 1997a,b, 2004). For example, the plane stress versions of their Yld94

(without shear stress) and Yld96 (with shear stress) models can be written separately

using their notations as (r as the effective flow stress)

axjsy � szja þ ay jsx � szja þ azjsx � sy ja ¼ 2ra; ð16aÞ
a1js2 � s3ja þ a2js1 � s3ja þ a3js1 � s2ja ¼ 2ra; ð16bÞ

where (sx, sy, sz) and (s1, s2, s3) are the eigenvalues of the plane stress tensors s (with-

out and with shear stresses, respectively) modified by a four-order linear operator,

and ax, ay, and az are material anisotropy constants. The parameters a1, a2, and a3
are simply the transformed material anisotropy constants from the principal axes
of the anisotropy to the principal axes of s. If the modified plane stress tensor s is

nothing but the deviatoric components of the principal stress tensor defined by r1
and r2, then the flow potential (Eq. (1)) is equivalent to the special case of either

Yld94 or Yld96 model, providing ra = sa/2 and

ax ¼ Gð0Þ; ay ¼ F ð0Þ; az ¼ Hð0Þ; ð17aÞ
a1 ¼ GðhÞ; a2 ¼ F ðhÞ; a3 ¼ HðhÞ. ð17bÞ
3. Experimental determinations of anisotropic material functions

3.1. An enhanced evolution law of isotropic hardening

Stress–strain curves obtained in a single equal biaxial tension test and multiple
uniaxial tension tests will be used to establish the anisotropic material function

Q(h) in the evolution law of isotropic hardening given in Eq. (3) so the directional

dependence of strain hardening of a sheet metal beyond initial yielding but before
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localized necking can be properly described. Using the equal biaxial tensile plastic

stress–strain curve as a reference (i.e., the effective flows stress s is set to be the

flow stress rB under equal biaxial tension with _eB ¼ �_e3), each uniaxial tensile plastic

stress–strain curve can then be compared at the same isotropic hardening state as

(according to Eqs. (7a) and (7e))

rhðn; _cÞ
rBðn; _cÞ

¼ rhðeh; _ehÞ
rBðeB; _eBÞ

����
ðn; _cÞ

¼ F ð0Þ þ Gð0Þ
F ðhÞ þ HðhÞ

� �1=a
. ð18Þ

For many sheet metal forming applications under quasi-static loading in ambient

environments, the strain rate effects may be negligible and the relevant experimental

data are indeed rarely reported. Assuming either m! 1 or _c � _c0 in Eq. (4), the

plastic flow stress–strain curves obtained from the equal biaxial tension test and mul-

tiple uniaxial tension tests are modeled by a simple power-law in the form of

rðeÞ ¼ �rðeþ �eÞn, where n is the strain hardening exponent that is the same for all
tests, �r and �e (about the order of 0.1%) are two material constants that may be dif-

ferent for each test (Graf and Hosford, 1993, 1994). Using such power-law stress–

strain curves, the plastic strains in equal biaxial and uniaxial tension tests can be

compared as

ehðnÞ þ �ehðn0Þ
eBðnÞ þ �eBðn0Þ

¼ �rB

�rh

F ð0Þ þ Gð0Þ
F ðhÞ þ HðhÞ

� �1=a( )1=n

or

_ehðnÞ ¼ _eBðnÞ
�rB

�rh

F ð0Þ þ Gð0Þ
F ðhÞ þ HðhÞ

� �1=a( )1=n

. ð19Þ

On the other hand, there exist direct relations between the isotropic hardening

parameter and biaxial and uniaxial plastic tensile strains (using Eqs. (2) and (3))

_n ¼ _eBðr1 ¼ r2 ¼ rBÞ; and _n ¼ _eh
½F ðhÞ þ QðhÞ�ða�1Þ=a

F ðhÞ þ HðhÞ ðr1 ¼ rh; r2 ¼ 0Þ.

ð20Þ
From Eqs. (19) and (20), one obtains

QðhÞ ¼ ½F ðhÞ þ HðhÞ�ðaþ1=nÞ=ða�1Þ½F ð0Þ þ Gð0Þ�1=n=ð1�aÞ �rB

�rh

� �a=n=ð1�aÞ

� F ðhÞ.

ð21Þ
3.2. The procedure for determining the material functions

Due to its simplicity in laboratory implementation and the high accuracy and

reliability of measurements, a sheet metal is commonly investigated by a series of

uniaxial tension tests with loading angles at 0�, 45�, and 90� from its rolling

direction. Uniaxial stress–strain curves r0, r45 and r90 and plastic strain ratios

R0, R45, and R90 obtained in these tension tests are then used to determine the
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anisotropic material parameters (Hill, 1948, 1950; Graf and Hosford, 1993, 1994;

Hosford, 1993; Hosford and Caddell, 1993). To better characterize the planar

anisotropy of a sheet metal, uniaxial tension tests with more than three distinct

loading orientation angles are used (Gotoh, 1977; Barlat et al., 1997a,b). Occa-

sionally, equal biaxial tension stress–strain curves rB(eB) by hydraulic bulging
tests or by out-of-plane uniaxial compression tests have also been measured for

a sheet metal (Pearce, 1968; Woodthorpe and Pearce, 1970; Rata-Eskola, 1979;

Young et al., 1981; Vial et al., 1983; Barlat et al., 2004). However, the biaxial

plastic strain ratio X0 is only rarely reported in out-of-plane uniaxial compression

tests (Bourne and Hill, 1950; Barlat et al., 2004; Tong, 2003). For a given stress

exponent a (>1) and a fixed loading orientation angle h, the four anisotropic

material functions F(h), G(h), H(h), and Q(h) can then be determined using the

following procedure:

(1) Set the stress exponent a to 6 and 8 for BCC and FCC metals, respectively

(Hosford, 1993).

(2) Obtain F(h) and G(h) from Eq. (9) using the flow stress rB (with s = rB) and the

plastic strain ratio X0 under equal biaxial tension (i.e., the smoothness of flow

surfaces at equal biaxial loading is assumed).

(3) Determine values of H(h) based on the multiple measurements of uniaxial plas-

tic strain ratios Rh and the known F(h) according to Eq. (7b).
(4) Determine values of Q(h) based on biaxial and uniaxial stress–strain curves

(rB, �rh and n) and the known F(h), G(h) and H(h) using Eq. (21).

(5) Determine the effective flow strength function s0ðn; _cÞ in Eq. (4) from the

stress–strain curve of the uniaxial tension test along the rolling direction or

the equal biaxial tension test (Eqs. (7a) or (7e)):

s0ðn; _cÞ ¼ r0ðe0; _e0Þ½F ð0Þ þ Hð0Þ�1=a; _n ¼ _e0
½F ð0Þ þ Qð0Þ�ða�1Þ=a

F ð0Þ þ Hð0Þ ;

_c ¼ _e0
1

F ð0Þ þ Hð0Þ

	 
1=a

; ð22Þ

or

s0ðn; _cÞ ¼ rBðeB; _eBÞ; _n ¼ _c ¼ _eB ¼ �_e3. ð23Þ

Because the experimental data are rarely reported on the plastic spin ratio

Ph under off-axis uniaxial tension (Eq. (7d)), an evaluation of the anisotropic

function W(h) will be omitted here (for the completeness of the model, it may

assume Ph = 0 so W(h) = F 0(h)/4/a). When no experimental data are made

available on the biaxial plastic strain ratio X0, one may estimate it from (Tong,

2003)

X0 ¼
1þ R0

1þ R90

. ð24Þ
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If no equal biaxial tensile stress–strain curve is available, it may be represented by an

average of uniaxial tensile stress–strain curves (Wagoner and Wang, 1979; Young

et al., 1981)

rB ¼ ðr0 þ 2r45 þ r90Þ=4. ð25Þ

To be self-consistent, the material constant �eh in the power-law uniaxial stress–strain

curves rhðehÞ ¼ �rhðeh þ �ehÞn should be determined from (m ! 1 or _c � _c0 is

assumed)

rhð0Þ ¼ �rh�e
n
h or �eh ¼ n0

g0
�rh

� �
½F ðhÞ þ HðhÞ�1=a

� �1=n

; ð26Þ

where the material constants �rh and n are determined by a least-square fit of a stress–

strain curve at plastic strains of a few percent and above (Graf and Hosford, 1993,

1994).
3.3. Anisotropic plasticity models with various degrees of planar anisotropy

Three anisotropic plasticity models are constructed that correspond to three, five,

and seven independent uniaxial tension tests reported for a given sheet metal (the
two functions F(h) and G(h) are given in Eq. (9)):

Anisotropic plasticity Model No. 1:

HðhÞ ¼ H 0 þ H 1 cos 2hþ H 2 cos 4h;

QðhÞ ¼ Q0 þ Q1 cos 2hþ Q2 cos 4h.
ð27aÞ

Anisotropic plasticity Model No. 2:

