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Modeling the Rotation of
Orthotropic Axes of Sheet Metals
Subjected to Off-Axis Uniaxial
Tension
A simplified version of a newly developed anisotropic plasticity theory is presente
describe the anisotropic flow behavior of orthotropic polycrystalline sheet metals u
uniaxial tension. The theory is formulated in terms of the intrinsic variables of princ
stresses and a loading orientation angle and its uniaxial tension version requires a
quadratic stress exponent and up to five anisotropic material functions of the loa
orientation angle to specify a flow condition, a flow rule for plastic strain rates, a fl
rule for macroscopic plastic spin, and an evolution law of isotropic hardening. In
investigation, the proper analytical form and the associated parameter identificatio
the anisotropic material functions defining the flow rule of macroscopic plastic spin
discussed for sheet metals with persistent but rotated orthotropic symmetry axes
off-axis uniaxial tension. It is shown that the proposed flow rule of macroscopic pla
spin can successfully model the experimental data on the rotation of orthotropic sym
axes in the three sheet metals reported, respectively, by Boehler et al. (Boehler and
1991, Advances in Continuum Mechanics, O. Bruller et al., eds., Springer, Heidel
pp. 143–158; Losilla, Boehler, and Zheng, 2000, Acta Mech.144, pp. 169–183); Kim and
Yin (1997, J. Mech. Phys. Solids45, pp. 841–851); and Bunge and Nielsen (1997 Int.
Plasticity 13, pp. 435–446). @DOI: 10.1115/1.1755694#
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1 Introduction
The microstructure of a polycrystalline sheet metal gener

evolves as it undergoes some finite plastic deformation.
plasticity-induced microstructural evolution occurs at least at t
levels: the crystallographic texture evolution of grains and
dislocation substructure texture evolution within the grains. Th
have been continued efforts on improving phenomenological m
roscopic plasticity theories by incorporating some constitut
modeling capabilities of material microstructural evolution usi
scalar and tensorial internal state variables. Isotropic strain
work hardening characterized by an effective plastic strain
equivalent specific plastic work,@1#, is perhaps the best-know
single scalar state variable model of material microstructural e
lution ~it basically accounts for the increase of the average di
cation density in a metal due to plastic flow!. The kinematic hard-
ening model with a backstress tensor developed for isotro
plasticity theories,@2–4#, can be regarded as the phenomenolo
cal description of anisotropic hardening behavior due to the e
lution of the dislocation substructure towards some preferred
tial orientations that are aligned with current plastic strain
directions.

On the other hand, metal products manufactured by roll
~sheet metals!, drawing ~wires!, and extrusion~plates! are typi-
cally anisotropic~primarily due to the resulting crystallograph
texture, i.e., grains packed with some preferred orientations! and
so the use of anisotropic plasticity theories is more appropriat
engineering design and analysis of these materials,@5–8#. While
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many macroscopic anisotropic plasticity theories proposed in
literature have incorporated isotropic hardening and even k
matic hardening models developed originally for isotropic plas
ity theories, almost all of them have explicitly or implicitly as
sumed that the initial material texture is strong and it persists u
further plastic straining, i.e., the evolution of crystallographic te
ture is not considered. However, both micromechanical analy
and experimental investigations of rolled sheet metals have sh
that there are noticeable and even significant changes of mat
orthotropic symmetry when a sheet metal is subjected to a pla
strain up to 20%–30%,@9–12#. For two rolled steel and one alu
minum sheet metals that were subjected tooff-axis uniaxial ten-
sion ~i.e., the axial loading direction is not aligned with the ortho
tropic axes of the sheets!, experimental observations have show
that the orthotropic symmetry of these sheet metals is more or
intact but the symmetry axes rotate relatively with respect to
sheet metal itself in the plane of the sheet,@10–12#. A flow rule
for macroscopic plastic spin~accounting for the orientational evo
lution of the material texture frame! may thus be appropriate in a
anisotropic plasticity theory to describe these experimental ob
vations.

The concept of macroscopic plastic spin has been explic
introduced since early 1970s into the framework of polycrystall
plasticity theories,@13–15#. Considerable attentions have been d
voted to its role from theoretical considerations~such as a missing
kinematics link to the material microstructural evolution! and the
necessity from the standpoint of the stability of numerical sim
lations, @16–34#. The flow rule of macroscopic plastic spin pro
posed in the literature are mainly motivated and derived thro
either the representation theorems or some heuristic micro
chanical arguments involving tensorial structure variables, ide
fied to be either the orthotropic or other privileged material fram
or back stress tensors. Only very simple analytical forms of
flow rule of macroscopic plastic spin have been suggested
illustrative purpose, mostly for either von Mises quadratic isot
pic plasticity theory with tensorial backstress kinematic harden
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or Hill’s 1948 quadratic anisotropic plasticity theory with isotr
pic hardening and strong and persistent orthotropic symme
Nevertheless, the existing simple flow rules of macroscopic p
tic spin for orthotropic sheet metals are found to be unable
describe consistently the rotation of orthotropic axes observe
experiments,@11,28#.

In this investigation, a flow rule of macroscopic plastic sp
proposed in a newly developed anisotropic plasticity theory,@35–
40# is evaluated for modeling the rotation of orthotropic symme
axes in the two steel and one aluminum sheet metals subject
off-axis uniaxial tension. First, constitutive equations of the ani
tropic plasticity theory along with the procedure on evaluat
anisotropic material functions in these constitutive equations
summarized in Section 2 for polycrystalline sheet metals un
uniaxial tension. The experimental investigations on the orien
tional evolution of orthotropic symmetry axes in sheet metals
briefly reviewed and material parameters of the anisotropic m
rial functions defining the flow rule of macroscopic plastic sp
proposed in the theory are identified in Section 3. Results of b
the experimental measurements and the model descriptions
compared for the three sheet metals in Section 3 as well. A
cussion on the proper formulation and the necessity of the fl
rule of macroscopic plastic spin for modeling the anisotropic pl
tic flow of sheet metals is presented in Section 4. Conclusi
drawn from this investigation on modeling macroscopic plas
spin are given in Section 5.

2 A Model of Anisotropic Plastic Flows Under
Uniaxial Tension

The finite elastic-plastic deformation kinematics of a sh
metal may be expressed through the multiplicative decompos
of the macroscopic deformation gradient tensorF into the elastic
and plastic partsFe andFp, @31#. By neglecting the small elastic
stretching in sheet metals involving finite plastic deformation, o
has the commonly known results of rigid-viscoplastic deformat
kinematics as follows:

F5FeFp'R* Fp,

L5ḞF21'~Ṙ* Fp1R* Ḟp!Fp21
R* 21

5Ṙ* R* 211R* ḞpFp21
R* 21, (1)

L5D1W'Dp1W* 1Wp,

D5~L1LT!/25De1Dp'Dp,

W5~L2LT!/25W* 1Wp, (2)

where R* is the rigid body rotation of the underlying materi
‘‘texture’’ frame ~some preferred orientations such as orthotro
symmetry axes!, Dp is the plastic rate of deformation tensor,Wp

is the plastic spin tensor defined as the difference between
material spinW, and the so-called constitutive spinW* , @17,28#.
A complete macroscopic theory of plastic flow usually provide
flow condition, flow rules that define both the plastic strain ra
tensorDp and the plastic spin rate tensorWp, and isotropic and
even anisotropic hardening models via a set of internal state v
ables and associated kinetic equations on their evolution,@32–34#.

