Appendix C GAIN Examples 1

C.1. Material system #1: AlGaAs/ AlGaAs 1

C.1.1. Calculation of material compositions and energy band edges. 1

C.1.2. Energy level calculations 3

C.1.3. Computation of Gain and Laser Characteristics 10

C.2 Material system #2: InGaAs/InGaAlAs/InP_ 16

C.2.1. Calculation of material compositions and energy band edges. 16

C.2.2. Energy level calculations 18

C.2.3 Computation of Gain and Laser Characteristics 23

C.3. Material system #3: InGaAs/InGaAsP/InP_ 31

C.3.1. Calculation of material compositions and energy band edges. 31

C.3.2. Energy level calculations 33

C.3.3. Computation of Gain and Laser Characteristics 40

C.4. Material system #4: InGaAlAs/InGaAlAs/InP_ 43

C.4.1. Calculation of material compositions and energy band edges. 43

C.4.2. Energy level calculations 49

C.4.3. Simulations of Gain and Laser properties 55

C.5. Material system #5: GaInP/AlzGawIn1-z-wP/Al0.5In0.5P_ 56

C.5.1. Calculation of material compositions and energy band edges. 56

C.5.2. Energy level calculations 63

C.5.3. Computation of Gain and Laser Characteristics 69

C.6. Material system #6: InGaAs/AlGaAs/AlGaAs 75

C.6.1. Calculation of material compositions and energy band edges. 75

C.6.2. Energy level calculations 89

C.6.3. Computation of Gain and Laser Characteristics 96

C.8. Material system #8: AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs 89

C.8.1. Calculation of material compositions and energy band edges. 89

C.8.2. Energy level calculations 104

C.8.3. Computation of Gain and Laser Characteristics 111

C.9. Material system # 9: InGaAs/AlGaInAs/AlGaInAs  (substrate InP) 103

C.9.1. Calculation of material compositions and energy band edges. 103

C.9.2. Energy level calculations 119

C.9.3. Computation of Gain and Laser Characteristics 110

C.12. Material system #12: In(y)Ga(1-y)As(x)N(1-x)/GaAs (dilute N) 134

C.12.1. Calculation of material compositions and energy band edges. 134

C.12.2. Energy level calculations 136

C.12.3. Computation of Gain and Laser Characteristics 143

C.13. Material system #13: In(1-x)Ga(x)As(y)P(1-y)/GaAs 149

C.13.1. Calculation of material compositions and energy band edges. 149

C.13.2. Energy level calculations 152

C.13.3. Computation of Gain and Laser Characteristics 159


Appendix C GAIN Examples

 

In this appendix, the use of the GAIN program is demonstrated for ten material systems.  Each section below contains an example of how GAIN is used with one of these material systems.

 

C.1. Material system #1: AlGaAs/ AlGaAs

 

This is a simulation of a five-layer laser structure that contains a single quantum well (QW), two separated confinement heterostructure (SCH) layers, and two cladding layers as shown in Fig. C.1.1.

 

Figure C.1.1. Energy band diagram for the simple quantum well structure

 

C.1.1. Calculation of material compositions and energy band edges.

 

The first step of the GAIN program is to calculate the material compositions and energy band edges of the each layer. The user is asked to enter the photoluminescence wavelength, thickness, and strain of the QW, SCH, and cladding layers. After these parameters are input, the GAIN program generates two output files: cbandeg.dat and vbandeg.dat, containing the material compositions, and the conduction band edges and valence band edges respectively. The detailed explanation is provided in Chapter 2 of this manual.

 

a) The input parameters to the GAIN program in this step islisted in Table. C.4.1.

 

Table C.4.1. Input parameters to the GAIN program in this step.

Layer

l (um)

Strain

Thickness (Ǻ)

QW (AlxGa1-xAs)

0.87

------

50

SCH (AlxGa1-xAs)

0.74

------

60

Cladding (AlxGa1-xAs)

0.58

 

100

 

b) The steps in using the GAIN program to calculate the material compositions and energy band edges are listed in Table C.1.2

 

Table C.1.2. steps to run the GAIN program for necessary parameters.

