
Review on k•p



� How to interpret wave vector k?

The wave function Ψk of a free electron is given by a plane 
wave: Ψk = Cexp(ik•r)
where k=p/� is the wave vector

p is the momentum
r is the space vector
C is the normalizing constant

energy of a free electron is given by E = p²/(2me) = (�k)² /(2me)
boundary condition: 
Ψk (x,y,z) = Ψk (x+L,y,z) = Ψk (x,y+L,z) = Ψk (x,y,z+L) =>
kx = 2nxπ/L, ky = 2nyπ/L, kz = 2nzπ/L



In crystal, the electronic wave function may be presented as 
a Bloch wave: Ψk = uk(r)exp(ik•r)

Where the Bloch amplitude uk(r) has the same spatial 
Periodicity as the crystal lattice: uk(r) = uk(r+R)

uk(r) can be expanded in a Fourier series:
uk(r) = �Ck’ exp(ik’•r)

k’≠k

Boundary condition (one dimension atom chain)
Ψk (x) = Ψk (x+L) => k = 2nπ/L



� Consider A only: dp/dt = Fext + Fint,      d²p/dt² = m
p, m are the momentum and mass of the ball A.

� Consider A, B as a system: dpeff/dt = Fext,  d² peff/ dt² = meff

peff is no longer the momentum of A. It takes account into the 
interaction between A and B. 

� Internal potential Vint “disappears” when consider A, B as a system.
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dp/dt = Fext

p is the electron momentum

dp/dt = Fext + Fint, 

Or dpeff/dt = Fext 

peff = �k contains the effects of 
the internal crystal potential.



Schrödinger equation for electron inside the crystal structure
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Where V(r) = VL (r) + Vs (r) + Ve (r) ,

VL (r) = periodic lattice potential
Vs (r) = scattering potential (lattice vibrations, defects, impurities)
Ve (r) = external potential (space charge, ε field)

What people usually do is use m* to take account into the VL (r), the 
Schrödinger equation is written as:

[ ] )()()()(2
2m*

2
rErrVrV es ψψ =++∇−�



• The electrons in the crystal see the perfectly periodic 
potential – the electrons propagate without scattering.

• No external potential.

• The background periodic potential is weak, and we can treat
the periodic potential as perturbation, we 

� The concept of effective mass, energy band gap, and allowed
bands can be manifested by looking at the nearly free electron picture. 



If we write the Schrödinger equation

in k space, which means Substitute               with 

Bloch wave function

we’ll get :
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Schrödinger equation for the electron in weak periodic potential
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Schrödinger equation for the electron in free space







� Two main categories of realistic band structure calculation:

• Method which describe the entire valance and conduction band.
(i.e., tight binding method)
include finite number of basis functions.
ignore the effects from all the other bands
exact solution of schrodinger equation (no perturbation).
reliable approach for bands  originating from well localized atomic orbitals. 

• Methods which describe near band edge band structure. 
(i.e., k•p method)
include finite number of basis functions.
take the effects from all the other bands as perturbation.

� Regardless the method used, the eigenfunctions of the 
Electrons must be Bloch functions.



� The Bloch function can be expanded in terms of any 
complete set of basis states.
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Plane wave basis

� More often, we expand the Bloch function in term of 
atomic orbitals since it is more simple and physical, and 
often requires fewer basis functions.

i.e.,



� The outmost valance electrons are made up of electrons in 
either the s-type or p-type orbital for semiconductors.The top 
of the valance bandage states are primarily p-type.



� In quantum mechanics, the electron can have both orbital angular
momentum and spin angular momentum.

� The spin provides the electron with a means to interact with the magnetic 
field produced through its orbital motion.

� The spin-orbital coupling is quite small and one can adds its effect in a
perturbative approach.

The total Hamiltonian:  Htot = H + Hso

Hso = λL•S

The total angular momentum can be expressed as:

J² = (L + S)²

� we choose the basis set to be the eigenfunction of L² and Lz, in this case, 
the Hamiltonian commutes with J² and Jz, the matrix of H can be broken into  
small blocks ( i.e.,  6*6 matrix -> one 4*4  & one 2*2 matrices ). 



Summary of  k•P theory (1)

� Allows us to calculate the band structure En (k) near the band edge.

� The theory can be applied to single or to multiply degenerate bands.

� Two approaches: 
(1) apply perturbation theory
(2) solve an equation for a determinant to get band energies

� The k•P theory predicts parabolic bands but modified by the k•P interaction.

� The k•P theory predicts an effective mass for the electron in the second order 
energy term.



� General steps of developing k•p method

(1) substitute the Bloch wave function into the Schrodinger equation
with the free electron mass and lattice potential.

(2) for electron near the band edge (CB minimum or VB maximum), 
treat the k•p term in the Hamiltonian operator as a type of 

perturbation.

(3) provided that we know the band energy En (k=0) and the wave 
function 

un,k=0, expand the each un,k≠0 in terms of summation of un,k=0 for all        
the basis bands, and treat the remaining bands perturbatively if 

necessary.

(4) substitute the expansion of un,k into Schrodinger equation, multiply
on the left by un’,k=0 and take integral. Rewrite the equation in matrix  
form to solve for the eigenenergy of the bands.

Summary of  k•P theory (2)



Luttinger-Kohn model



Non-degenerate two bands model Kane model – degenerate four bands model

Conduction band

Heavy hole
Light hole

Spin-orbit split-off

Only a conduction band, a heavy-hole band, a
light-hole band and a spin-orbit split-off band 
with double degeneracy are considered, all other
higher and lower bands are discarded.
Doesn’t provide the correct effective mass of 
heavy-hole band.

Two strongly interacting non-degenerate
bands are considered. Can’t be used to 
treat any particular real semiconductor.



Luttinger – kohn model

The heavy-hole, light hole and spin-orbit 
split-off bands in double degeneracy are of
interest, and called class A. All other bands

are called class B. The effects of bands in
class B on those in class A are treated as
perturbation. 



Choice of unit cell basis
� The electron wavefunctions are p-like near the top of the valance band. And the base set 
can be represented as |X ↓ >, |X ↑ >, |Y ↓ >, |Y ↑ >, and |Z ↓ >, |Z ↑ >.
� The basis functions are usually chosen to be the combinations of the above six 
functions so that they are the eigenfunctions of orbital angular momentum operators 
L² and Lz.



σσσσ is the Pauli spin matrix, a matrix that has spatial vector components

If the spin vector is represented as

Then,



Löwdin Renormalization

� The Lowdin Renormalization is a perturbative approach.

� In the Luttinger-Kohn implementation, the 3 valance bands are solved with        
the effects of the conduction band and the other bands added through corrections.

� These corrections are fitted with experimentally determined values.

Hamiltonian

Where

( For small k,                     )Or ≅



If substitute into

and take the inner product with um0, we obtain,

Instead of solving the above exact eigenfunction, we only need to solve

where ( ) ( effects of B on A )

Treated as type of perturbation

Class A consits of  two heavy-hole, two light-hole and two 
spin split-off bands. Class B contains all the bands out of A.
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Expand a from group B recursively into
the summation of group A terms and 
group B terms

we can rewrite the Schrodinger equation as



Express of        with 1st order correction





Luttinger Parameters

Luttinger-Kohn Hamiltonian,



The parameters a, b, c, and d are given 
by

Here Ev is the energy at the top of the valence band, and is the spin-orbit splitting energy.

The matrix element can be obtained by fitting experimentally obtained hole masses.
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