HðhÞ ¼ H 0 þ H 1 cos 2hþ H 2 cos 4hþ H 3 cos 6hþ H 4 cos 8h;

QðhÞ ¼ Q0 þ Q1 cos 2hþ Q2 cos 4hþ Q3 cos 6hþ Q4 cos 8h.
ð27bÞ

Anisotropic plasticity Model No. 3:

HðhÞ ¼ H 0 þ H 1 cos 2hþ H 2 cos 4hþ H 3 cos 6hþ H 4 cos 8hþ H 5 cos 10h

þ H 6 cos 12h;

QðhÞ ¼ Q0 þ Q1 cos 2hþ Q2 cos 4hþ Q3 cos 6hþ Q4 cos 8hþ Q5 cos 10h

þ Q6 cos 12h. ð27cÞ

The two material functions at selected loading orientation angles are first deter-

mined following the procedure given in Section 3.2, so two sets of linear equa-

tions can be solved separately to obtain the Fourier series coefficients of H(h)
and Q(h). For example, the Fourier coefficients in the Model No. 1 are obtained

as
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H 0 ¼
R0ðF 0 þ F 1Þ þ R45ðF 0 � F 1Þ þ 2R90F 0

4
; H 1 ¼

R0ðF 0 þ F 1Þ � R45ðF 0 � F 1Þ
2

;

H 2 ¼
R0ðF 0 þ F 1Þ þ R45ðF 0 � F 1Þ � 2R90F 0

4
; ð28aÞ

Q0 ¼
Qðp=4Þ

2
þ Qð0Þ þ Qðp=2Þ

4
; Q1 ¼

Qð0Þ �Qðp=2Þ
2

;

Q2 ¼ �Qðp=4Þ
2

þQð0Þ þQðp=2Þ
4

. ð28bÞ

If X0 = R0/R90 (which may be called the Hill�s (1948) hypothesis on the biaxial plastic

strain ratio X0), then F(h), G(h), and H(h) are equivalent to those given in Eqs. (11a)

and (11b).
4. Modeling anisotropic plastic flows in orthotropic aluminum sheet metals

4.1. Flow surfaces under fixed loading orientation angles

When a sheet metal is subjected to biaxial tensile loading at a constant loading

orientation angle and at a fixed isotropic hardening state, the flow surface projected

in (r1,r2) space can be conveniently generated using the polar coordinates q and a
(Hill, 1980, 1990)

r1 ¼ s0ðn; _cÞq cos a; r2 ¼ s0ðn; _cÞq sin a; þp=4 P a P �p=4; ð29aÞ
qjðn; _cÞ ¼ F ðhÞj cos aja þ GðhÞj sin aja þ HðhÞj cos a� sin aja½ ��1=a

. ð29bÞ

The condition on the angle a of the polar coordinates (+p/4 P a P �p/4) is due to

the definition of the major principal axis of stress r1 (|r1|P |r2|). The +p/4 P a P 0

section and the +p/2 P a P p/4 section of each flow surface correspond to loading

orientation angles of h and h + p/2, respectively, and they coincide at a = p/4 (equal
biaxial loading). Flow surfaces are often defined either at a given effective plastic

strain c or at a given amount of specific plastic work WP. Assuming proportional

biaxial tensile loading with l = r2/r1 = tana, one has (using Eqs. (1) and (3))

_n ¼ _c
F ðhÞ þ GðhÞla þ QðhÞð1� lÞa

F ðhÞ þ GðhÞla þ HðhÞð1� lÞa
� �ða�1Þ=a

� mða; hÞ _c; that is nðc; a; hÞ ¼ mða; hÞc. ð30Þ

Similarly, the plastic work WP per unit volume under proportional biaxial tension

can be related to the isotropic hardening parameter n by (using Eqs. (4) and (30))

W PðnÞ ¼
Z c

0

sðnÞ dc ¼
g0 ðnþ n0Þnþ1 � nnþ1

0

h i
ð1þ nÞmða; hÞ ;

or nðW PÞ ¼
ð1þ nÞmða; hÞ

g0
W P þ nnþ1

0

	 
1=ð1þnÞ

� n0. ð31Þ
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So the flow surfaces at a constant effective plastic strain c are given by

r1 ¼ s0ðnðc; a; hÞ; _cÞq cos a; r2 ¼ s0ðnðc; a; hÞ; _cÞq sin a; ð32aÞ

qjðc;_cÞ ¼ qjðn; _cÞ
s0ðnðc; p=4; 0Þ; _cÞ
s0ðnðc; a; hÞ; _cÞ

¼ qjðn;_cÞ
nðc; p=4; 0Þ þ n0
nðc; a; hÞ þ n0

� �n

� qjðn; _cÞ
mðp=4; 0Þ
mða; hÞ

� �n

. ð32bÞ

And the flow surfaces at the same amount of accumulated specific plastic work are

given by

r1 ¼ s0ðnðW P; a; hÞ; _cÞq cos a; r2 ¼ s0ðnðW P; a; hÞ; _cÞq sin a; ð33aÞ

qjðW P;_cÞ ¼ qjðn; _cÞ
s0ðnðW P; p=4; 0Þ; _cÞ
s0ðnðW P; a; hÞ; _cÞ

¼ qjðn; _cÞ
nðW P; p=4; 0Þ þ n0
nðW P; a; hÞ þ n0

� �n

� qjðn; _cÞ
mðp=4; 0Þ
mða; hÞ

� �n=ð1þnÞ

. ð33bÞ

The flow surfaces at fixed n, c, and WP are adjusted so they all coincide under equal

biaxial tension.

4.2. Experimental tensile testing data and model parameter identifications of 10

aluminum sheet metals

The three anisotropic plasticity models detailed in Section 3 are used here to

describe the plastic flow of a total of 10 commercial aluminum alloy sheet metals.

Mechanical testing data of these 10 aluminum alloy sheets have been reported in

the literature (see Table 1 for the summary of the 10 aluminum alloys and the cited

references). As there are only three uniaxial tension tests (power-law stress–strain
curves and plastic strain ratios at 0�, 45�, and 90� from the rolling direction) reported

for the first four aluminum sheet metals AA2008-T4, AA6111-T4, AA2036-T4 and
Table 1

List of the references of experimental data on aluminum sheet metals

Materia

No.

Alloy designation No. uniaxial

tensile tests

Biaxial

test

Model

type(s)

References

1 AA2008-T4 3 No 1 Graf and Hosford (1993)

2 AA6111-T4 3 No 1 Graf and Hosford (1994)

3 AA2036-T4 3 No 1 Wagoner and Wang (1979)

4 AA3003-O 3 Yes 1 Vial et al. (1983)

5 AA6XXX-T4 5 No 1,2 Kuwabara et al. (2000)

6 AA6016-T4 7 No 1,2,3 Yoon et al. (1999),

Cazacu and Barlat (2001)

7 AA2008-T4 7 No 1,2,3 Barlat et al. (1991)

8 AA2024-T3 7 No 1,2,3 Barlat et al. (1991)

9 AA6022-T4 7 Yes 1,2,3 Barlat et al. (1997b, 2004, 2005)

10 AA2090-T3 7 Yes 1,2,3 Barlat et al. (2004, 2005)
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AA3003-O (Graf and Hosford, 1993, 1994; Wagoner and Wang, 1979; and Vial

et al., 1983), so only Model No. 1 can be used to describe them. The out-of-plane uni-

axial compression test data (equivalent to the in-plane equal-biaxial tension neglect-

ing any hydrostatic pressure effects) are only available for the sheet metal No. 4

(AA3003-O by Vial et al., 1983). No biaxial plastic strain ratios were reported for
any of the first four aluminum alloys. There are a total of five uniaxial tension tests

(individual power-law stress–strain curves and plastic strain ratios at 0, 22.5�, 45�,
67.5�, and 90� from the rolling direction) but no equal biaxial tension test reported

by Kuwabara et al. (2000) for an aluminum sheet metal AA6XXX-T4 (the material

No. 5 in Table 1). So both Model No. 1 and Model No. 2 of the new anisotropic

plasticity theory can be used to describe its plastic flow behavior. Three uniaxial ten-

sile test data at 0�, 45�, and 90� from the rolling direction are used to determine the

material parameters in Model No.1 and all five uniaxial tensile test data at 0�, 22.5�,
45�, 67.5�, and 90� from the rolling direction are used to determine the material

parameters in Model No. 2. As the original power-law stress–strain curves given

for the first five aluminum sheets use a slightly different power exponent for each test,

they have been modified using the same power exponent (averaging from all tests)

and by requiring that the new and old power-law stress–strain curves produce the

same plastic work at the strain level of 10% (Barlat et al., 1997a,b). The tensile

testing data are summarized in Table 2 for both original and modified power-law

stress–strain curves of the first five aluminum sheet metals.
Barlat and co-workers have modeled extensively the anisotropic plastic flow of

aluminum sheet metals over the years and five of their aluminum sheet metals are

selected for this investigation (see Table 1 for details on their published work on

these five aluminum alloys). There are a total of seven uniaxial tension tests (normal-

ized yield or flow stresses and plastic strain ratios at 0�, 15�, 30�, 45�, 60�, 75�, and
90� from the rolling direction) reported in their works (Yoon et al., 1999; Barlat

et al., 1991, 1997b, 2004) for the five aluminum sheet metals AA6016-T4,

AA2008-T4, AA2024-T3, AA6022-T4, and AA2090-T3 (the materials No. 6 to
No. 10 in Table 1). The experimental biaxial plastic strain ratio X0 (from an out-

of-plane uniaxial compression test) is reported only for one of their aluminum sheet

metals AA2090-T3 (Barlat et al., 2004) while biaxial tensile flow stress data are made

available for three of their aluminum sheet metals AA6016-T4, AA6022-T4 and

AA2090-T3 based on bulge tests. However, no complete power-law type stress–

strain curves are reported in the open literature for these five aluminum sheet metals.