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

1

 

 ENTER 1 FOR AlGaAs/AlGaAs

       2 FOR InGaAsP/InGaAsP/InP

       3 FOR InGaAs/InGaAsP/InP

       4 FOR InGaAlAs/InGaAlAs/InP

       5 FOR GaInP/(AlGa)0.5In0.5P/AlInP

       6 FOR InGaAs/AlGaAs/AlGaAs

       7 FOR InGaAs/InGaAsP/Ga0.51In0.49P(MATCHED GaAs)

       8 FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

       9 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/InP

      10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(matched InP)

      11 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/AlAsxSb1-x

      12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs (dilute N)

      13 FOR In(1-x)Ga(x)As(y)P(1-y)/GaAs

      14 FOR EXIT, BACK TO MAIN PAGE!

1

 INPUT THE LAYER # FOR GRIN STRUCTURE(STEP)

 STEP N=

2

  INPUT THE WELL WAVELENGTH (um)

0.87

  INPUT THE BARRIER WAVELENGTH (um)

0.74

  INPUT THE CLADDING WAVELENGTH (um)

0.58

  BANDGAP ENERGY OF QUANTUM WELL=   1.42528735632184       eV

  INPUT CLADDING, BARRIER,QUANTUM WELL WIDTH (A)

100 60 50

 

  WRITE CONDUCTION BAND PARAMETERS INTO CBANDEG.DAT

 

  WRITE VALENCE BAND PARAMETERS INTO VBANDEG.DAT

  INPUT 1 FOR NEW CALCULATION

        2 FOR EXIT

  INPUT =?

2

 

 ENTER 1 FOR AlGaAs/AlGaAs

       2 FOR InGaAsP/InGaAsP/InP

       3 FOR InGaAs/InGaAsP/InP

       4 FOR InGaAlAs/InGaAlAs/InP

       5 FOR GaInP/(AlGa)0.5In0.5P/AlInP

       6 FOR InGaAs/AlGaAs/AlGaAs

       7 FOR InGaAs/InGaAsP/Ga0.51In0.49P(MATCHED GaAs)

       8 FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

       9 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/InP

      10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(matched InP)

      11 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/AlAsxSb1-x

      12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs (dilute N)

      13 FOR In(1-x)Ga(x)As(y)P(1-y)/GaAs

      14 FOR EXIT, BACK TO MAIN PAGE!

14

  THIS PROGRAM STOP HERE!, BACK TO MAIN PAGE

 

c) The output files, cbandeg.dat and vbandeg.dat are explained in Table C.1.3.

           

                Table C.1.3. Material compositions and band offsets:

 

a) cbandeg.dat for conduction band

************************************************************************

  QW strain    lattice constant

0.000000E+00  0.565311E-09

                                          material compositions

  layer thickness,                Al                                     conduction band edges

   0.10000000E+03   0.56115438E+00     0.0000000     0.4632184        cladding layer

   0.60000000E+02   0.20182492E+00     0.0000000     0.1627524        SCH layer

   0.50000000E+02   0.10323627E-02      0.0000000     0.0000000        quantum well

   0.60000000E+02   0.20182492E+00     0.0000000     0.1627524        SCH layer

   0.10000000E+03   0.56115438E+00     0.0000000     0.4632184        cladding layer

************************************************************************

 

b) vbandeg.dat for valence band

**************************************************** ********************

  QW strain    lattice constant

0.000000E+00  0.565311E-09

                                          material compositions

  layer thickness,                Al                                   valence band edges

   0.10000000E+03   0.56115438E+00     0.0000000    -0.2494253       cladding layer

   0.60000000E+02   0.20182492E+00     0.0000000    -0.0876359       SCH layer

   0.50000000E+02   0.10323627E-02      0.0000000     0.0000000       quantum well

   0.60000000E+02   0.20182492E+00     0.0000000    -0.0876359       SCH layer

   0.10000000E+03   0.56115438E+00     0.0000000    -0.2494253       cladding layer

************************************************************************

 

C.1.2. Energy level calculations

 

After the calculation of the material compositions and energy band edges, the GAIN program calculates energy levels in the conduction band and valence bands. The detailed explanations are discussed in Chapter 3 of this manual.

 

a) The steps of how to calculate the energy levels are shown in Table C.1.4.

 

Table C.4.4. Steps to calculate the energy levels

 

i) Steps to calculate the conduction band energy levels

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

2

  INPUT THE NUMBER OF QUANTUM WELLS NUM=?