Using the principal axes of the applied stress tensor as the
tesian coordinate system of the choice in this investigation~see
Fig. 1!, the expressions for the stress tensors, the macroscopic
plastic rate of deformation tensorDp, the macroscopic plastic spi
tensorWp, and the material constitutive spin tensorW* under
uniaxial tensionare

s5S su

0

0
D , Dp5S «̇1 «̇12 0

«̇21 «̇2 0

0 0 «̇3

D ,
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Wp5S 0 v̇12 0

v̇21 0 0

0 0 0
D , W* 5S 0 v̇12* 0

v̇21* 0 0

0 0 0
D , (3)

where u is the loading orientation angledefined as the angle
between the axial loading directions15su.0 and the current
in-planeX-axis of the sheet metal texture frame~see Fig. 1!, and

«̇352 «̇12 «̇2 , «̇215 «̇12, v̇2152v̇12,

v̇21* 52v̇12* , Ẇ125v̇12* 1v̇12, (4)

where Ẇ12 is the in-plane material spin~macroscopically observ-
able! of the sheet metal. We propose the following rate-depend
phenomenological theory to model the anisotropic plastic flow
a sheet metal underuniaxial tension

t5t0~j,ġ !,

ta5su
aF1~u! ~ the flow condition and flow function!, (5)

«̇15ġS su

t D a21

F1~u!, «̇25ġS su

t D a21

F2~u!,

«̇125ġS su

t D a21

F3~u!, ~ the flow rule for Dp! (6)

v̇125ġS su

t D a21

F4~u!, ~ the flow rule for Wp! (7)

j̇5ġS F5~u!

F1~u! D
a21/a

Fig. 1 Definitions of the three Cartesian coordinate systems
for a monoclinic sheet metal: „a… the principal axes of stress
„s1 ,s2 ,s3…; „b… the principal axes of the current material tex-
ture frame XYZ; and „c… the sheet material coordinate system
X0Y0Z0 . The principal axis of s3 always coincides with Z0-axis
and Z-axis to ensure the planar plastic flow of the sheet metal.
The in-plane axes X and Y of the texture frame are defined to
be the principal straining directions of the sheet metal under
equal biaxial tension „s1Äs2 , s3Ä0…. The material coordinate
system X0Y0Z0 undergoes the same rigid body rotation as the
sheet metal itself and it may be chosen to coincide with the
initial texture frame of the sheet metal „the initial texture frame
of an orthotropic sheet metal is defined by its rolling „RD…,
transverse „TD…, and normal „ND… directions …. The loading ori-
entation angle u is defined as the angle between the principal
axis of s1 and the X-axis of the material texture frame. The
relative rotation v12 of the texture frame with respect to the
material coordinate system of the sheet metal is due to the
macroscopic plastic spin v̇12 , †28‡.
Transactions of the ASME
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~ the evolution law of isotropic hardening!, (8)

wheret is the effective flow stress,ġ is the work-conjugate ef-
fective plastic strain rate,j is a certain internal state variabl
characterizing the isotropic hardening state of the material,t0 is
the effective flow strength,a(.1) is the stress exponent and it
a noninteger in general, andF1(u), F2(u), F3(u), F4(u), and
F5(u) are five material functions characterizing the planar pla
anisotropy of the sheet metal under uniaxial tension. The con
tutive equations Eqs.~5!–~8! are the simplified~uniaxial tension!
version of a planar anisotropic plastic flow theory recently dev
oped by Tong et al.@35–40# in terms of principal stresses and
loading orientation angle~which have been called intrinsic var
ables of a stress field according to Hill@41,42#!. The above con-
stitutive equations under uniaxial tension can be justified from
micromechanical point of view~see Appendix!. When the associ-
ated flow rule is applied to«̇12, @41,42#, one has F3(u)
5F18(u)/2a. If one assumesF5(u)5F1(u), then j̇5ġ, i.e., the
isotropic hardening is characterized by the cumulative effec
plastic strain. On the other hand, if one assumesF5(u)
5F1(u)ta/(a21), thenj̇5tġ, i.e., the isotropic hardening is cha
acterized by the cumulative plastic work per unit volume.

Because the equivalence of the loading orientation anglesu
andu6p due to the symmetry of mechanical loading, each of
five anisotropic material functions of a sheet metal can be re
sented by a Fourier series, namely,

F1~u!5A01A1 sin 2u1A2 cos 2u1 . . . 1A2k21 sin 2ku

1A2k cos 2ku1 . . . ,

F2~u!5B01B1 sin 2u1B2 cos 2u1 . . . 1B2k21 sin 2ku

1B2k cos 2ku1 . . . ,

F3~u!5C01C1 sin 2u1C2 cos 2u1 . . . 1C2k21 sin 2ku

1C2k cos 2ku1 . . . , (9)

F4~u!5D01D1 sin 2u1D2 cos 2u1 . . . 1D2k21 sin 2ku

1D2k cos 2ku1 . . . ,

F5~u!5E01E1 sin 2u1E2 cos 2u1 . . . 1E2k21 sin 2ku

1E2k cos 2ku1 . . . ,

wherek51,2, . . . , andAn , Bn , Cn , Dn , andEn are the Fourier
coefficients. The stress exponenta and the Fourier coefficients o
the five anisotropic material functions in Eq.~9! may evolve with
subsequent plastic deformation when anisotropic hardening du
material texture evolution is modeled. They are all assumed to
constant in this investigation, i.e., the characteristics of the m
rial texture remains more or less the same but the whole tex
frame can rotate relatively with respect to the sheet metal itsel
the sheet metal has some additional symmetry characteristics
as orthotropic, trigonal, or cubic symmetry in the plane of t
sheet, one can reduce the number of terms in each Fourier s
by imposing the equivalency of loading conditions betweenu and
2u, u andu12p/3, andu andu1p/2 respectively. Furthermore,
truncated Fourier series may be used in practice to approxim
each anisotropic material function and the number of terms kep
each truncated Fourier series depends on planar anisotropy o
sheet metal. Besides flow stress-strain curvessu(«1 ,«̇1), plastic
strain and spin ratios can be measured under uniaxial tension

Ru[
«̇2

«̇3
52

F2~u!

F1~u!1F2~u!
, ~ the plastic axial strain ratio!

(10a)

Gu[
«̇12

«̇1
5

F3~u!

F1~u!
, ~ the plastic shear strain ratio!

(10b)
Journal of Applied Mechanics
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Pu[
v̇12

«̇1
5

F4~u!

F1~u!
. ~ the plastic spin ratio!. (10c)

The five anisotropic material functionsF1(u), F2(u), F3(u),
F4(u), andF5(u) in the proposed anisotropic plastic flow theo
under uniaxial tension can thus be completely examined from
experimental measurements ofsu(«1 ,«̇1), Ru , Gu , and Pu ,
@35–37,40#. Evaluation of the proper analytical form of the anis
tropic material functionF4(u) that defines the flow rule of mac
roscopic plastic spin or the plastic spin ratioPu for a given sheet
metal is the focus of this investigation and will be discussed
details in the next section.