Except for aluminum sheet metal AA6022-T4 where flow stresses at the equal plastic

work at about 0.1 plastic strain are reported (Barlat et al., 1997b), only yield stresses
measured by a 0.2% offset strain are given for the rest of the four aluminum sheet

metals. A power-law strain hardening exponent n = 0.25 is assumed for all of the five

aluminum sheet metals and the power-law constants �r are assumed to be propor-

tional to the uniaxial yield stresses of the four aluminum sheet metals with reported

yield stress data (Barlat et al., 2005). The power-law constants �r for AA6022-T4 are

determined based on the reported flow stresses of the equal-plastic work at 10%.

Selected normalized yield and flow stresses as well as the power-law constants �r
for the five aluminum sheet metals No. 6 to No. 10 are summarized in Table 2



Table 2

Selected tensile test data on aluminum sheet metals

Aluminum 1 2 3 4 5 6 7 8 9 10

Alloy 2008-T4 6111-T4 2036-T4 3003-O 6xxx-T4 6016-T4 2008-T4 2024-T3 6022-T4 2090-T3

�r0 (old) 518 548.5 607 195.5 621 1.000 1.000 1.000 0.994 1.000

n (old) 0.264 0.2405 0.226 0.214 0.405 – – – – –

�r45 (old) 529.5 546 614 187.1 597 0.984 0.944 0.839 0.962 0.811

n (old) 0.2685 0.250 0.246 0.222 0.391 – – – – –

�r90 (old) 523 541.5 610 183.2 591 0.942 0.902 0.843 0.948 0.910

n (old) 0.264 0.245 0.241 0.215 0.394 – – – – –

�r0 (new) 518 550 608.8 195.5 609.1 1.000 1.000 1.000 0.9925 1.000

�r45 (new) 525 544.1 613.7 186.6 601.6 0.984 0.944 0.839 0.9527 0.811

�r90 (new) 523 541.5 609.8 183.2 592.1 0.942 0.902 0.843 0.9354 0.910

n (new) 0.264 0.245 0.240 0.214 0.395 0.250 0.250 0.250 0.250 0.250

R0 0.580 0.665 0.701 0.655 0.660 0.939 0.852 0.770 0.70 0.21

R45 0.485 0.630 0.752 0.753 0.450 0.386 0.490 1.036 0.48 1.58

R90 0.780 0.785 0.676 0.510 0.570 0.638 0.520 0.658 0.59 0.69

X0 (0.8876) (0.9328) (1.0149) (1.0960) (1.057) (1.184) (1.218) (1.068) (1.0692) 0.67

�rB (522.75) (544.9) (611.5) 176.9 (601.1) 1.000 (1.000) (1.000) 1.000 1.035

The numbers in the parentheses are estimates using either Eq. (24) or Eq. (25).

The flow stresses are in MPa for the first five alloys but are normalized numbers by �r0 or �rB for other five alloys.
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Table 3

Material parameters for selected aluminum sheet metals (Model No. 1, a = 8 and s0 = rB)

No. 1 2 3 4 5 6 7 8 9 10

Alloy 2008-T4 6111-T4 2036-T4 3003-O 6xxx-T4 6016-T4 2008-T4 2024-T3 6022-T4 2090-T3

F0, G0 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

F1, �G1 0.0298 0.0174 �0.0037 �0.0229 �0.0139 �0.0421 �0.0492 �0.0163 �0.0167 0.0988

H0 0.2898 0.3382 0.3601 0.3330 0.2659 0.2905 0.2899 0.4370 0.2808 0.4956

H1 �0.0298 �0.0174 0.0037 0.0229 0.0139 0.0421 0.0492 0.0163 0.0167 �0.0755

H2 0.0473 0.0232 �0.0159 �0.0435 0.0409 0.0975 0.0449 �0.0810 0.0408 �0.2944

Q0 0.1777 0.2416 0.2702 0.5013 0.1722 0.1068 0.0299 0.0104 0.0431 �0.0520

Q1 �0.0449 0.0110 0.0008 0.1860 0.0434 0.1395 0.1872 0.2237 0.0986 0.0045

Q2 0.0507 0.0409 �0.0379 �0.0523 0.0525 0.1114 0.0660 0.0483 0.0649 �0.0595

n 0.264 0.245 0.240 0.214 0.395 0.250 0.250 0.250 0.250 0.250

g0 522.75 544.9 611.5 176.9 601.1 1.000 1.000 1.000 1.000 1.035

n0 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2%
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Table 4

Material parameters for selected aluminum sheet metals (Model No. 2, a = 8 and s0 = rB)

Aluminum 5 6 7 8 9 10

Alloy AA6xxx-T4 AA6016-T4 AA2008-T4 AA2024_T3 AA6022-T4 AA2090-T3

F0, G0 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

F1, �G1 �0.0139 �0.0421 �0.0492 �0.0163 �0.0167 0.0988

H0 0.2642 0.2884 0.2943 0.4579 0.2831 0.3477

H1 0.0051 0.0398 0.0434 0.0133 0.0221 �0.0786

H2 0.0409 0.0975 0.0449 �0.0810 0.0408 �0.2944

H3 0.0089 0.0022 0.0058 0.0030 �0.0053 0.0030

H4 0.0017 0.0021 �0.0044 �0.0209 �0.0023 0.1480

Q0 0.1672 0.0967 0.0499 0.0133 0.0454 �0.1154

Q1 0.0313 0.1343 0.1796 0.1810 0.1097 0.0389

Q2 0.0525 0.1114 0.0660 0.0483 0.0649 �0.0595

Q3 0.0121 0.0052 0.0075 0.0427 �0.0111 �0.0344

Q4 0.0050 0.0101 �0.0200 �0.0029 �0.0023 0.0633
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(for the uniaxial tensile tests at 0�, 45�, and 90� from the rolling direction only). The

anisotropic plasticity Models No. 1 to No. 3 can then be used to describe the flow

behaviors of these five aluminum alloy sheets. Three uniaxial tensile test data at

0�, 45�, and 90� from the rolling direction are used to determine the material param-

eters in Model No. 1, five uniaxial tensile test data at 0�, 30�, 45�, 60�, and 90� from
the rolling direction are used to determine the material parameters in Model No. 2,

and all seven uniaxial tensile test data are used to determine the material parameters

in Model No. 3 for each aluminum alloy according to the procedures given Section 3.
Table 5

Material parameters for selected aluminum sheet metals (Model No. 3, a = 8 and s0 = rB)

Aluminum 6 7 8 9 10

Alloy AA6016-T4 AA2008-T4 AA2024-T3 AA6022-T4 AA2090-T3

F0, G0 0.5000 0.5000 0.5000 0.5000 0.5000

F1, �G1 �0.0421 �0.0492 �0.0163 �0.0167 0.0988

H0 0.2861 0.2942 0.4538 0.2830 0.3734

H1 0.0363 0.0490 0.0181 0.0326 �0.0480

H2 0.0952 0.0448 �0.0850 0.0407 �0.2686

H3 0.0022 0.0058 0.0030 �0.0053 0.0030

H4 0.0043 �0.0043 �0.0168 �0.0022 0.1222

H5 0.0035 �0.0056 �0.0047 �0.0106 �0.0306

H6 0.0022 0.0001 0.0041 0.0001 �0.0257

Q0 0.1014 0.0474 0.0038 0.0493 �0.1101

Q1 0.1317 0.1808 0.1674 0.1195 0.0395

Q2 0.1161 0.0635 0.0388 0.0688 �0.0542

Q3 0.0052 0.0075 0.0427 �0.0111 �0.0344

Q4 0.0053 �0.0175 0.0066 �0.0062 0.0581

Q5 0.0026 �0.0011 0.0136 �0.0098 �0.0006

Q6 �0.0048 0.0025 0.0095 �0.0039 �0.0053
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Fig. 1. The predicted directional dependence of flow stress (at the same plastic axial strain) and plastic

strain ratio of four aluminum sheet metals under uniaxial tension using the anisotropic plasticity Model

No. 1. The reported experimental data (filled symbols) from three uniaxial tension tests at loading

orientation angles of 0�, 45�, and 90� are also included for comparison.
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If the experimental data are unavailable for the plastic strain ratio and flow stress

of any one of the 10 aluminum sheet metals under equal biaxial tension, their values

are estimated using Eqs. (24) and (25). Material parameters determined for all of the

10 aluminum sheet metals are given in Table 3 (Model No. 1), Table 4 (Model No.

