Physics of strained band structure of semiconductors

> By Carolyn Zhao Study Group Meeting August 1st

Outline

- 1. Pikus-Bir Hamiltonian for bulk semiconductors
- 2. Band structure of strained QWs
- 3. Strained QW lasers:
 - 1) Compressive strain and tensile strain
 - 2) Advantage of strained QW lasers
 - 3) Critical thickness

1. Pikus-Bir Hamiltonian (1)

Luttinger-Kohn Hamiltonian w/o strain

$$H = \begin{bmatrix} P+Q & -S & R & 0 & -\frac{1}{\sqrt{2}}S & \sqrt{2}S \\ -S^* & P-Q & 0 & R & -\sqrt{2}Q & \sqrt{\frac{3}{2}}S \\ R^* & 0 & P-Q & S & \sqrt{\frac{3}{2}}S^* & -\frac{1}{\sqrt{2}}S^* \\ 0 & R^* & S^* & P+Q & -\sqrt{2}R^* & -\frac{1}{\sqrt{2}}S^* \\ -\frac{1}{\sqrt{2}}S^* & \sqrt{2}Q & \sqrt{\frac{3}{2}}S & \sqrt{2}R & P+\Delta & 0 \\ \sqrt{2}S^* & \sqrt{\frac{3}{2}}S^* & -\sqrt{2}Q & -\frac{1}{\sqrt{2}}S & 0 & P+\Delta \end{bmatrix} \begin{vmatrix} \frac{3}{2}, \frac{3}{2} \\ \frac{3}{2}, \frac{3}{2} \\ \frac{3}{2}, \frac{3}{2} \\ R = \left(\frac{\hbar^2}{2m_0}\right)\gamma_2(k_x^2 + k_y^2 - 2k_z^2) \\ R = \left(\frac{\hbar^2}{2m_0}\right)\sqrt{3}[-\gamma_2(k_x^2 - k_y^2) + 2i\gamma_3k_xk_y] \\ \frac{1}{2}, \frac{1}{2} \\ \frac{1}{2}, \frac{1}{2} \\ \sqrt{2}S^* & \sqrt{\frac{3}{2}}S^* & -\sqrt{2}Q & -\frac{1}{\sqrt{2}}S & 0 & P+\Delta \end{bmatrix} \begin{vmatrix} \frac{1}{2}, \frac{1}{2} \\ \frac{1}{2}, -\frac{1}{2} \\ \frac{$$

1. Pikus-Bir Hamiltonian (2)

 Derivation of Pikus-Bir Hamiltonian using the transform of coordinates methods:

(a) Unstrained lattice

 $\vec{x}' = (1 + \varepsilon_{xx})\vec{x} + \varepsilon_{xy}\vec{y} + \varepsilon_{xz}\vec{z}$ $\vec{y}' = \varepsilon_{yx}\vec{x} + (1 + \varepsilon_{yy})\vec{y} + \varepsilon_{yz}\vec{z}$ $\vec{z}' = \varepsilon_{zx}\vec{x} + \varepsilon_{zy}\vec{y} + (1 + \varepsilon_{zz})\vec{z}$ $\vec{r}' = x'\vec{x} + y'\vec{y} + z'\vec{z}$