3 Macroscopic Plastic Spin in Sheet Metals Subjected
to Off-Axis Uniaxial Tension

In this section, the procedures of experimental investigations
the orientational evolution of material texture frames in thr
sheet metals will be reviewed first and the reported experime
results will be summarized briefly. The Fourier series represe
tion and the identification of its Fourier coefficients of the anis
tropic material functionF4(u) or the plastic spin ratioPu will
then be detailed. The model description of the rotation of ort
tropic axes of these three sheet metals under off-axis unia
tension due to macroscopic plastic spin will be compared with
experimental measurements. Although the theory presente
Section 2 can be applied to monoclinic sheet metals un
uniaxial tension,@37,40#, the sheet metals considered in the fo
lowing are assumed to be initially orthotropic and remain so un
off-axis uniaxial tension,@11,28#. So only the coefficients of the
sine terms in the Fourier series ofF4(u) and the coefficients of
the cosine terms in the Fourier series ofF1(u) are nonzero.

3.1 On the Experimental Measurements of the Rotation of
Orthotropic Axes due to Macroscopic Plastic Spin. There
have been rather limited experimental investigations on detec
the macroscopic plastic spin and its evolution in orthotropic sh
metals so far,@10–12,43,44#. A direct mechanisticevaluation of
the macroscopic plastic spin in orthotropic sheet metals un
uniaxial tension has been carried out using a two-step experim
tal technique by Boehler and Koss@10# and Kim and Yin@11#. It
consists of~a! the plastic deformation stepof uniaxial straining
multiple large sheet samples up to various plastic strain lev
~10%–30%! without necking at different off-axis angles and~b!
the material (texture frame) probing stepof measuring the direc-
tional dependence of uniaxial tension flow stress~more specifi-
cally, the yield stress with a big offset strain of 0.2%! of smaller
tensile sheet samples cut off from the deformed large sheet
every 10 deg or 15 deg offset angle increments from the orig
rolling direction.

Boehler et al.@10,45# tested large sheets of an aluminum kille
soft steel of size 10003360 mm2 under uniaxial tension with ini-
tial off-axis loading orientation angles of 30 deg, 45 deg, and
deg for various plastic strain levels up to 20% and above. Twe
smaller specimens cut off from each of the deformed large sh
with angles of 0 deg, 15 deg, 30 deg, 45 deg, 60 deg, 75 deg
deg, 105 deg, 120 deg, 135 deg, 150 deg, 165 deg offset from
rolling direction of the sheets were then tested for yield str
measurements. Kim and Yin@11# carried out very similar tests on
an automotive low carbon steel sheet using the same three in
off-axis loading orientation angles for various strain levels up
10%. They used a total of 18 smaller specimens cut off from e
of the deformed large sheets in the material probing step with e
specimen at an offset angle of every 10 deg increment from
rolling direction of the large sheets. To enhance the degree
anisotropy of the steel sheets that were nearly isotropic initia
Kim and Yin @11# pre-strained the steel sheets along the rolli
direction up to strains of 3% and 6%, respectively. By examin
the directional dependence of flow stress measured from 12
18 small tensile specimens, respectively, both Boehler e
JULY 2004, Vol. 71 Õ 523
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@10,45# and Kim and Yin@11# concluded that their sheet meta
remain approximately orthotropic but there exists a large in-pl
rotation of the orthotropic symmetry axes relative to the sh
metal itself under off-axis uniaxial tension. Both positive~coun-
terclockwise! and negative~clockwise! rotations as defined in Fig
1 were observed for initial loading orientation angles of 30 d
and 60 deg, respectively, and the orthotropic symmetry axes
come completely aligned with the external axial loading direct
within 5–10% uniaxial plastic strain. That is, the texture axis t
is coincided with the initial rolling direction rotates towards th
axial loading direction with an initial loading orientation angle
30 deg but the texture axis that is coincided with the initial tra
verse direction rotates towards the axial loading direction with
initial loading orientation angle of 60 deg. A rotation of the orth
tropic symmetry axes with an initial loading orientation angle
45 deg was detected in both investigations as well but a pos
rotation was reported by Boehler and Koss@10# while a negative
rotation was found by Kim and Yin@11#.

An experimental determination of macroscopic plastic spin
polycrystals based on material crystallographic texture meas
ments has been proposed by Bunge and Nielsen@12#. They di-
vided the crystallographic texture change of a polycrystal und
going plastic deformation into an average rotation of so
common texture reference axes characteristic for the whole p
crystal material element and a ‘‘spreading’’ of the individual cry
tal orientations away from the common~rotated! reference texture
frame. When the texture ‘‘spreading’’ is neglected, the text
evolution can thus be characterized approximately by the tex
rotation or texture spin. Bunge and Nielsen@12# measured the
orientation distribution function~ODF! of an annealed polycrys
talline aluminum sheet of 1 mm thickness before and after be
subjected to off-axis uniaxial tension to a total plastic strain
20% at 11 different initial loading orientation angles. They an
lyzed the rotation of a characteristic reference system formed
the symmetric elements of the texture with an accuracy of;0.5
deg using an autocorrelation function of ODF and considered
texture rotation or spin being related to the macroscopic pla
spin in the macroscopic theories of plasticity. They found that
amount of texture rotation at a uniaxial plastic strain of 20%
pends on the initial loading orientation angle and the maxim
plastic spin ratio is about 5 deg/20% occurred around the off-a
loading angle of 22.5 deg~i.e., P22.5deg'5 deg/20% if a constan
plastic spin is assumed!. The macroscopic plastic spin of the alu
minum sheet defined by the crystallographic texture spin acc
ing to Bunge and Nielsen@12# is much smaller than that of low
carbon steel sheets defined by the symmetry characteristics o
directional dependence of flow stress according to Boehler
Koss@10# and Kim and Yin@11#. Measured pole figures of a ste
sheet investigated by Boehler and Koss@10# under 45 deg off-axis
uniaxial tension showed that the symmetry part of the crysta
graphic texture in the steel sheet did rotate completely towards
axial loading direction at a plastic strain level of about 10%.