2), and Table 5 (Model No. 3), respectively. A stress exponent a = 8 and the defini-

tion of s0 = rB are used for all aluminum sheet metals.

4.3. Results on modeling the anisotropic plastic flow behavior of 10 aluminum sheet

metals

The directional dependence of both flow stress rh (at the same plastic axial

strains of 2%, 5% and 10%) and plastic axial strain ratio Rh under uniaxial tension
according to the anisotropic plasticity Model No. 1 is shown in Figs. 1(a)–(d) for

the first four aluminum sheet metals (AA2008-T4, AA6111-T4, AA2036-T4, and

AA3003-O). The flow stresses at constant uniaxial plastic strains are computed
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using Eqs. (7a) and (20b) and normalized by the flow stress r0 measured along the

rolling direction of each sheet metal. Little difference is observed on the depen-

dence of the flow stress at constant plastic strains on the loading orientation angles

when the uniaxial plastic strain is 2% or higher. Also shown in Fig. 1 are the exper-

imental data (the filled symbols) on the flow stress ratio (computed simply from
�rh=�r0) and the plastic strain ratio. The complete agreement between the experimen-

tal measurements and the model description for each sheet metal is expected as the

experimental data of both flow stress and plastic strain ratio are used to determine

the material parameters in the model.

Similarly, the directional dependence of both flow stress rh (at the same plastic

axial strains of 2%, 5% and 10%) and plastic axial strain ratio Rh under uniaxial ten-

sion according to both anisotropic plasticity Models No. 1 (dashed lines) and No. 2

(solid lines) is shown in Fig. 2 for the aluminum sheet metal No. 5 (AA6XXX-T4).
Only small difference is observed on the directional dependence of the flow stress be-

tween these two models but the Model No. 2 does provide more accurate description

of the plastic strain ratio data (because the extra experimental data from the two ten-

sile tests at loading orientation angles of 22.5� and 67.5� are used to establish its

material parameters). The directional dependence of both flow stress rh (at the same

plastic axial strains of 2%, 5% and 10%) and plastic axial strain ratio Rh under uni-

axial tension given by three anisotropic plasticity Models No. 1 (dashed-dotted

lines), No. 2 (dashed lines) and No. 3 (solid lines) is shown in Figs. 3(a)–(e) for
the remaining five aluminum sheet metals (AA6016-T4, AA2008-T4, AA2024-T3,

AA6022-T4, and AA2090-T3). While the Model No. 1 using only three uniaxial ten-

sion tests for its material parameter identification is found to be sufficiently accurate
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strain ratio of the aluminum sheet metal AA6XXX-T4 under uniaxial tension using the anisotropic

plasticity Models No. 1 (dashed lines) and No. 2 (solid lines). The reported experimental data (filled
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Fig. 3. The predicted directional dependence of flow stress (at the same plastic axial strain) and plastic

strain ratio of five aluminum sheet metals under uniaxial tension using the anisotropic plasticity Models

No. 1 (dashed-dotted lines), No. 2 (dashed lines), and No. 3 (solid lines). The reported experimental data

(filled symbols) from seven uniaxial tension tests at loading orientation angles of 0�, 15�, 30�, 45�, 60�, 75�,
and 90� are also included for comparison.
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for describing the two aluminum sheet metals AA6016-T4 and AA2008-T4 (No. 6

and No. 7 in Table 1), the model No. 2 (using five uniaxial tension tests for its mate-

rial parameter identification) is required to adequately capture the planar anisotropy
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of aluminum sheet metal AA2024-T3 (see Fig. 3(c)). For the highly textured alumi-

num sheet metals No. 9 (AA6022-T4) and No. 10 (AA2090-T3), only the Model No.

3 can satisfactorily describe the directional dependence of both flow stress and plastic

strain ratio under uniaxial tension. The seven uniaxial tension tests are thus found to

be necessary for characterizing these two strongly anisotropic aluminum sheet
metals.

The predicted flow surfaces in terms of the biaxial principal tensile stresses

(r1,r2) at a fixed isotropic hardening state n and seven fixed loading orientation

angles h are shown in Fig. 4 for two aluminum sheets No. 3 (AA2036-T4) and

No. 10 (AA2090-T3). The biaxial flow stresses are normalized by the equal biaxial

tension flow stress (recalling the definition of s0 = rB). The seven loading orienta-

tion angles are 0�, 15�, 30�, 45�, 60�, 75�, and 90�. Because of the definition of

|r1| P |r2| used in this investigation, each flow surface has two sections with
r1 = ra and r1 = rb, respectively. All of seven flow surfaces of aluminum sheet me-

tal AA2036-T4 are almost identical, indicating the nearly planar plastic isotropy of

this material. On the other hand, the seven flow surfaces of aluminum sheet metal

AA2090-T3 are all distinct and they show that its in-plane plastic flow behavior is

highly anisotropic. The differences in planar anisotropy of these two aluminum

sheet metals are also seen in Figs. 5(a) and (b), where the flow surfaces with a fixed

loading orientation angle h = 0 are compared at the fixed isotropic hardening state

n (solid line), effective plastic strain c (dashed line), and accumulated specific plastic
work WP (dash-dotted line). All three types of the flow surfaces are found to be

nearly identical for aluminum sheet metal AA2036-T4 but to be clearly distinct

for aluminum sheet metal AA2090-T3. The flow surfaces at constant effective plas-

tic strain and accumulated plastic work are very close and stay either outside

(AA2036-T4) or inside (AA2090-T3), respectively, the flow surface at the fixed iso-

tropic hardening state defined by n.
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5. Discussion

A general anisotropic plastic flow theory for sheet metal forming applications

should at least account for planar anisotropy and the effect of the in-plane shear

stress component, and it should be able to encompass the flow behavior ‘‘anoma-

lous’’ to Hill�s (1948) quadratic theory. It is also preferred that the material param-

eters in the theory have some relevant physical meanings and can be determined by a

few simple tests (Barlat, 1987). As a proper evaluation of strongly textured orthotro-
pic sheet metals requires rather extensive experimental data set (Barlat et al., 1991,

2004), the mathematical structure of the theory should be flexible enough to

accommodate any additional experimental test data (other than the conventional

0�, 45�, and 90� uniaxial tensile test data) so the accuracy and predictability of

the anisotropic plastic flow theory can be improved. Three models with different de-

grees of planar anisotropy presented in this investigation meet nicely these require-

ments. These models constructed from a new anisotropic plasticity theory based on

effective macroscopic slips have been applied to describe quite satisfactorily the
mechanical testing data of selected 10 commercial aluminum sheet metals reported

in the literature. These models are also found (Tong et al., 2003) to be adequate to

describe the experimental data on the directional dependence of both flow stress and

plastic strain ratio under uniaxial tension of other aluminum sheet metals reported

by Lademo et al. (1999) and Wu et al. (2003).

Because of many experimental uncertainties and difficulties, the flow stress at

small strains (<1%) cannot be reliably and accurately measured for annealed duc-

tile sheet metals under equal biaxial and uniaxial tension (Mellor, 1982). Fortu-
nately, most of sheet metal forming applications (except perhaps springback
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and residual stress analyses) involve plastic flows at least a few percent beyond

initial yielding. To describe accurately the anisotropic plastic flow behavior of a

sheet metal with persistent orthotropy over a wide range of plastic strain (say,

from a few percent to 20%–30% or so), proper modeling of both the plastic flow

pattern at a fixed isotropic hardening state and the evolution of isotropic harden-
ing under a general plane stress loading is necessary. Most of the efforts in devel-

oping the improved anisotropic plasticity models of orthotropic sheet metals in

the past have been directed towards formulating ever increasingly sophisticated

and complex flow potentials and little or no attention has been paid towards

an enhanced description of the evolution of isotropic hardening in sheet metals.

The specific form of the resulting anisotropic plastic flow potentials depends

strongly on the specific definition of an equivalent isotropic hardening state of

a sheet metal after strain hardening under a biaxial loading path. The equivalent
isotropic hardening state is often defined in terms of either the equal amount of

plastic work per unit volume or the equal effective plastic strain in both isotropic

and anisotropic plasticity theories (Hill, 1950; Chakrabarty, 1970; Lubliner, 1990;

Khan and Huang, 1995; Barlat et al., 1997a,b, 2004, 2005). The increase in the

complexity of anisotropic flow potentials proposed for orthotropic sheet metals

in recent years may be in part due to the use of one of these two simple defini-

tions of the equivalent isotropic hardening state. As shown in this investigation,

by defining the isotropic hardening state in terms of an internal state variable n
and its evolution in terms of additional anisotropic functions, a phenomenological

anisotropic plasticity model can be developed to describe the complex planar

anisotropic plastic flow behavior of a sheet metal rather well over a large range

of plastic strain under uniaxial tension and at the same time it is still analytically

tractable. For the power-law strain hardening sheet metals modeled, the flow

surfaces at the equal effective plastic strain and equal plastic work are rather

similar and close but they can be significantly different from the flow surfaces

defined at the fixed isotropic hardening state n (especially under uniaxial tension),
see Fig. 5.