1

  INPUT TOTAL LAYERS FOR STRUCTURE--N ODD

  INPUT N=

5

  INPUT THE LOWEST POTENTIAL LAYER(1st Q-WELL) IC= ?

3

  INPUT THE SELECTED CENTER LAYER OF STRUCTURE ICR=

3

 *******************************************************

   INPUT I=1  FOR AlGaAs

         I=2  FOR InGaAsP

         I=3  FOR In1-xGaxAs/InGaAsP/InP

         I=4  FOR InGaAlAs/InGaAlAs

         I=5  FOR GaInP/(AlGa)0.5In0.5P/AlInP

         I=6  FOR InGaAs/AlGaAs/AlGaAs

         I=7  FOR InGaAs/InGaAsP/Ga0.51In0.49P(GaAs)

         I=8  FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

         I=9  FOR InzGa1-zAs/AlxGayIn1-x-yAs/InP

         I=10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(InP)

         I=11 FOR InzGa1-zAs/AlxGayIn1-x-yAs/AlAsxSb1-x

         I=12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs

         I=13 FOR InGaAs/In(1-y)Ga(x)As(y)P(1-y)/GaAs

   INPUT I= ?

 *******************************************************

1

ENERGY EIGENVALUE===>  0.639537366786E-01 ERROR= .4682221E-14

ENERGY EIGENVALUE===>  0.192116584232E+00 ERROR= .4043667E-14

ENERGY EIGENVALUE===>  0.241763368724E+00 ERROR= .2926458E-14

ENERGY EIGENVALUE===>  0.310657613785E+00 ERROR= .2317973E-14

ENERGY EIGENVALUE===>  0.426765405664E+00 ERROR= .1485678E-14

 

  FOR CHECKING THE Schrodinger WAVE FUNCTION INPUT I==> 1

  SKIP INPUT I==> 2

  I=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

0.639537366786E-01

  INPUT THE NAME OF OUTPUT FILE

cb1.txt

 CONFINEMENT FACTOR OF    1 th LAYER = 0.82988859E-04

 CONFINEMENT FACTOR OF    2 th LAYER = 0.95857126E-01

 CONFINEMENT FACTOR OF    3 th LAYER = 0.80811977E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.95857126E-01

 CONFINEMENT FACTOR OF    5 th LAYER = 0.82988859E-04

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

0.192116584232E+00

  INPUT THE NAME OF OUTPUT FILE

cb2.txt

 CONFINEMENT FACTOR OF    1 th LAYER = 0.66304726E-02

 CONFINEMENT FACTOR OF    2 th LAYER = 0.39546197E+00

 CONFINEMENT FACTOR OF    3 th LAYER = 0.19581511E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.39546197E+00

 CONFINEMENT FACTOR OF    5 th LAYER = 0.66304726E-02

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

2

 

ii) Steps to calculate the heavy hole energy levels

 ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

3

  INPUT THE NUMBER OF QUANTUM WELLS NUM=?

1

  INPUT TOTAL LAYERS FOR STRUCTURE--N ODD

  INPUT N=

5

  INPUT THE HIGHEST POTENTIAL(1st Q-WELL) LAYER IC= ?

3

  INPUT THE SELECTED CENTER OF THE STRUCTURE ICR=?

3

 *******************************************************

   INPUT I=1  FOR AlGaAs

         I=2  FOR InGaAsP

         I=3  FOR In(1-x)Ga(x)As/InGaAsP/InP

         I=4  FOR InGaAlAs/InGaAlAs

         I=5  FOR GaInP/(AlGa)0.5In0.5P/AlInP

         I=6  FOR InGaAs/AlGaAs/AlGaAs

         I=7  FOR InGaAs/InGaAsP/Ga0.51In0.49P(GaAs)

         I=8  FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

         I=9  FOR In(z)Ga(1-z)As/AlxGayIn1-x-yAs/InP

         I=10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(InP)

         I=11 FOR InzGa1-zAs/AlxGayIn1-x-yAs/AlAsxSb1-x

         I=12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs

         I=13 FOR InGaAs/In(1-x)Ga(x)As(y)P(1-y)/GaAs

   INPUT I= ?

 *******************************************************

1

 *******************************************************

 

  DOES THE STRUCTURE STRAIN OR STRAIN-COMPENSATED?

  IF STRAIN ONLY INPUT 1, STRAIN-COMPENSATED INPUT 2

  INPUT SELECT = ?