3.2 An Analysis of the Rotation of Orthotropic Axes due to
Macroscopic Plastic Spin. As there is very little relative rota-
tion of the sheet metal with respect to the fixed laboratory load
frame under uniaxial tension,@10–12,43,44#, i.e.,Ẇ12'0, one has
~see Fig. 1!

v121u'u0 , and v̇121 u̇'0, (11)

whereu0 and u are, respectively, the initial and current loadin
orientation angles, andv12 is the rotation of the sheet metal tex
ture frame due to plastic spinv̇12. One can thus rewrite Eq.~10c!
as

Pu52
u̇

«̇1
or «152E

u0

u du

Pu
. (12)

The directional dependence of flow stress under uniaxial ten
is usually much milder than that of plastic strain and spin rati
524 Õ Vol. 71, JULY 2004
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To the first approximation, one may setF1(u)'1 ~assuming
t(j,ġ)5s0). When only one of coefficients in the Fourier seri
of F4(u) is nonzero, i.e.,Pu'F4(u)'D sin 2ku(k51,2, . . . ),
one can obtain an analytical expression of Eq.~12! as

u5
1

k
arctan@$tan~ku0!e22kD«1%#, (13a)

so

v125u02
1

k
arctan@$tan~ku0!e22kD«1%#. (13b)

The rotationv12 of the material texture frame with respect to th
sheet metal itself or the current loading orientation angleu as a
function of the initial loading orientation angleu0 and the uniaxial
plastic strain«1(>0) are shown in Fig. 2 and Fig. 3, respective
using Eq.~13!. The material texture frame will eventually sto
spinning at certain loading orientation angles at sufficiently la
plastic strains and these loading orientation angles are theequilib-
rium orientations of the material texture frame. Possible equi
rium orientations of the material texture frame of a sheet metal
the loading orientation angles that satisfy the conditionsPu50
andPu8>0. Loading orientation angles that satisfy the conditio
Pu50 and Pu8,0 are metastable orientations and are not t
equilibrium orientations~i.e., any small disturbance can cause t
material texture frame to rotate away from those orientation!.
When D.0, the possible equilibrium orientations of the mater
texture frame areu50 deg fork51, u50 deg and 90 deg fork
52, andu50 deg, 60 deg and 120 deg fork53. When D,0, the
possible equilibrium orientations of the material texture frame
u590 deg fork51, u545 deg and 135 deg fork52, andu530
deg, 90 deg, and 150 deg fork53. In general, Eq.~12! may also
be rewritten using the Fourier series expansion ofPu
5F4(u)/F1(u) as

«152E
u0

u du

~d1 sin 2u1d2 sin 4u1d3 sin 6u1 . . . !
. (14)

The relation between the current loading orientation angleu or the
rotation of the texture framev12 and the uniaxial plastic strain«1
can be obtained by integrating Eq.~14! numerically.

Fig. 2 The amount of rotation v12 of the material texture frame
due to plastic spin at a fixed uniaxial plastic strain «1 of 20% as
a function of the initial loading orientation angle u0 with three
different k values according to Eq. „13b… „DÄ1 is used for all
data points …
Transactions of the ASME
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Fig. 3 The current loading orientation angle u and the amount
of rotation v12 of the material texture frame due to plastic spin
as a function of uniaxial plastic strain «1 with three different
initial loading orientation angles u0 and three different k values
according to Eq. „13… „kDÄ10 is used for all data points …
Journal of Applied Mechanics
3.3 Comparison Between the Model Description and Ex-
perimental Measurements on the Rotation of Orthotropic
Axes. Unlike plastic axial and shear strain ratiosRu andGu ~see
Eqs.~10a! and~10b!! that can be directly determined from incre
mental plastic strain measurements in each uniaxial tension
the plastic spin ratio has to be determined from the measurem
of both axial plastic strain increments and rotations of the mate
symmetry axes~by a separate mechanical or material texture m
surement, see Section 3.1!. Only limited experimental data are
reported for a given sheet metal either in terms of the rotation
orthotropic axes as a function of uniaxial plastic strain with s
lected initial loading orientation angles~see Fig. 4 and Fig. 5! or
in terms of the rotation of crystallographic texture symmetry ax
as a function of initial loading orientation angles at a fix
uniaxial plastic strain~see Fig. 6!. The plastic spin ratio can be
obtained in principle by curve-fitting and numerical differentiatio
of the experimental data shown in Fig. 4 and Fig. 5, the mate
parameters and coefficients in Eq.~13b! and/or Eq.~14! can then
be determined. The following trial-and-error procedure is us
instead for parameter identification:

1. Use the results shown in Fig. 2 and Fig. 3~which are given
by Eq. ~13! using differentk values! as the basis to deter
mine the dominant term~the value ofk! in the Fourier series
of Pu measured in experiments.

2. Adjust the value of the coefficientD ~both its sign and mag-
nitude! to best describe the experimental data. If Eq.~13!
with the selected values ofk and D can model all of the
experimental measurements reasonably well, then the pla
spin ratio is determined asPu5D sin 2ku.

3. Add one or more sine terms for the Fourier series ofPu if
Eq. ~13! cannot describe the experimental measurements
isfactorily. Estimate the sign and magnitude of the Four
coefficient of each new term by comparing the results sho
in Fig. 2 and Fig. 3 with the experimental measuremen
Adjust the Fourier coefficientsdi in Eq. ~14! iteratively until

Fig. 4 Comparison of the model description „solid and dashed
lines … and the experimental data „filled symbols … of a steel
sheet reported by Boehler and Koss †10‡ and Losilla et al. †45‡
on the rotation v12 of the material texture frame due to plastic
spin as a function of uniaxial plastic strain «1 with different
initial loading orientation angles u0Ä30deg , 45 deg, and 60
deg. The solid lines are given by Eq. „14… with d 1Ä7, d 2Ä10 and
d 3ÄÀ3 „all other coefficients are zero …. The dashed lines are
given by Eq. „13b… with kÄ2 and DÄ9 „the initial loading orien-
tation angles of 30 deg, 46 deg, and 60 deg were used ….
JULY 2004, Vol. 71 Õ 525
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the model description matches closely the experime
measurements. The plastic spin ratio is then given asPu
5d1 sin 2u1d2 sin 4u1d3 sin 6u1 . . . .

The above procedure was applied to model the experime
data on the three sheet metals reported by Boehler et al.@10,45#,
Kim and Yin @11#, and Bunge and Nielsen@12# and plastic spin
ratios of these three sheet metals were determined as follows

Fig. 5 Comparison of the model description „solid and dashed
lines … and the experimental data „filled symbols … of a steel
sheet reported by Kim and Yin †11‡ on the rotation v12 of the
material texture frame due to plastic spin as a function of
uniaxial plastic strain «1 with different initial loading orienta-
tion angles u0Ä30deg , 45 deg, and 60 deg. The solid lines are
given by Eq. „14… with d 1ÄÀ8, d 2Ä17 and d 3Ä3 „all other co-
efficients are zero …. The dashed lines are given by Eq. „13b…
with kÄ2 and DÄ12.5 „the initial loading orientation angles of
30 deg, 46 deg, and 60 deg were used ….