One of the motivations for developing a new anisotropic plasticity theory is to

encompass the plastic flow behavior ‘‘anomalous’’ to Hill�s quadratic theory (Hill,

1979; Wu et al., 1999; Stoughton, 2002). There are two possible situations that the

proposed anisotropic plasticity theory can encompass the ‘‘anomalous’’ behavior.

As the ratio of the biaxial flow stress over the uniaxial flow stress at a fixed isotropic

hardening state is given by (using Eqs. (7a) and (7e))

rBðn; _cÞ
r0ðn; _cÞ

¼ rB eB; _eBð Þ
r0ðe0; _e0Þ

����
ðn; _cÞ

¼ 1þ R0

1þ X0

� �1=a

; ð34Þ

the new theory may admit the ‘‘anomalous’’ flow if the biaxial plastic strain ratio X0

is about the same or less than the uniaxial plastic strain ratio R0 (no matter whether

or not R0 is less than 1). The biaxial plastic strain ratio X0 is an independent material

parameter required by the theory for its material identification (see Eq. (9)). In

comparison, Hill�s (1948) quadratic theory predicts that the biaxial plastic strain
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ratio X0 must be equal to the ratio R0/R90 and such equality is not universally valid

at all for aluminum and copper sheet metals (Barlat et al., 2004; Tong, 2003). More

generally, the ‘‘anomalous’’ flow behavior can be interpreted as the isotropic hard-

ening of a sheet metal evolves at two different rates in uniaxial and equal biaxial ten-

sile loading conditions. Comparison of flow stresses under equal biaxial and uniaxial
tension is usually made at some accumulated plastic work per unit volume (as it is

extremely difficult if not impossible to measure reliably the initial yield stress under

equal biaxial tension). In other words, the ‘‘anomalous’’ flow behavior observed in

some aluminum sheet metals may be due to the fact that the uniaxial and biaxial flow

stresses are compared not at the equivalent isotropic hardening state but at the equal

amount of plastic work per unit volume. If the isotropic strain-hardening rate _n un-

der equal biaxial tension is much higher than that under uniaxial tension for the

same amount of specific plastic work, the theory can also admit the ‘‘anomalous’’
flow even when X0 is larger than R0.

The proposed theory also highlights the need for the experimental measure-

ments of both the plastic shear strain ratio Ch and the plastic spin ratio Ph under

uniaxial tension. The plastic shear strain ratio Ch can be used to assess the asso-

ciated flow rule for the shear strain rate component (Tong et al., 2004). The plas-

tic spin ratio Ph is needed to fully evaluate the anisotropic material function W(h)
(so far in this investigation W(h) =F 0(h)/2 is assumed for the 10 aluminum sheet

metals studied due to lack of any experimental data on their plastic spin ratio
Ph). A flow rule of plastic spin is an important new feature in the proposed

non-quadratic anisotropic plasticity theory (Dafalias, 1985, 2000; McDowell and

Moosbrugger, 1992). Its application on modeling the rotation of orthotropic sym-

metry axes of several sheet metals subjected to off-axis tension (Bunge and Niel-

sen, 1997; Kim and Yin, 1997) is detailed in a separate investigation (Tong et al.,

2004).

It is emphasized that the macroscopic anisotropic plasticity theory that is used

to construct the three specific models with various degrees of planar anisotropy in
this investigation is a phenomenological one. Such a theory intends to serve as an

approximation of a physically based micromechanical polycrystal plasticity theory

(Bishop and Hill, 1951a,b; Hosford, 1993) but its simpler mathematical formula-

tion offers great advantages for practical engineering analysis and design in indus-

trial applications. As being discussed in length in the plasticity literature, the key

to assess the quality and robustness of a phenomenological plasticity theory is

through a series of simple mechanical tests (Hill, 1950; Hosford, 1993). A reason-

ably well-developed theory is the one that can encompass as many aspects of the
experimentally observable anisotropic plastic flow characteristics of a sheet metal

as possible. It is contended that such a requirement can serve as a necessary con-

dition and a measure of flexibility and robustness of any good phenomenological

anisotropic plasticity theory (although one cannot claim that the theory will

provide a reliable description of anisotropic plastic flow behavior under general

biaxial loading conditions even if it can provide a complete description of some

limited mechanical testing data of a sheet metal). The proposed anisotropic plas-

ticity theory is flexible enough to describe the directional dependence of both flow
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stress beyond initial yielding (plastic strain>1%) and plastic strain ratio of a sheet

metal under uniaxial tension with any loading orientation angle and to encompass

the ‘‘anomalous’’ flow behavior (rB P rh at an equal amount of specific plastic

work beyond initial yielding when Rh < 1). At least in this regards, the inclusion

of kinematic hardening (Wu et al., 1999; Cao et al., 2000; Wu, 2002; Yao and
Cao, 2002) or a non-associated flow potential (Stoughton, 2002) may be unneces-

sary in an anisotropic plastic theory of sheet metals. If the initial yield stresses

can be very reliably measured or if one desires to describe more accurately the

directional dependence of flow stresses at small strains (<1%), one may either re-

lax the smoothness condition imposed on the flow surface (Eqs. (9) and (A.38)–

(A.40)) or admits one more stress term into the anisotropic plastic flow potential

given by Eq. (1). Some of these further refinements are discussed in the separate

investigations (Tong, 2003; Tong et al., 2003).
6. Conclusions

Three orthotropic plasticity models with various degrees of planar anisotropy

in terms of the principal stresses and a loading orientation angle have been con-

structed based a recently developed plane stress anisotropic plasticity theory.

These three models admitting 8, 12, and 16 anisotropic material parameters,
respectively, have been successfully applied to describe the anisotropic plastic flow

behavior of selected 10 commercial aluminum sheet metals. The proposed models

are analytical tractable and their material parameters can be easily evaluated

experimentally by a single equal biaxial tension test and three, five, and seven

uniaxial tension tests, respectively. An enhanced evolution law of isotropic hard-

ening other than the effective strain or equivalent plastic work in the theory

provides greater flexibility so the entire power-law uniaxial stress–strain curves

beyond initial yielding (>1% plastic strain) under various loading orientation an-
gles can be adequately described. Experimental measurements of both biaxial

plastic strain ratio and plastic shear strain ratio are needed for an accurate and

thorough self-consistent evaluation of these orthotropic plastic flow models.
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Appendix A. Anisotropic plastic flows by macroscopic slips

In this appendix, the deformation kinematics and constituvtive relations of a new

anisotropic plastic flow theory for an orthotropic polycrystalline sheet metal are re-

derived in detail by considering the planar anisotropic plastic flow in terms of several
discrete equivalent planar macroscopic double slips (Tong, 2005).
A.1. Deformation kinematics

The formulation of the macroscopic slip plasticity theory follows closely that of

continuum crystallographic slips in single crystals (Bishop and Hill, 1951a,b; Rice,

1971; Bassani, 1994; Khan and Huang, 1995). However, each macroscopic slip is as-

sumed to occur uniformly throughout a macroscopic material element and to be the
average of crystallographic slips of representative polycrystalline grain aggregates,

see Fig. 6. The velocity gradient L for elasto-plastic deformations can be written

as the sum of the symmetric rate of deformation D and anti-symmetric spin W:

L ¼ DþW. ðA:1Þ

The rate of deformation and spin tensors can be decomposed into a lattice part

(superscript *) and a plastic part (superscript p) as

D ¼ D� þDp; W ¼ W� þWp. ðA:2Þ

The elastic rate of deformation D* is negligible for metals and alloys, and the plastic

part of the above equations can be represented by shear strains associated with mac-

roscopic slip modes:

D � Dp ¼
XN
n¼1

_cnPn; Wp ¼
XN
n¼1

_cnQn; ðA:3Þ

where _cn is the absolute value of the rate of change of integrated shear strain for the

nth slip mode, and N is the total number of activated slip modes. Each macroscopic

slip mode is composed of a slip direction and a slip plane. The tensors Pn and Qn for

the nth slip mode are defined by
Fig. 6. Schematic of a macroscopic double slip mode in a polycrystalline sheet metal under tension: (a) a

polycrystal, (b) the macroscopic slip mode.
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Pn ¼ symTn ¼
1

2
ðsn �mn þmn � snÞ; Qn ¼ skewTn

¼ 1

2
ðsn �mn �mn � snÞ; ðA:4Þ

where the Schmid tensor Tn is defined by Tn = sn � mn, and unit vectors sn and mn are

the slip direction and normal to the slip plane associated with the nth slip mode in

the deformed configuration, respectively. As we consider plastic flows of a polycrys-

talline metal, the slip modes here refer to macroscopic shearing deformation modes

averaged from the crystallographic slip systems of a set of grains that constitute
the representative polycrystalline material element. In general, there are an infinite

number of possible slip modes in a polycrystalline sample. However, only a small

fraction of these macroscopic slip modes may be activated, depending on the driving

force, the slip resistance on each macroscopic slip plane, and kinematic constraints.