 

1

  ENERGY EIGENVALUE===> -0.238975151109E+00 ERROR= .3120685E-14

  ENERGY EIGENVALUE===> -0.197312089899E+00 ERROR= .4405413E-14

  ENERGY EIGENVALUE===> -0.166878855802E+00 ERROR= .2808856E-14

  ENERGY EIGENVALUE===> -0.139814196248E+00 ERROR= .4012646E-14

  ENERGY EIGENVALUE===> -0.111477421547E+00 ERROR= .3853459E-14

  ENERGY EIGENVALUE===> -0.102378800292E+00 ERROR= .1062527E-14

  ENERGY EIGENVALUE===> -0.681164844294E-01 ERROR= .2446502E-14

  ENERGY EIGENVALUE===> -0.188139816633E-01 ERROR= .1912450E-14

 

  FOR CHECKING THE Schrodinger WAVE FUNCTION INPUT I==> 1

  SKIP INPUT I==> 2

  I=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.188139816633E-01

  INPUT THE NAME OF OUTPUT FILE

hh1.txt

 CONFINEMENT FACTOR OF    1 th LAYER = 0.38718131E-06

 CONFINEMENT FACTOR OF    2 th LAYER = 0.35292976E-01

 CONFINEMENT FACTOR OF    3 th LAYER = 0.92941327E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.35292976E-01

 CONFINEMENT FACTOR OF    5 th LAYER = 0.38718131E-06

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.681164844294E-01

  INPUT THE NAME OF OUTPUT FILE

hh2.txt

 CONFINEMENT FACTOR OF    1 th LAYER = 0.68925350E-04

 CONFINEMENT FACTOR OF    2 th LAYER = 0.18086577E+00

 CONFINEMENT FACTOR OF    3 th LAYER = 0.63813061E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.18086577E+00

 CONFINEMENT FACTOR OF    5 th LAYER = 0.68925350E-04

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

2

 

iii) Steps to calculate the light hole energy levels

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

4

  INPUT THE NUMBER OF QUANTUM WELLS NUM=?

1

  INPUT TOTAL LAYERS FOR STRUCTURE--N ODD

  INPUT N=

5

  INPUT THE HIGHEST POTENTIAL(1st Q-WELL) LAYER IC= ?

3

  INPUT THE SELECTED CENTER OF THE STRUCTURE ICR=?

3

 *******************************************************

   INPUT I=1  FOR AlGaAs

         I=2  FOR InGaAsP

         I=3  FOR In(1-x)Ga(x)As/InGaAsP/InP

         I=4  FOR InGaAlAs/InGaAlAs

         I=5  FOR GaInP/(AlGa)0.5In0.5P/AlInP

         I=6  FOR InGaAs/AlGaAs/AlGaAs

         I=7  FOR InGaAs/InGaAsP/Ga0.51In0.49P(GaAs)

         I=8  FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

         I=9  FOR In(z)Ga(1-z)As/AlxGayIn1-x-yAs/InP

         I=10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(InP)

         I=11 FOR InzGa1-zAs/AlxGayIn1-x-yAs/AlAsxSb1-x

         I=12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs

         I=13 FOR InGaAs/In(1-x)Ga(x)As(y)P(1-y)/GaAs

   INPUT I= ?

 *******************************************************

1

 *******************************************************

 

  DOES THE STRUCTURE STRAIN OR STRAIN-COMPENSATED?

  IF STRAIN ONLY INPUT 1, STRAIN-COMPENSATED INPUT 2

  INPUT SELECT = ?

 

1

  ENERGY EIGENVALUE===> -0.205954300457E+00 ERROR= .3173697E-14

  ENERGY EIGENVALUE===> -0.149979763519E+00 ERROR= .2832057E-14

  ENERGY EIGENVALUE===> -0.114996860133E+00 ERROR= .2360129E-14

  ENERGY EIGENVALUE===> -0.415229761969E-01 ERROR= .2788797E-14

 

  FOR CHECKING THE Schrodinger WAVE FUNCTION INPUT I==> 1

  SKIP INPUT I==> 2

  I=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.415229761969E-01

  INPUT THE NAME OF OUTPUT FILE

lh1.txt

 CONFINEMENT FACTOR OF    1 th LAYER = 0.38818584E-03

 CONFINEMENT FACTOR OF    2 th LAYER = 0.12463156E+00

 CONFINEMENT FACTOR OF    3 th LAYER = 0.74996051E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.12463156E+00