Fig. 6 Comparison of the model description „solid and dashed
lines … and the experimental data „filled symbols … of an alumi-
num sheet reported by Bunge and Nielsen †12‡ on the amount
of rotation v12 of the material texture frame due to plastic spin
at a fixed uniaxial plastic strain «1 of 20% with 11 different ini-
tial loading orientation angles u0 . The solid line is given by Eq.
„13b… with kÄ2 and DÄ0.45.
526 Õ Vol. 71, JULY 2004
tal

ntal

:

Pu59 sin 4u, and Pu57 sin 2u110 sin 4u

23 sin 6u, ~Boehler and Koss! (15a)

Pu512.5 sin 4u, and Pu528 sin 2u117 sin 4u

13 sin 6u, ~Kim and Yin! (15b)

Pu50.45 sin 4u ~Bunge and Nielsen!. (15c)

As shown in Fig. 4 and Fig. 5, the plastic spin ratio using a sin
sine term withk52 can only describe some of the experimen
data on the two steel sheets reported by Boehler and Koss@10#
and Kim and Yin@11# ~for initial loading orientation angles of 30
deg and 60 deg!. Actually, no rotation of the orthotropic axes i
predicted byPu5D sin 4u for the initial loading orientation angle
of 45 deg at all. However,u0545deg is not one of the true
equilibrium orientations of the material texture frame with such
plastic spin ratio~see Section 3.2!. If one assumes the initial load
ing orientation angle to be 44 deg and 46 deg, respectively,
each investigation~say, there were some experimental errors d
to some slight misalignments!, then the rotation of orthotropic
axes occurs in both cases and matches the experimental obs
tions at large strains. The predictions at small strains are how
inconsistent with the experimental data. Indeed, the plastic s
ratios with three sine terms given in Eq.~15a! and Eq.~15b! are
needed to adequately model the experimental data reporte
both Boehler and Koss@10# and Kim and Yin@11# for all three
different initial loading orientation angles. On the other hand,
plastic spin ratio using a single sine term withk52 describe rea-
sonably well the directional dependence of the rotation of text
symmetry axes at a fixed uniaxial plastic strain of 20% as
served by Bunge and Nielsen@12# for an annealed aluminum
sheet. The magnitude of the plastic spin ratio of the alumin
sheet is, however, about 1/20 to 1/30 of that of the steel she
The difference in the magnitude of plastic spin ratios betwe
steel and aluminum sheets may be due to the difference in
characteristics of their initial anisotropy and a further microm
chanical investigation is warranted to elucidate its physical orig
According to the plastic spin ratios given in Eq.~15!, the equilib-
rium orientation of the material texture frames in these three sh
metals is eitheru50 deg~theX-axis will eventually coincide with
the external axial loading direction! or u590 deg~the Y-axis will
eventually coincide with the external axial loading direction!.

4 Discussion
A plane-stress anisotropic plasticity theory of sheet metals

often formulated using the Cartesian stress componentssx , sy ,
andsxy projected onto the principal axes of the material textu
~symmetry! frame XYZ as shown in Fig. 1. Hill@41,42# has re-
cently advocated the use of the so-called intrinsic variables
principal stresses (s1 ,s2) and a loading orientation angleu for
developing anisotropic plasticity theories. He has argued that
resulting plasticity theories should be more appealing to b
theoreticians and experimentalists. A new anisotropic plasti
theory has indeed been proposed using these intrinsic variable
Tong et al.@35–40# and the uniaxial tension version of the theo
is presented in this investigation. In both theoretical analyses
experimental evaluations of an anisotropic plasticity theory us
either formulation, one needs to know the initial orientation of t
material texture frame and its subsequent evolution with respe
the sheet metal itself during a plastic deformation process
other words, an explicit mechanistic definition~i.e., an experimen-
tal procedure for its determination by a mechanical test! of the
material texture frame at a given plastic deformation stage is
quired by such an anisotropic plasticity theory. For orthotro
sheets, the orthotropic axes can be identified with the symm
axes detected in the orientational dependence of mechanical p
erties such as flow stress under uniaxial tension,@10,11#. If plastic
anisotropy of the sheet metal is solely due to the crystallograp
texture, then the crystallographic texture symmetry axes may
Transactions of the ASME
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used as well to measure the orientation of the material tex
frame in the sheet metal,@12#. While such a definition of the
material texture frame works well for sheet metals with orthot
pic or other higher-order symmetries, it cannot however be
tended to monoclinic sheets. A different and more general de
tion of the in-plane axesX and Y of the sheet material textur
frame coordinate system has been given in the anisotropic pla
ity theory presented here, that is, theX andY-axes are defined to
be the principal axes of in-plane plastic strain rates of the sh
metal under equal biaxial tension (s15s2). In practice, an out-
of-plane uniaxial compression test may be used to experimen
determine the material texture axesX and Y if plastic flow is
unaffected by hydrostatic loading. This definition of the mater
texture axes is equivalent to the one based on the symmetry c
acteristics of flow stress under uniaxial tension for orthotro
sheets with isotropic hardening but requires much less experim
tal efforts,@35#.

Most of the existing anisotropic plasticity theories assume t
a polycrystalline sheet metal is orthotropic initially and the init
orthotropy symmetry is strong and persists during subseq
plastic deformation,@6,28#. When the sheet metal deforms plas
cally under on-axis loading conditions~i.e., the principal axes of
stress coincide with the orthotropic axes of the sheet!, there is no
ambiguity on the orientation of the current orthotropic textu
frame with respect to the sheet metal itself as there is no pla
spin of the material texture frame. However, when the loading
off-axis in uniaxial tension or shear tests, the original RD and
directions of the sheet metal are no longer orthogonal and
current orientation of the material texture axesX andY cannot be
clearly identified without additional theoretical hypotheses or
perimental characterization. Few existing anisotropic plastic
theories offer a flow rule for macroscopic plastic spin at all
most of them assume explicitly or implicitly that the macrosco
plastic spin is always zero and the material texture frame rot
along with the sheet metal itself. The experimental measurem
on the current orientation of the material texture frame afte
sheet metal is subjected to off-axis uniaxial tension have sh
that there exist detectable and even significant relative rotat
between the material texture frame and the sheet metal,@10–12#.
A robust and flexible flow rule of macroscopic plastic spin
proposed in this investigation should be incorporated into an
isotropic plasticity theory to improve its modeling capabilities.
comparative evaluation of the proposed flow rule of macrosco
plastic spin with some of the specific analytical forms of the flo
rule of macroscopic plastic spin appeared in the literature is
order. As pointed out in the Section 1, the explicit forms of t
flow rule of macroscopic plastic spin have been motivated larg
by invoking the representation theorems for isotropic functions
conjunction with the concept of tensorial structure variab
mostly for quadratic plastic flow theories,@13–30#. Only two ana-
lytical expressions of the flow rule of macroscopic plastic s
have often been cited in the literature and they have the follow
forms for an orthotropic sheet metal under off-axis uniaxial te
sion, @28#,

v̇125ha«̇xy ,

or Pu[
v̇12

«̇1

5ha

~ «̇12 «̇2!sinu cosu1 «̇12 cos 2u

«̇1

5haF S 11
Ru

11Ru
D sinu cosu1Gu cos 2uG , (16a)