As the typical volume preserving condition in a plastically deforming solid is auto-

matically satisfied in the above slip equations, an arbitrary plastic flow is kinemati-

cally admissible if five or more independent macroscopic slips are activated

(Bishop and Hill, 1951a,b; Hosford, 1993). For arbitrary planar plastic flows in
which no out-of-plane shearing is allowed, a minimum number of three independent

macroscopic slips are required.
A.2. Slip conditions

Activation of selected macroscopic slip modes can be prescribed by certain slip

conditions. The driving force to activate a slip mode is the resolved shear stress sn
on the corresponding slip plane in the current configuration, which can be obtained
by sn = Pn:r, where r is the Cauchy stress tensor. The condition for a macroscopic

slip may be of the following functional form:

fnðs1; s2; . . . ; sN Þ ¼ 0. ðA:5Þ
The Schmid law commonly used for activating a crystallographic slip in a single crys-

tal (Bassani, 1994; Khan and Huang, 1995) can be regarded as one of possible mac-

roscopic slip conditions.
A.3. Rate-dependent slip laws

To complete the description of the plastic flow in terms of macroscopic slips, a

constitutive equation on the individual slip rate _ca is required in terms of the driving

forces, namely,

_cn ¼ qnðs1; s2; . . . ; sN Þ. ðA:6Þ

Again, many forms of slip rate equations proposed for crystallographic slips in single

crystals may be possible choices for the macroscopic slip law as well. Invoking the

familiar concept of flow potential used in many phenomenological theories of plas-

ticity, the slip law may also be written as
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_cn ¼ k
ogðs1; s2; . . . ; sN Þ

osn
; ðA:7Þ

where g(s1,s2, . . .,sN) is a stress-based slip potential and k is a parameter depend-

ing on the external loading and prior deformation history. Isotropic and aniso-

tropic strain hardening behaviors including Bauschinger effects can also be

considered by prescribing some scalar and tensor valued internal state variables

and their evolution equations in addition to the above slip laws (Rice, 1971;

Lubliner, 1990; Karafillis and Boyce, 1993; Khan and Huang, 1995; Wu et al.,
1999).

A.4. Plane stress constitutive equations in terms of macroscopic slips

As shown in Fig. 7, a polycrystalline material element may be defined by a

Cartesian material texture coordinate system in terms of the rolling direction

(x), the transverse direction (y) and the normal direction (z) of an orthotropic

sheet metal. A plane stress state commonly exists in a sheet metal undergoing
in-plane drawing, shearing and stretching operations and it can be simply de-

scribed by the two principal stress components in the x–y plane, the major prin-

cipal stress r1 and the minor principal stress r2, with the out-of-plane normal

stress r3 = 0,

r ¼
r1

r2

0

0
B@

1
CA; jr1j P jr2j; ðA:8Þ

and a loading orientation angle h which is defined as the angle between the direc-
tion of the major principal stress component r1 and the rolling direction of the

sheet metal. When r1 = r2, the principal axes of stress are set to coincide with

the principal axes of strain rates, so the loading orientation angle is zero. The
X (RD)

Y (TD)

Z (ND)

θ

1σ

2σ

Fig. 7. The sheet metal material texture coordinate system is defined in terms of the rolling direction (x),

the transverse direction (y) and the normal direction (z). The principal stress loading direction is defined by

the loading orientation angle h (|r1| P |r2|).
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tensile normal stresses are defined to be positive and compressive normal stresses

are defined to be negative. The planar plastic flow may be conveniently described

by discrete macroscopic double slips on three planes defined by the principal

stress directions, see Fig. 8. There are a total of six macroscopic slip modes

(shown as dashed lines in Fig. 8) that may be activated with two slip modes
on each of these three planes 1–3, 2–3, and 1–2. For planar plastic flows in an

orthotropic sheet metal under plane stress, both out-of-plane shear strain rates

are zero (_e13 ¼ _e23 ¼ 0). So the two slip modes on both planes 1–3 and 2–3

are symmetric (both the angles of the slip direction from the principal loading
1σ
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1σ
2σ

(1)
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(3)

Positive Slip Negative Slip
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(1) Schematic of three macroscopic slip planes.
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(2) Definitions of angles of the four independent slip planes.

Fig. 8. Three macroscopic double slip modes defined in the principal stress directions. The two out-of-

plane shearing modes No. 1 and No. 2 are symmetric double slips and they are activated by the resolved

shear stresses s�1 and s�2, respectively. The double slips of the in-plane shearing modes No. 3 and No. 4

activated by the resolved shear stresses s�3 and s�4 are in general non-symmetric. Also shown in the figure

are four equivalent slip planes of the in-plane shearing mode and two possible slip directions (positive and

negative) on each slip plane with respect to the fixed sheet metal orthotropic symmetry axes.
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directions and the slip rate magnitudes are identical). The two slip modes in the

plane 1–2 are in general not symmetric due to planar anisotropy of the material.

One can write out the slip direction and slip plane normal for each of the six slip

modes as (four of them may be completely independent)
s1a ¼ sgnðr1Þð� cos a1 cos d1; sin d1; sin a1 cos d1Þ; m1a ¼ ð� sin a1; 0;� cos a1Þ;

s1b ¼ sgnðr1Þð� cos a1 cos d1; sin d1;� sin a1 cos d1Þ; m1b ¼ � sin a1; 0; cos a1ð Þ;

s2a ¼ sgnðr2Þðsin d2;� cos a2 cos d2; sin a2 cos d2Þ; m2a ¼ ð0;� sin a2;� cos a2Þ;

s1b ¼ sgnðr2Þð� cos a1 cos d2; sin d2;� sin a1 cos d2Þ; m1b ¼ ð� sin a1; 0; cos a1Þ;

s3 ¼ ð� cos b3; sin b3; 0Þ; m3 ¼ ð� sin b3;� cos b3; 0Þ;

s4 ¼ ð� cos b4;� sin b4; 0Þ; m4 ¼ ð� sin b4; cos b4; 0Þ;
ðA:9Þ
where a1,a2,b3 and b4 are the actual angles (all are with the range from 0 to p/2) be-
tween the slip planes and the principal loading directions defined in Fig. 8 for the

four independent slip modes and d1 and delta2 are the offset angles of the slip direc-

tions of the two out-of-plane shear modes due to material anisotropy (all six angles

are assumed to depend in general on the external loading condition, i.e., on both the

loading orientation angle h and the principal stresses). The symmetric rate of plastic

deformation Dp and anti-symmetric plastic spin Wp can then be obtained via Eqs.

(A.3), (A.4) and (A.9)
Dp ¼
_e1 _e12 0

_e21 _e2 0

0 0 _e3

0
B@

1
CA

¼

_c�
1
r1 sin 2a1
jr1 j þ _c�

3
sin 2b3þ_c�

4
sin 2b4

2
� _c�

1
r1 sin a1 sin d1

jr1 j � _c�
2
r2 sin a2 sin d2

jr2 j þ _c�
3
cos 2b3� _c�

4
cos 2b4

2
0

_e12
_c�
2
r2 sin 2a2
jr2 j

� _c�
3
sin 2b3þ _c�

4
sin 2b4

2
0

0 0 �_e1 � _e2

0
BB@

1
CCA;

ðA:10Þ

Wp ¼
_x1 _x12 _x13

_x21 _x22 _x23

_x31 _x32 _x33

0
B@

1
CA ¼

0
_c�
1
r1 sin a1 sin d1

jr1j � _c�
2
r2 sin a2 sin d2
jsigma2j

þ _c�
3
� _c�

4

2
0

� _x12 0 0

0 0 0

0
B@

1
CA;

ðA:11Þ
where _c�1, _c�2, _c�3 and _c�4 are the slip rates (all are non-negative in values) on each

of the four independent slip modes defined in Fig. 8. The resolved shear stresses

on the macroscopic slip planes along the slip directions with respect to the
principal loading directions are given as (all are non-negative in values)
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s�1 ¼ sgnfr1g
r1

2
sin 2a1 cos d1 ¼ s1 sin 2a1 cos d1;

s�2 ¼ sgnfr2g
r2

2
sin 2a2 cos d2 ¼ s2 sin 2a2 cos d2;

s�3 ¼
r1 � r2

2
sin 2b3 ¼ s3 sin 2b3;

s�4 ¼
r1 � r2

2
sin 2b4 ¼ s4 sin 2b4;

with s1 ¼ sgnfr1g
r1

2
; s2 ¼ sgnfr2g

r2

2
; s3 ¼ s4 ¼

r1 � r2

2
;