 CONFINEMENT FACTOR OF    5 th LAYER = 0.38818584E-03

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.114996860133E+00

  INPUT THE NAME OF OUTPUT FILE

lh2.txt

 CONFINEMENT FACTOR OF    1 th LAYER = 0.13841264E-01

 CONFINEMENT FACTOR OF    2 th LAYER = 0.41302518E+00

 CONFINEMENT FACTOR OF    3 th LAYER = 0.14626712E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.41302518E+00

 CONFINEMENT FACTOR OF    5 th LAYER = 0.13841264E-01

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

2

 

b) The main output file from this part of GAIN program is energy.dat, containing all the energy levels as shown in Table C.1.5. After the energy eigen values are calculated, the GAIN program asks the user whether he would like to check the wave envelope function or not. We suggest that the user check the wave envelope functions of the first and second energy levels for conduction and valence bands. The plots of the envelope functions are shown in Fig. C.1.2, Fig. C.1.3, Fig C.1.4. 

 

Table C.1.5. output file energy.dat

  CONDUCTION BAND ENERGY===>  0.639537366786E-01 ERROR= .4682221E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.192116584232E+00 ERROR= .4043667E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.241763368724E+00 ERROR= .2926458E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.310657613785E+00 ERROR= .2317973E-14

                                                    

  CONDUCTION BAND ENERGY===>  0.426765405664E+00 ERROR= .1485678E-14

                                                   

  HEAVY HOLE ENERGY===> -0.238975151109E+00 ERROR= .3120685E-14

                                                    

  HEAVY HOLE ENERGY===> -0.197312089899E+00 ERROR= .4405413E-14

                                                   

  HEAVY HOLE ENERGY===> -0.166878855802E+00 ERROR= .2808856E-14

                                                    

  HEAVY HOLE ENERGY===> -0.139814196248E+00 ERROR= .4012646E-14

                                                   

  HEAVY HOLE ENERGY===> -0.111477421547E+00 ERROR= .3853459E-14

                                                   

  HEAVY HOLE ENERGY===> -0.102378800292E+00 ERROR= .1062527E-14

                                                   

  HEAVY HOLE ENERGY===> -0.681164844294E-01 ERROR= .2446502E-14

                                                   

  HEAVY HOLE ENERGY===> -0.188139816633E-01 ERROR= .1912450E-14

                                                   

  LIGHT HOLE ENERGY===> -0.205954300457E+00 ERROR= .3173697E-14

                                                   

  LIGHT HOLE ENERGY===> -0.149979763519E+00 ERROR= .2832057E-14

                                                   

  LIGHT HOLE ENERGY===> -0.114996860133E+00 ERROR= .2360129E-14

                                                   

  LIGHT HOLE ENERGY===> -0.415229761969E-01 ERROR= .2788797E-14

                                                    

 

Fig. C.1.2. Wave envelop functions for energy levels in conduction band

Fig. C.1.3. Wave envelop functions for heavy hole energy levels

 

Fig. C.1.4. Wave envelop functions for light hole energy levels


 

C.1.3. Computation of Gain and Laser Characteristics

 

This is the last step of simulations using the GAIN program. With the previous calculated material composition, energy band edges, energy levels, and other parameters like material loss and Auger coefficient, the GAIN program can simulate the threshold current, threshold current density, slope efficiency, optical gain and mode gain as functions of wavelengths and photo energies, and L-I curve. The details are explained in Chapter 4 of the manual.

 

In this part of GAIN program, the input file needs to be constructed with the results of the previous steps and according to the laser design. In this example, single quantum well structure is used to simulate a three-QW laser. For the two-quantum-well laser with a ridge length of 750 µm and ridge width of 3 µm, the input file is shown in Table C.1.6. The detailed steps of simulations are listed in Table C.1.7. The main output files: L-I curve, optical gain as a function of the wavelength, and mode gain vs. current density are plotted in Fig. C.1.5, Fig. C.1.6, and Fig. C.1.7.