v̇125hbsu«̇12, or Pu[
v̇12

«̇1
5hbsuGu , (16b)
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whereha andhb are plastic spin coefficients and can be in gene
a function of the isotropic invariants of a given loading stre
tensor and the material symmetry orientations,Ru , Gu , and su
are, respectively, the plastic axial strain ratio, the plastic sh
strain ratio, and the flow stress under uniaxial tension~see Section
2!. The flow rule Eq.~16b! is the uniaxial tension version of th
constitutive equation for plastic spinWp5h(sDp2Dps) that has
been adapted widely in the literature,@26–28#. In many actual
applications of the above two flow rules reported in the literatu
a constantplastic spin coefficient is usually assumed,@18,28#. The
flow rule given by Eq.~16a! has been used extensively for inve
tigating the plastic spin effect but they were mostly illustrati
without experimental corroboration,@15,18#. The flow rule given
by Eq. ~16b! has been employed by Kuroda@26# to simulate the
inverse Swift effect in free-end torsion experiments assuming
the material is orthotropic prior to torsion. Kim and Yin@11# and
Dafalias@28# have used the same expression for the plastic s
along with Hill’s 1948 quadratic anisotropic plasticity theory,@5#,
to simulate the orientational evolution of orthotropic symme
axes in steel sheets upon off-axis uniaxial tensile deformat
While qualitative agreements were found in their analyses,
orientational evolution of the orthotropic axes with increasi
plastic deformation is not described with great accuracy and
nificantly different values of the plastic spin coefficienthb ~which
also has to be opposite in sign when comparing with the one u
by Kuroda@26#! were needed for the best description of each
the off-axis tensile tests with the initial loading orientation ang
of 30 deg, 45 deg, and 60 deg. In the light of the anisotro
plastic flow theory proposed here~see Section 2 and Section 3!,
the two widely used analytical expressions for the flow rule
macroscopic plastic spin as given in Eqs.~16a! and ~16b! for
uniaxial tension are indeed both overly restrictive~linking directly
the plastic spinv̇12 with the plastic shear rate«̇xy or «̇12) and
overly simplistic~no dependence on the loading orientation an
u is given for the plastic spin coefficientsha andhb at all in their
actual application examples!. The micromechanical analysis of th
plastic flow of single crystals with a regularized Schmid law und
uniaxial tension given in the Appendix also shows that the gen
validity of the plastic spin equation given by either Eq.~16a! or
Eq. ~16b! is indeed questionable.

As mentioned in the Introduction, the other major area of int
est of incorporating a flow rule of macroscopic plastic spin is
isotropic plasticity theories with kinematic hardening@23,46#. One
can define the material texture frame as the principal axes of
backstress tensor, then a flow rule of macroscopic plastic s
becomes basically a part of the evolution law of kinematic ha
ening that describes the orientational evolution of the princi
axes of the backstress tensor~the other part covers the evolutio
of the strength of the backstress in terms of its principal com
nents!. However, direct measurements of the backstress te
~and hence its principal axes! using tension-compression or sim
lar tests at different loading orientation angles are required
properly evaluate any specific form of the flow rule of plastic sp
for kinematic hardening. Experimental inference of the form
the flow rule of plastic spin for isotropic plasticity theories wi
kinematic hardening by simulating finite deformation simple sh
tests is problematic@46# as the crystallographic aspect of the m
terial texture evolution may become significant and even do
nant. As observed early in Section 3, the magnitude of the pla
spin ratio of the aluminum sheet,@12#, is only about 1/20 to 1/30
of that of the steel sheets,@10,11#. Such a difference may be
attributed to the two different plastic spin detection methods us
the plastic spin determined by Bunge and Nielsen@12# is mainly
related to the material crystallographic texture evolution while
plastic spin determined by Boehler and Koss@10# and Kim and
Yin @11# may be related primarily to the evolution of dislocatio
substructures in steel sheet metals~especially at small plastic
strains!. In this investigation, it was assumed that all three sh
metals have a pre-existing orthotropic symmetry and the orie
JULY 2004, Vol. 71 Õ 527
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tional dependence of flow stress and plastic strain ratio of
sheet metals under off-axis uniaxial tension remains orthotro
with the samesymmetry axes,@28#. Consequently, a single mac
roscopic flow rule of macroscopic plastic spin was used to ch
acterize satisfactorily the relative rotation of the material symm
try axes regardless of its origin. The validity of the persiste
orthotropic symmetry assumption cannot be examined directly
these three sheet metals due to lack of experimental data. I
experimental data on the orientational dependence of plastic s
ratio of the two steel sheets upon off-axis uniaxial tension w
also made available and they would show indeed that the sym
try axes of plastic strain ratio do not coincide with the symme
axes of flow stress, the sheet metals should then be treate
monoclinic instead of orthotropic. Incorporations of both a ba
stress kinematic hardening model and a flow rule of macrosc
plastic spin in an anisotropic plastic flow theory may be a poss
modeling approach,@23,43,44#. Direct experimental evaluation o
the backstress tensor is however very challenging if not imp
sible for sheet metals~as in-plane uniaxial compression tests a
rather difficult to carry out for thin sheets! and flow rules of two
plastic spins are required to describe the orientation evolutio
the principal axes of both the backstress~related primarily to the
dislocation substructure! and the crystallographic texture fram
respectively,@23#. When only one plastic spin is used, its expe
mental evaluation becomes ambiguous unless further clarifica
on the definition of the material texture frame that is associa
with the plastic spin is provided and extensive experimental d
are made available. For example, Truong Qui and Lippm
@43,44# have proposed a quadratic anisotropic plasticity the
that generalizes Hill’s orthotropic theory,@5#, for monoclinic
sheets with combined isotropic and kinematic hardening an
plastic spin. Their theory is formulated using the Cartesian st
componentssx , sy , andsxy on the axes of the material textur
coordinate system which is associated with their plastic s
However, as no experimental data on in-plane uniaxial comp
sion flow stress are available for the steel and aluminum sh
investigated, respectively, by Boehler and Koss@10# and by
Truong Qui and Lippmann@43,44#, the evaluation ofboth the
backstress and the rotation of the material texture frame du
plastic spin in their theory is impossible using solely the expe
mental data on the directional dependence of uniaxial tensile
stress. Truong Qui and Lippmann@43,44# used a least-square fit
ting parameter identification procedure that lumps together all
terial parameters plus a rotation anglev12 due to plastic spin.
Such an indirect approach in evaluating the effect of plastic s
and other aspects of a highly nonlinear anisotropic plastic fl
behavior is very questionable as noted by McDowell et al.@46#.
Alternatively, one may invoke an anisotropic plasticity theo
with a nonassociated flow rule,@47#, and uses a yield surface t
model the anisotropy of flow stress and a separate flow surfac
model the anisotropy of plastic strain ratios. Two plastic sp
associated with the evolution of symmetry axes of yield and fl
surfaces can thus be in principle evaluated independently base
the experimental data on the orientational dependence of
stress and plastic strain ratio respectively following the method
ogy give in this investigation. Under this context, the plastic s
ratio obtained here for the two steel sheets should perhap
limited to the evolution of the yield surface and its applicability
the evolution of the flow surface cannot be assessed without
ditional experimental data on the orientational dependence
plastic strain ratio.