ðA:12Þ

where s1, s2, and s3 = s4 are the maximum resolved shear stresses on the three planes
that double slip modes occur, Similar to Eq. (A.12), the non-zero terms in the above

Eqs. (A.10) and (A.11) can be rewritten out as

_e1 ¼ sgnðr1Þ _c1 þ
1

2
_c3 þ

1

2
_c4; _e2 ¼ sgnðr2Þ _c2 �

1

2
_c3 �

1

2
_c4;

_e3 ¼ �sgnðr1Þ _c1 � sgnðr2Þ _c2;

_e12 ¼ �sgnðr1Þ
_c1 sin d1
2 cos a1

� sgnðr2Þ
_c2 sin d2
2 cos a2

þ _c3 cos 2b3

2 sin 2b3

� _c4 cos 2b4

2 sin 2b4

;

_x12 ¼ sgnðr1Þ _c1
sin d1
2 cos a1

� sgnðr2Þ
_c2 sin d2
2 cos a2

þ _c3
2 sin 2b3

� _c4
2 sin 2b4

;

with _c1 ¼ _c�1 sin 2a1; _c2 ¼ _c�2 sin 2a2; _c3 ¼ _c�3 sin 2b3; _c4 ¼ _c�4 sin 2b4;

ðA:13Þ

where _c1, _c2, _c3 and _c4 can be regarded as the equivalent slip rates of macroscopic

slip modes activated by the maximum resolved shear stresses s1, s2, s3, and s4
with the slip directions at the angles of 45� from the principal loading directions.

The positive and negative axial strain rates represent extension and contraction of

the sheet metal sample in the principal loading directions, respectively. The first

two double-slip modes are out-of-plane shearing deformation modes on two
orthogonal through-thickness planes and they are always symmetrical for planar

plastic flow of orthotropic sheet metals (so only single slip rate _c1 or _c2 is pre-

scribed for each double-slip mode). The third one is the in-plane shearing defor-

mation mode and in general it is non-symmetrical due to the planar anisotropy of

sheet metals (so two independent slip rates _c3 and _c4 are prescribed). These three

sets of double-slip modes with four independent slip systems (out of a total of six

slip systems) are kinematically sufficient for representing any planar plastic flows

in terms of the principal loading directions (which are not coincided with the
principal straining directions as in general _e12 6¼ 0!).

A power-law viscous shearing flow model is assumed for each slip mode

_c�1 ¼
s�1
� �a�1

g�
; _c�2 ¼

s�2
� �a�1

g�
; _c�3 ¼

s�3
� �a�1

j� ; _c4 ¼
s�4
� �a�1

j� ; ðA:14Þ

1 2 3 4
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where a � 1 (>0) is the stress exponent constant for the viscous shearing, g*
and j* are viscosity coefficients of the out-of-plane and in-plane macroscopic

shearing modes, respectively. Both viscosity coefficients are assumed to be posi-

tive-valued functions of a certain internal state variable n characterizing the iso-

tropic hardening state of the material and the effective shear strain rate _c�

characterizing the current loading of the deforming polycrystalline element (Rice,

1971; Lubliner, 1990; Khan and Huang, 1995). All viscosity coefficients may de-

pend on both the loading orientation angle h and the principal stresses. The

above power-law viscous shearing flow model for each slip mode can be rewritten

as

_c1 ¼
sa�1
1

~g1
; _c2 ¼

sa�1
2

~g2
; _c3 ¼

sa�1
3

~j3

; _c4 ¼
sa�1
4

~j4

;

~g1 ¼
g�1

ðsin 2a1Þaðcos d1Þa�1
; ~g2 ¼

g�2
ðsin 2a2Þaðcos d2Þa�1

;

~j3 ¼
j�
3

ðsin 2b3Þ
a ; ~j4 ¼

j�
4

ðsin 2b4Þ
a .

ðA:15Þ

As shown in Eqs. (A.8)–(A.15), the planar plastic flow in a sheet metal under plane

stress may be completely described by the four equivalent slip modes occurring at the

angles of 45� from the principal loading directions (except the in-plane shearing

strain rate _e12 where the additional knowledge on d1, d2, b3 and b4 is needed). For
simplicity, only the four equivalent slip rates _c1, _c2, _c3 and _c4 and their driving forces

on each slip mode s1, s2, s3, and s4 will be used to continue the formulating of the

macroscopic slip model. The effective shear stress s and its conjugate effective shear

strain rate _c are defined as usual by assuming the equivalency of the plastic work rate

per unit volume _W
p
between an effective symmetrical double slip and the four mac-

roscopic slips, namely,

_W
p ¼ 2s _c ¼ 2s1 _c1 þ 2s2 _c2 þ s3 _c3 þ s4 _c4. ðA:16Þ

The same nonlinear viscous flow model is assumed for the effective shear stress s and
the effective shear strain rate _c

_cðn; sÞ ¼ sa�1

�gðn; sÞ or sðn; _cÞa�1 ¼ �gðn; _cÞ _c; ðA:17Þ

where �g is the effective viscosity coefficient of the polycrystalline sheet metal. When

the viscosity coefficients ~g and ~j are normalized by the effective viscosity coefficient �g
as g and j, respectively. Eq. (A.15) may be rewritten as

_c1 ¼
_c
g1

s1
s

� �a�1

; _c2 ¼
_c
g2

s2
s

� �a�1

; _c3 ¼
_c
j3

s3
s

� �a�1

;

_c4 ¼
_c
j

s4
s

� �a�1

. ðA:18Þ

4
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Eqs. (A.16) and (A.17) lead to the following expressions for the effective shear strain

rate and effective shear stress, respectively

_c
a

a�1 ¼ g
1

a�1

1 _c
a

a�1

1 þ g
1

a�1

2 _c
a

a�1

2 þ 1

2
j

1
a�1

3 _c
a

a�1

3 þ 1

2
j

1
a�1

4 _c
a

a�1

4 ðA:19Þ
and

s ¼ sa1
g1

þ sa2
g2

þ sa3
2j3

þ sa4
2j4

� �1
a

. ðA:20Þ
The evolution for the isotropic hardening parameter n is generally characterized by a

rate-type kinetic equation under plastic loading in the form of (Lubliner, 1990)

_n ¼ _nðn; s1; s2; s3; s4Þ ¼ _nðn; _c1; _c2; _c3; _c4Þ. ðA:21Þ

Most of the phenomenological anisotropic plasticity theories have used either the

plastic work per unit volume Wp or the effective plastic strain c as the measure of

the equivalent isotropic hardening state under general stress loading (Hill, 1950;

Chakrabarty, 1970; Bassani, 1994; Khan and Huang, 1995; Barlat et al., 1997a,b,

2004). Motivated by Eq. (A.19) which defines the effective shear strain rate, one of

the possible isotropic hardening evolution laws is

_n
a

a�1 ¼ c1g
1

a�1

1 _c
a

a�1

1 þ c2g
1

a�1

2 _c
a

a�1

2 þ d3

2
j

1
a�1

3 _c
a

a�1

3 þ d4

2
j

1
a�1

4 _c
a

a�1

4 ; ðA:22Þ

where the weighting coefficients c1, c2, d3 and d4 are functions of the loading orien-

tation angle h and they account for the effect of the planar anisotropy of the sheet

metal on its isotropic hardening behavior. When all four weighting coefficients are

set to 1, the isotropic hardening rate is identical to the effective shear strain rate,

namely, _n ¼ _c. On the other hand, by setting c1 ¼ c2 ¼ d3 ¼ d4 ¼ 2�g1=ða�1Þ, one has

(according to Eqs. (A.16), (A.17), (A.19) and (A.22))

_W
p ¼ 2s_c ¼ 2f�g _cg

1
a�1 _c ¼ 2�g

1
a�1 _c

a
a�1

¼ 2�g
1

a�1g
1

a�1

1 _c
a

a�1

1 þ 2�g
1

a�1g
1

a�1

2 _c
a

a�1

2 þ �g
1

a�1j
1

a�1

3 _c
a

a�1

3 þ �g
1

a�1j
1

a�1

4 _c
a

a�1

4 ¼ _n
a

a�1. ðA:23Þ

In general, no such simple identities may exist between _n and _c and between _n and _W
p

for anisotropic sheet metals.
A.5. Plane stress constitutive equations in terms of anisotropic material functions