1. Pikus-Bir Hamiltonian (3)

$$H = \begin{bmatrix} P+Q & -S & R & 0 & -\frac{1}{\sqrt{2}}S & \sqrt{2}S \\ -S^* & P-Q & 0 & R & -\sqrt{2}Q & \sqrt{\frac{3}{2}S} \\ R^* & 0 & P-Q & S & \sqrt{\frac{3}{2}S^*} & -\frac{1}{\sqrt{2}}S^* \\ 0 & R^* & S^* & P+Q & -\sqrt{2}R^* & -\frac{1}{\sqrt{2}}S^* \\ -\frac{1}{\sqrt{2}}S^* & \sqrt{2}Q & \sqrt{\frac{3}{2}S} & \sqrt{2}R & P+\Delta & 0 \\ \sqrt{2}S^* & \sqrt{\frac{3}{2}S^*} & -\sqrt{2}Q & -\frac{1}{\sqrt{2}}S & 0 & P+\Delta \end{bmatrix} \begin{bmatrix} \frac{1}{2}, \frac{1}{2} \\ \frac{3}{2}, -\frac{1}{2} \\ \frac{3}{2}, -\frac{3}{2} \\ \frac{1}{2}, -\frac{1}{2} \\ \frac{1}{2}, -\frac{1}{2} \\ \frac{3}{2}, -\frac{3}{2} \\ \frac{1}{2}, -\frac{1}{2} \\ R_k = \left(\frac{\hbar^2}{2m_0}\right) \sqrt{3} [-\gamma_2(k_x^2 - k_y^2) + 2i\gamma_3 k_x k_y] \\ \frac{1}{2}, -\frac{1}{2} \\ \frac{3}{2}, -\frac{3}{2} \\ \frac{1}{2}, -\frac{1}{2} \\ \frac{1}{2}, -\frac{1}{2} \\ R_k = \left(\frac{\hbar^2}{2m_0}\right) \sqrt{3} [-\gamma_2(k_x^2 - k_y^2) + 2i\gamma_3 k_x k_y] \\ \frac{1}{2}, -\frac{1}{2} \\ \frac{1}{2}, -\frac{1}{2} \\ R_k = \left(\frac{\hbar^2}{2m_0}\right) 2\sqrt{3} \gamma_3(k_x^2 - ik_y^2) + 2i\gamma_3 k_x k_y] \\ \frac{1}{2}, -\frac{1}{2} \\ R_k = R_k + R_k \\ R = R_k + R_k \\ S = S_k + S_k \\ R = R_k + R_k \\ S = S_k + S_k \\ S_k = \left(\frac{5}{2}(\epsilon_{xx} + \epsilon_{yy} - 2\epsilon_{zz})\right) \\ R_k = \left(\frac{5}{2}(\epsilon_{xx} - \epsilon_{yy}) - id\epsilon_{xy} \\ S_k = d(\epsilon_{xz} - i\epsilon_{yz}) \\ R_k = \left(\frac{5}{2}(\epsilon_{xx} - \epsilon_{yy}) - id\epsilon_{xy} \\ S_k = d(\epsilon_{xz} - i\epsilon_{yz}) \\ R_k = \left(\frac{5}{2}(\epsilon_{xx} - \epsilon_{yy}) - id\epsilon_{xy} \\ R_k = \left(\frac{5}{2}(\epsilon_{xx} - \epsilon_{yy}) - id\epsilon_{xy} \\ R_k = \left(\frac{5}{2}(\epsilon_{xy} - \epsilon_{yy}) - id\epsilon_{xy} \\ R_k$$

1. Pikus-Bir Hamiltonian (4)

 For simplifying purpose, we treat the special case for biaxial strain:

$$\varepsilon_{xx} = \varepsilon_{yy} \neq \varepsilon_{zz},$$

$$\varepsilon_{xy} = \varepsilon_{yz} = \varepsilon_{zx} = 0$$

$$R_{\varepsilon} = S_{\varepsilon} = 0$$
where
$$\varepsilon_{xx} = \varepsilon_{yy} = \frac{a_0 - a}{c_0}, \quad \varepsilon_{zz} = -\frac{2C_{12}}{c_0}\varepsilon_{xx}$$

where
$$\mathcal{E}_{xx} = \mathcal{E}_{yy} = \frac{\alpha_0 - \alpha_1}{a}, \mathcal{E}_{zz} = -\frac{\alpha_{12}}{C_{11}} \mathcal{E}_{x}$$

 C_{11} and C_{12} are elastic stiffness constants

1. Pikus-Bir Hamiltonian (5)

Derivation of ε_{zz} by the linear relationship of stress vs strain :

1. Pikus-Bir Hamiltonian (6)

- Band structures w/o the spin-orbit split-off band coupling:
 - Set the reference level E=0 at the bulk valence band edge:

1. Pikus-Bir Hamiltonian (7)

 From the PB Hamiltonian, we know when k=0, P=Pε, Q=Qε, R=Rε

$$\begin{split} E_{HH}(k=0) &= -(P_{\varepsilon} + Q_{\varepsilon}) = a_{v}(\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}) + \frac{b}{2}(\varepsilon_{xx} + \varepsilon_{yy} - 2\varepsilon_{zz}) \\ E_{LH}(k=0) &= -(P_{\varepsilon} - Q_{\varepsilon}) = a_{v}(\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}) - \frac{b}{2}(\varepsilon_{xx} + \varepsilon_{yy} - 2\varepsilon_{zz}) \\ E_{C}(k=0) &= Eg + a_{c}(\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}) \\ where: \end{split}$$

$$a_{c} = \frac{\hbar}{2m_{e}^{*}}, a_{v} = -\frac{\hbar\gamma_{1}}{2m_{0}}, b = -\frac{\hbar\gamma_{2}}{m_{0}}$$