We take the viewpoint that the purpose of a macroscopic an
tropic plasticity theory is mainly to provide a mathematica
more compact but still physically sound description of the plas
flow behavior of a sheet metal so that engineering analyses
designs of sheet metal forming processes can be carried out
efficient way with accepted accuracy. One basically calibrates
material parameters in the theory through a set of mechanical
under simple loading conditions and then applies the theory
528 Õ Vol. 71, JULY 2004
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analyze problems under more general loading conditions. Our
isotropic plasticity theory formulated in terms of the intrinsic va
ables of principal stresses and a loading orientation angle inte
to strike a proper balance between the mathematical compac
and the descriptive robustness through the truncated Fourier s
representation of each of anisotropic material functions charac
izing plastic anisotropy of a sheet metal. Depending on the ex
of the experimental data made available, the degree of pla
anisotropy, and the accuracy required for an analysis, a flex
and adaptive anisotropic plasticity theory can thus be establis
for practical engineering applications,@35–40#. There have been
some debates in recent years on the role and necessity of m
scopic plastic spin within the framework of a macroscopic po
crystalline plasticity theory@24,46,48#. We suggest that a flow rule
of macroscopic plastic spin should be considered if it improv
the mathematical formulation~say, the compactness! and the con-
stitutive modeling quality of a phenomenological theory of a sh
metal and if there is a clear physical basis~such as the relative
rotation of the material texture frame against the material its!
and an associated experimental procedure for its evaluation.
investigation showed that the proposed flow rule of macrosco
plastic spin can be used to describe effectively the orientatio
evolution of the material texture frame in three orthotropic sh
metals subjected to off-axis uniaxial tension and thus their p
ticity anisotropy without invoking the use of other mathematica
more complicated anisotropic hardening models,@43–45#. When
other aspects of material texture evolution such as texture spr
ing or texture sharpening have significant effects on the an
tropic plastic flow behavior of a sheet metal, constitutive ani
tropic hardening equations in addition to the flow rule of plas
spin may have to be added to characterize the evolution of tex
intensity.

5 Conclusions
A new flow rule of macroscopic plastic spin has been propo

for modeling the orientational evolution of the material textu
frame of a sheet metal subjected to off-axis uniaxial tensi
When a sheet metal has a pre-existing and persisting orthotr
symmetry, the anisotropic material function in the flow rule can
approximated by a truncated Fourier sine series of the load
orientation angle and its Fourier coefficients can be identified
ing the experimental data on the rotation of the material text
frame relative to the sheet metal itself. The flow rule of mac
scopic plastic spin is found to provide a consistent description
the experimental data on the orientational evolution of the ma
rial texture frame of three sheet metals reported in the literat
Such a flow rule of macroscopic plastic spin should be incor
rated into an anisotropic plasticity theory for finite plastic defo
mation applications when it can improve both the mathemat
formulation ~the compactness! and the descriptive quality of the
theory and when it can be unambiguously evaluated experim
tally based on an explicit mechanistic definition of the mater
texture frame. Additional theoretical and experimental investi
tions are needed to clarify the definition of macroscopic plas
spin and its evaluation for a monoclinic sheet metal.

Acknowledgments
The work reported here was supported in part by a CARE

award to WT from the National Science Foundation~Grant No.
CMS-973397, Program Director: Dr. K. Chong!. WT would like
to acknowledge Profs. John Hutchinson and Jim Rice of Harv
University for their comments that helped to clarify our definitio
of the material texture frame in a monoclinic sheet.

Appendix

On the Micromechanical Basis of the Proposed Anisotropic
Plastic Flow Theory. At ambient conditions, the plastic flow o
a single crystal is primarily due tocrystallographicslips on se-
Transactions of the ASME
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lected slip systems. The plastic rate of deformation tensorDp and
the plastic spin tensorWp of a single crystal can be represented
slip rates associated with slip modes,@49,50#:

Dp5sym~R* ḞpFp21
R* 21!5(

i 51

N*

ġ i* Pi ,

Wp5skew~R* ḞpFp21
R* 21!5(

i 51

N*

ġ i* Qi , (A1)

whereR* is the lattice rigid body rotation tensor,Fp is the plastic
deformation gradient tensor,ġ i* is the absolute value of the rate o
change of integrated shear strain for thei-th crystallographic slip
system, andN* is the total number of the activated crystall
graphic slip modes. Each slip mode is composed of a slip di
tion and a slip plane. The tensorsPi andQi for the ith slip mode
are defined by

Pi5symT i5
1

2
~si ^ mi1mi ^ si !,

Qi5skewT i5
1

2
~si ^ mi2mi ^ si !, (A2)

where the Schmid tensorT i is defined byT i5si ^ mi , and unit
vectorssi andmi are the slip direction and normal to the slip pla
associated with theith slip mode in the deformed configuration
respectively. Activation of the selected slip systems can be
scribed by a certain slip condition. The driving force to activa
the i-th slip system is the resolved shear stresst i* along the slip
direction on the crystallographic slip plane of the slip system
the current configuration, which can be obtained byt i* 5Pi :s,
wheres is the Cauchy stress tensor.

We assume the existence ofa rate-dependent slip potentialt*
~the effective resolved shear stress! for plastic deformation of
single crystal grains in a polycrystalline aggregate with a str
exponentb(.1)

t* ~t1* ,t2* , . . . ,tN*
* !5@a1* ut1* ub1a2* ut2* ub1 . . .

1aN*
* utN*

* ub#1/b5F(
i 51

N*

a i* ut i* ubG 1/b

,

(A3)

wheret i* are resolved shear stresses on the available slip sys
of the crystal anda i* are the weight coefficients related to th
relative strength of the slip systems. A work-conjugate effect
shear rateġ* and the slip surface can be defined as

t* ġ* 5t1* ġ1* 1t2* ġ2* 1 . . . 1tN*
* ġN*

* 5(
i 51

N*

t i* ġ i* , (A4)

t* ~t1* ,t2* , . . . ,tN*
* !2t0* ~j* ,ġ* !50, (A5)

wherej* is a scalar characterizing the overall isotropic harden
of the crystal andt0* (j* ,ġ* ) is the effective slip strength of the
crystal.The associated flow ruleresults the slip rate on the eac
slip system as

ġ i* 5l*
]t* ~t1* ,t2* , . . . ,tN*

* !

]t i*

5l* a i* S ut i* u
t* D b22 t i*

t*

5ġ* a i* S ut i* u
t* D b22 t i*

t*
5ġ* S ut i* u

t i0*
D b22

t i*

t i0*
, (A6)
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where l* 5ġ* from the plastic work-equivalency requireme
~see Eq.~A4!!, a i* 5(t0* /t i0* )b21, andt i0* 5t i0* (gi* ,ġ* ) is the slip
strength on each slip system. Evolution laws of isotropic hard
ing of the single crystal withN* 11 scalar state variables ar
given as

j̇* 5 j̇* ~ ġ1* ,ġ2* , . . . ,ġN*
* !, ġi* 5ġi* ~ ġ1* ,ġ2* , . . . ,ġN*

* !.
(A7)

When one assumesb511m ~with m.0) and

t0* ~j* ,ġ* !5g* ~j* !S ġ*

ġ0*
D 1/m

and t i0* ~gi* ,ġ* !