The plane-stress anisotropic plasticity model has been successfully formulated

in the above section following a clear and consistent underlying physical process

in terms of planar macroscopic double slips. The complete formulation of the

model is summarized here (using Eqs. (A.20), (A.16), (A.22), (A.23), (A.13) and

(A.15))
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s ¼ 1

g1
j r1

2
ja þ 1

g2
jr2

2
ja þ 1

�j
j r1 � r2

2
ja

� �1
a

ðan effective stress or flow functionÞ; ðA:24Þ

_c ¼ r1 _e1 þ r2 _e2
2s

ðthe effective plastic strain rate by work equivalencyÞ; ðA:25Þ

_n ¼ _c
c1
g1

j r1

2s
ja þ c2

g2
j r2

2s
ja þ Rj r1 � r2

2s
ja

� �a�1
a

ðan evolution law of isotropic hardeningÞ; ðA:26Þ
_W
p ¼ 2s _c ¼ r1 _e1 þ r2 _e2
ðthe dissipation rate of plastic work per unit volumeÞ; ðA:27Þ

_e1 ¼
_c
g1

j r1

2s
ja�2 r1

2s
þ _c

�j
j r1 � r2

2s
ja�2 r1 � r2

2s
;

_e2 ¼
_c
g2

j r1

2s
ja�2 r1

2s
� _c

�j
j r1 � r2

2s
ja�2 r1 � r2

2s
; _e3 ¼ �_e1 � _e2;

ðthe flow rule for DpÞ; ðA:28Þ

_e12 ¼
_cD1

g1
j r1

2s
ja�2 r1

2s
þ _cD2

g2
j r2

2s
ja�2 r2

2s
þ _cDj r1 � r2

2s
ja�2 r1 � r2

2s
;

_x12 ¼ � _cD1

g1
j r1

2s
ja�2 r1

2s
þ _cD2

g2
j r2

2s
ja�2 r2

2s
þ _cWj r1 � r2

2s
ja�2 r1 � r2

2s

ðthe flow rule for WpÞ; ðA:29Þ
s ¼ s0ðn; _cÞ ðthe flow condition or flow surfaceÞ; ðA:30Þ

where s0ðn; _cÞ is the rate-dependent effective flow strength of the sheet metal, and g1,
g2, �j, c1, c2, R, D1, D2, D andW are 10 macroscopic material functions required by the

anisotropic plasticity theory which may all depend on the loading orientation angle h
as well as the principal stresses. These material functions are related to the effective
macroscopic slip variables via

g1 �
g�1=�g

ðsin 2a1Þaðcos d1Þa�1
; g2 �

g�2=�g

ðsin 2a2Þaðcos d2Þa�1
;

j3 �
j�
3=�g

ðsin 2b3Þ
a ; j4 �

j�
4=�g

ðsin 2b4Þ
a ; ðA:31Þ

1

�j
� 1

2j3

þ 1

2j4

; R � d3

2j3

þ d4

2j4

� �
;

D1 � � sin d1
2 cos a1

; D2 � � sin d2
2 cos a2

; ðA:32Þ

D � cos 2b3 � cos 2b4

� �
; W � 1 � 1

� �
. ðA:33Þ
2j3 sin 2b3 2j4 sin 2b4 2j3 sin 2b3 2j4 sin 2b4
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In principle, once the stress exponent (a � 1 > 0), the effective viscosity coefficient �g,
the normalized out-of-plane and in-plane shearing viscosities g and j, the isotropic

hardening weight coefficients c and d, and the slip plane angles a1, a2, b3 and b4 and
the slip offset angles d1 and d2 are specified, the macroscopic slip model can be

applied straightforward to describe the anisotropic plastic flow behavior of a sheet
metal. In practice, the effective macroscopic slips are a useful concept to derive the

resulting constitutive equations of the model, but an actual determination of the slip

modes in terms of the slip plane angles a1, a2, b3, b4, d1 and d2 is in general rather

difficult for an orthotropic polycrystalline sheet metal. Simple mechanical tests are

thus required to directly evaluate these 11 material functions (including s0ðn; _cÞ). A
detailed discussion on the experimental procedure of their evaluation has been given

elsewhere (Tong, 2005).

Some comments on the derived flow function and the flow rules for Dp and Wp

are in order. For a fixed loading orientation angle h, one can show that the flow

function defined by Eq. (A.24) is strictly convex in (r1,r2) space for a > 1, g1 > 0,

g2 > 0, and �j > 0 (assuming that g1, g2, and �j may be dependent on the loading ori-

entation angle due to planar plastic anisotropy but are independent of the principal

stresses). The four inequality conditions have clear physical underpinnings as they

are related to the power-law viscous shearing flow model of the effective macroscopic

slips (Eq. (A.14)). Requirements to ensure the convexity of the flow function under

more general biaxial stress loading are left for further investigation. If one specifies
the following conditions on the three anisotropic material functions defining the flow

rule for the shear strain rate _e12 in Eq. (A.28c)

D1 ¼ � g01ðhÞ
g1ðhÞ

r1

4aðr1 � r2Þ
; D2 ¼ � g02ðhÞ

g2ðhÞ
r2

4aðr1 � r2Þ
;

D ¼ � 1

4a
�j0ðhÞ
�j2ðhÞ ; ðA:34Þ

then Eq. (A.28) is the associated flow rule of plastic strain rates using the flow poten-

tial given by Eq. (24). The formulas for the associated flow rule in terms of the so-

called intrinsic variables r1, r2, and h have been given by Hill (1980, 1990) as

_e1 ¼ k
os
or1

; _e2 ¼ k
os
or2

; _e12 ¼
k

2ðr1 � r2Þ
os
oh

; ðA:35Þ

where k ¼ _c from the work equivalency requirement.

The continuity condition on the flow function at equal biaxial loading as one ap-

proaches it from various loading orientation angles requires

1

g1ðhÞ
þ 1

g2ðhÞ
¼ 2s

rB

� �a

; so;
g01ðhÞ
g21ðhÞ

þ g01ðhÞ
g22ðhÞ

¼ 0; ðA:36Þ

where both the effective flow strength s ¼ s0ðn; _cÞ and the flow stress under equal

biaxial tension rBðn; _cÞ are independent of the loading orientation angle h. A similar

continuity condition exists also for the evolution law of isotropic hardening equation

(A.26) under equal biaxial loading



532 W. Tong / International Journal of Plasticity 22 (2006) 497–535
c1ðhÞ
g1ðhÞ

þ c2ðhÞ
g2ðhÞ

¼ c1ð0Þ
g1ð0Þ

þ c2ð0Þ
g2ð0Þ

. ðA:37Þ

If furthermore the smoothness of the flow function is desired (such as corners or ver-
tices are not allowed), one may impose a continuity condition on the flow surface

normal at equal biaxial loading. That is, the flow rules Eqs. (A28) and (29) are as-

sumed to be valid for any loading orientation angles under equal biaxial loading

r1 = r2 = rB (although the loading orientation angle is zero according to the conven-

tion defined in Section A.4)

_e1 ¼
_c

g1ðhÞ
j rB

2s
ja�2 rB

2s
¼ _e01 þ _e02

2
þ _e01 � _e02

2
cos 2h;

_e2 ¼
_c

g2ðhÞ
j rB

2s
ja�2 rB

2s
¼ _e01 þ _e02

2
� _e01 � _e02

2
cos 2h;

_e12 ¼ _c
D1ðhÞ
g1ðhÞ

þ D2ðhÞ
g2ðhÞ

� �
j rB

2s
ja�2 rB

2s
¼ � _e01 � _e02

2
sin 2h;

_x12 ¼ _c �D1ðhÞ
g1ðhÞ

þ D2ðhÞ
g2ðhÞ

� �
j rB

2s
ja�2 rB

2s
¼ 0 ðzero plastic spinÞ;

ðA:38Þ

where _e01 and _e02 are the principal plastic strain rates under equal biaxial loading and

the 2D coordinate transformation of strain rates from the principal axes of stress and

strain rates to the loading orientation angle h is also included in Eq. (A.38). One ob-

tains from Eq. (A.38)

g1ðhÞ
g2ðhÞ

¼
_e01 þ _e02 � _e01 � _e02


 �
cos 2h

_e01 þ _e02 þ _e01 � _e02

 �

cos 2h
¼ 1þ X0 � ð1� X0Þ cos 2h

1þ X0 þ ð1� X0Þ cos 2h
;

D1ðhÞ
g1ðhÞ

¼ D2ðhÞ
g2ðhÞ

¼ �
_e01 � _e02


 �
sin 2h

4_e01g1ð0Þ
¼ � ð1� X0Þ sin 2h

4g1ð0Þ
;

ðA:39Þ

where X0 ¼ _e02=_e
0
1 is the plastic strain ratio under equal biaxial loading. Finally, by

combining Eqs. (A.36) and (A.39), one has

1

g1ðhÞ
¼ 1

g2ðhþ p=2Þ ¼
1

2
þ 1� X0

1þ X0

cos 2h
2

� �
2s
rB

� �a

;

D1ðhÞ
g1ðhÞ

¼ D2ðhÞ
g2ðhÞ

¼ � 1� X0

1þ X0

sin 2h
4

2s
rB

� �a

. ðA:40Þ
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