1. Pikus-Bir Hamiltonian (8)

Set $a = a_c - a_v$, which is the hydrostatic deformation potential, $E_{C-HH}(k=0) = Eg + a(\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}) - \frac{b}{2}(\varepsilon_{xx} + \varepsilon_{yy} - 2\varepsilon_{zz})$ $E_{C-LH}(k=0) = Eg + a(\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}) + \frac{b}{2}(\varepsilon_{xx} + \varepsilon_{yy} - 2\varepsilon_{zz})$ Let's define: $\delta E_{hy} = -a(\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}), and$ $\frac{1}{2}\delta E_{sh} = Q_{\varepsilon} - \frac{b}{2}(\varepsilon_{xx} + \varepsilon_{yy} - 2\varepsilon_{zz})$

So we have: $E_{C-HH} (k = 0) = Eg - \delta E_{hy} + \frac{1}{2} \delta E_{sh}$ $E_{C-LH} (k = 0) = Eg - \delta E_{hy} - \frac{1}{2} \delta E_{sh}$

1. Pikus-Bir Hamiltonian (9)

For $k \neq 0$, we have general equations: $\det[H_{ij}(k) - \delta_{ij}E] = 0$

$$E_{HH}(k) = -P_{\varepsilon} - P_{k} - \operatorname{sgn}(Q_{\varepsilon})\sqrt{(Q_{\varepsilon} + Q_{k})^{2} + |R_{k}|^{2} + |S_{k}|^{2}}$$
$$E_{LH}(k) = -P_{\varepsilon} - P_{k} + \operatorname{sgn}(Q_{\varepsilon})\sqrt{(Q_{\varepsilon} + Q_{k})^{2} + |R_{k}|^{2} + |S_{k}|^{2}}$$

For biaxial compression: For biaxial tension:

$$\Rightarrow Q_{\varepsilon} < 0 \Rightarrow \operatorname{sgn}(Q_{\varepsilon}) = -1$$
$$\Rightarrow Q_{\varepsilon} > 0 \Rightarrow \operatorname{sgn}(Q_{\varepsilon}) = +1$$

1. Pikus-Bir Hamiltonian (10)

By approximation for small-expansion: $E_{HH}(k) = -P_{\varepsilon} - Q_{\varepsilon} - \left(\frac{\hbar^{2}}{2m_{0}}\right) [(\gamma_{1} + \gamma_{2})(k_{x}^{2} + k_{y}^{2}) + (\gamma_{1} - 2\gamma_{2})k_{z}^{2}]$ $E_{LH}(k) = -P_{\varepsilon} + Q_{\varepsilon} - \left(\frac{\hbar^{2}}{2m_{0}}\right) [(\gamma_{1} - \gamma_{2})(k_{x}^{2} + k_{y}^{2}) + (\gamma_{1} - 2\gamma_{2})k_{z}^{2}]$

$$\frac{m_{hh}^{z}}{m_{0}} = \frac{1}{\gamma_{1} - 2\gamma_{2}}, \frac{m_{hh}^{t}}{m_{0}} = \frac{1}{\gamma_{1} + \gamma_{2}}$$
$$\frac{m_{lh}^{z}}{m_{0}} = \frac{1}{\gamma_{1} + 2\gamma_{2}}, \frac{m_{lh}^{t}}{m_{0}} = \frac{1}{\gamma_{1} - \gamma_{2}}$$

1. Pikus-Bir Hamiltonian (11)

- This Hamiltonian also introduces the Luttinger parameters, γ1, γ2, and γ3. They can be derived from matrix elements between various bands,
- But in practice are experimentally measured parameters
- Experimental parameters improves the accuracy corrections to these parameters through experimentally automatically accounts for any effects from other bands that are not in the theory.

2. Strained band structure for QW (1)

2. Strained band structure for QW (2)

The Hamiltonian:

w/o strain

w/ strain

3. Strained QW lasers (1)

(1) Compressive strain and tensile strain

- Compressive strain: hh is above II
- Tensile strain: Il is above hh

- Compressive strained laser: TE polarization
- above Tensile strain: TM polarization

3. Strained QW lasers (2)

(2) Advantage of strained QW lasers

- Lower Ith
- Better temperature performance
- Improved lifetime
- Higher speed

3. Strained QW lasers (3)

(3) Critical thickness:

- Lattice mismatch < 10%, otherwise, dislocation problem becomes serious and strain relaxes.
- Different materials have different critical thickness

Conclusion

- Since 1980s, as strained epitaxy has become reliable, strained semiconductor structures have been more intensively studied theoretically and have more and more applications in:
 - Semiconductor lasers
 - Microwave devices
 - o Detectors

and this trend will continue.

Reference

- Jasprit Singh, "Physics of semiconductors and their heterostructures", MaGraw-Hill, Inc., 1993, chapter 4, 5.
- Shun Lien Chuang, "Physics of optoelectronics devices", John Wiley & Sons, Inc., 1995, chapter 7.