5gi* S ġ*

ġ i0*
D 1/m

, so a i* 5S t0*

t i0*
D m

5S ġ i0*

ġ0*
D S g*

gi*
D m

,

(A8)

one can show that

ġ i* 5ġ* S ut i* u

t i0*
D m21

t i*

t i0*
5ġ i0* S ut i* u

gi*
D m21

t i*

gi*
. (A9)

This is exactly the rate-dependent slip rule that has been prop
by Hutchinson@51#, Asaro@49#, and Asaro and Needleman@52#. A
combined self-hardening and latent hardening model can
adapted here withj* 5gT*

ġ* 5h* ~gT* !ġT* , ġi* 5(
j 51

N*

hi j* ġ j* , (A10)

where the Taylor straingT* and the hardening moduli matrixhi j*
are defined by

ġT* 5(
i 51

N*

uġ i* u, hi j* 5qh* 1~12q!h* d i j , (A11)

whereq is a parameter characterizing the latent hardening. W
the latent hardening is equal to the self-hardening (q51), one has
the Taylor isotropic hardening model of single crystals w
hi j* (gT* )5h* (gT* ), a i* 51, j̇* 5ġT* , and gi* 5g* . On the other
hand, the current crystal plasticity model is a rate-dependent
tension of the rate-independent models proposed by Gambin@53#
and Darrieulat and Piot@54#. The stress exponentb has been iden-
tified by them respectively as either the interaction exponen
slip systems in a single crystal or the texture dispersion expon
in a polycrystal. This crystal plasticity model with an associat
rate-dependent slip potential is more flexible as in generalbÞ1
1m or mÞ` ~where m is a parameter in a simple power-la
rate-dependence model, see Eq.~A8!!.

Under uniaxial tension, the resolved shear stresses in term
the uniaxial tensile stresssu.0 and the slip system vectors~slip
direction and the slip plane normal in terms of the in-plane lo
ing orientation angleu! are given as

t i* 5si1* mi1* su5Li1* su5@si1
0* mi1

0* cos2 u1~si1
0* mi2

0*

1si2
0* mi1

0* !sinu cosu1si2
0* mi2

0* sin2 u#su , (A12)

where (si1
0* ,si2

0* ,si3
0* ) and (mi1

0* ,mi2
0* ,mi3

0* ) are the Cartesian
components of the slip system vectors defined in the mate
texture coordinate systemXYZ. The slip potential Eq.~A3! can be
expressed in terms of the uniaxial tensile stress and the in-p
loading orientation angle as
JULY 2004, Vol. 71 Õ 529
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@t* ~su ,u!#b5su
b(

i 51

N*

a i* uLi1* ub

5su
b(

i 51

N*

a i* usi1
0* mi1

0* cos2 u1~si1
0* mi2

0* 1si2
0* mi1

0* !

3sinu cosu1si2
0* mi2

0* sin2 uub

[su
bF1* ~u!. (A13)

The in-plane components of the plastic rate of deformation ten
Dp and the plastic spin tensorWp of a single crystal can be ob
tained using Eqs.~A1!, ~A2!, ~A6!, ~A12!, and~A13!

«̇15(
i 51

N*

si1* mi1* ġ i* 5ġ* S su

t0
D b21

(
i 51

N*

a i* uLi1* ub

[ġ* S su

t0
D b21

F1* ~u!, (A14a)

«̇25(
i 51

N*

si2* mi2* ġ i* 5ġ* S su

t0
D b21

(
i 51

N*

a i* uLi1* ub22Li1* Li2*

[ġ* S su

t0
D b21

F2* ~u!, (A14b)

«̇125(
i 51

N*
si1* mi2* 1si2* mi1*

2
ġ i* 5ġ* S su

t0
D b21

(
i 51

N*

a i* uLi1* ub22Li1* Vi1*

[ġ* S su

t0
D b21

F3* ~u!, (A14c)

v̇125(
i 51

N*
si1* mi2* 2si2* mi1*

2
ġ i* 5ġ* S su

t0
D b21

(
i 51

N*

a i* uLi1* ub22Li1* Vi2*

[ġ* S su

t0
D b21

F4* ~u!, (A14d)

where

Li1* 5si1* mi1* 5si1
0* mi1

0* cos2 u1~si1
0* mi2

0* 1si2
0* mi1

0* !sinu cosu

1si2
0* mi2

0* sin2 u,

Li2* 5si2* mi2* 5si1
0* mi1

0* sin2 u2~si1
0* mi2

0* 1si2
0* mi1

0* !sinu cosu

1si2
0* mi2

0* cos2 u,

Vi1* 5
si1* mi2* 1si2* mi1*

2
5

si2
0* mi2

0* 2si1
0* mi1

0*

2
sin 2u

1
si1

0* mi2
0* 1si2

0* mi1
0*

2
cos 2u,

Vi2* 5
si1* mi2* 2si2* mi1*

2
5

si1
0* mi2

0* 2si2
0* mi1

0*

2
, and

F3* ~u!5
1

2b

dF1* ~u!

du
~ the associated flow rule!.

The material anisotropic functionsF1* (u), F2* (u), andF4* (u)
of the single crystal under uniaxial tension are related only to
slip system vectorssi andmi , the slip system weight coefficien
a i* , and the stress exponentb. By using the Sachs assumption
the uniform stress field in each single crystal grain of a polycr
tal, the macroscopic flow potential and the associated flow ru
for plastic strain rates and the flow rule for plastic spin can
530 Õ Vol. 71, JULY 2004
sor

its
t
f
s-
les
be

obtained approximately via simple volume averaging. The res
ing mathematical formulation of these constitutive equations
identical to the one presented in Section 2 ifa5b.

The plastic spin appeared in themicromechanicaltheory of
single crystal plasticity~see Eq.~A1! in general and Eq.~14d!
under uniaxial tension! is the natural consequence of the kinem
ics of crystallographic slips. When one does not directly meas
the crystal orientations using either X-ray or electron diffracti
techniques, one does not know explicitly the slip system vectorsi
andmi . One has to rely on the mechanical tests instead to ev
ate the material anisotropic functionsF1* (u), F2* (u), andF4* (u)
of the single crystal under uniaxial tension. In other words, t
results in amacroscopictheory of single crystal plasticity using
these material anisotropic functions for uniaxial tensile loadi
One can show that in general the material anisotropic func
F4* (u) cannot be deduced from the knowledge of other two
isotropic material anisotropic functionsF1* (u) and F2* (u) for
single crystals: that is, the knowledge of the orientational dep
dence of flow stress and plastic strain ratio under uniaxial tens
will not provide any prediction on the orientational dependence
plastic spin ratio at all. Indeed, this result directly contradicts o
of the commonly cited expressions for macroscopic plastic s
@26–28#:

Wp5h~sDp2Dps!, or v̇12

5hsu«̇12 ~under uniaxial tension!, (A15)

whereh is the plastic spin coefficient~which has been assumed t
be a constant in its application examples!. Kurroda@26# and Da-
falias @28# found that the plastic spin coefficient have to be
negative constant for modeling certain experimental data whil
is required to be non-negative according to Levitas@27#. One can
show that the relationv̇125hsu«̇12 ~uniaxial tension! does not
hold for single crystals in general according to the micromecha
cal crystal plasticity model presented above~numerical simula-
tions of single crystals have revealed that there exist cases
v̇12 is nonzero when«̇1250!) and the general validity of the
constitutive equation for macroscopic plastic spin Eq.~A15! is
thus questionable. A similar conclusion can also be reached a
another proposed simple expression for the macroscopic pla
spin, @28#, v̇125h«̇xy5h@( «̇12 «̇2)sinu cosu1«̇12 cos 2u# as it
holds only strictly for single slips for single crystals.
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