 

a) The input file:

 

Table C.1.6. Input file for gain and threshold current calculation

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c     1. Input the compositions, width of well, effective index        c

c        and lasing wavelength.                                        c

c     Ex: xx,xz,qy,xy,lx,n,lam                                         c

c     for different materials the following are the forms of inputs.   c

c                                                                      c

c     w -- > well, b -- > barrier  cxz and cxy for cladding.           c

c                                                                      c

c     a.  AlxGa1-xAs : xx (Al w) xz (Al b) qy (0) xy (0)               c

c     b.  In1-xGaxAsyP1-y : xx (Ga w) xz (Ga b) qy (As w) xy (As b)    c

c     c.  In1-xGaxAs/InGaAsP : xx (Ga w) xz (Ga b) qy (0) xy (As b)    c

c     d.  AlxGayIn1-x-yAs/InP : xx (Ga w) xz (Ga b) qy (Al w) xy (Al b)c

c     e.                                                               c

c     f.  InxGa1-xAs/AlGaAs : xx (In w) xz (0) qy (0) xy (Al b)        c

c     g.                                                               c

c     h.  AlyInxGa1-x-yAs/AlGaAs : xx (Al w) xz (al b) qy (In w) xz (0)c

c     i.  In1-xGaxAs/AlGaInAs : xx (In w) xz (0) qy (Al b) xy (Ga b)   c

c     j.  In(y)Ga(1-y)As(x)N(1-x) :xx(As w),xz(As, b),qy(In w),xy(In b)c

c     k.  InGaAs/InGaAsP/GaAs: xx (In w), (0), xz(Ga w) xy (As b)

c     2. Input the energy gap,temperature, barrier band edges(both bands)

c     Ex: eg,temp,ec,ev                                                c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

0.10323627E-02 0.20182492E+00  0  0  6.0  3.50  0.82

1.42528735632184 298 0.1627524 0.0876359

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c     3. Input the ist level sub-band energy levels.                   c

c     Ex: ec1,eh1,el1                                                  c

c                                                                      c

c     4. Input the material loss, reflectivities, number of quantum    c

c        wells and beta(for spontaneous emission).                     c

c     Ex: alpha,r1,r2,mm,beta.                                         c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

0.639537366786E-01  0.188139816633E-01  0.415229761969E-01  1  0.681164844294E-01  1

12.0d0  0.30   0.30   1  5.D-5

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c     5. Input the cavity length, ridge width, internal efficiency     c

c        Auger, strain(except AlGaAs,put 0) and confinement factor.    c

c     Ex: cl,cw,etha,ca,es,confine                                     c

c                                                                      c

c     6. Input the cladding composition and band edges.                c

c     Ex: cxz,cxy,ecc,evv                                              c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

750.D-4  3D-4  0.96  1.00d-29   0.01  0.009834488

0.56115438E+00 0.0  0.4632184  0.2494253

 

b) The steps for these calculations mentioned are listed in Table C.1.7

 

Table C.1.7. The steps for the gain and threshold current density calculations

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

5

  THE INPUT FILE NAME=

in1_sys1_new.tex

  SELECT MATERIAL=?

  1--AlGaAs

  2--InGaAsP

  3--In1-zGazAs/InGaAsP/InP

  4-- InGaAlAs

  5--GaInP/AlzGawIn1-z-wP/Al0.5In0.5P

  6-- InxGa1-xAs/AlxGa1-xAs/AlGaAs

  7--In1-xGaxAs/InGaAsP/GaxIn1-xP(X=0.51) MATCHED TO GaAs

  8--AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

  9--InzGa1-zAs/AlxGayIn1-x-yAs/InP

  10-- InGaAlAs/InGaAlAs/AlAsSb

  11--InzGa1-zAs/AlxGayIn1-x-yAs/AlAsSb

  12--In(y)Ga(1-y)As(x)N(1-x)/GaAs

  13--InGaAs/In(1-x)Ga(x)As(y)P(1-y)/GaAs

  INPUT SELECTION

1

 INPUT MODE = ? FOR TE--> MODE =1, FOR TM--> MODE =2

  INPUT TE OR TM ?

1

 IF EL1 BELOW EH1 THEN SELECT 1, OTHERWISE SELECT 2

  SELECTION=?

1

  **************************************************

 CALCULATE THE EFFECTIVE MASS

  **************************************************

  FOR QUASI-FERMI LEVEL SELECT=1,

  FOR READ EXISTING QUASI-FERMI LEVEL SELECT=2

  SELECT=?

1

 

 J(LEAKAGE)=0.537974D+00 A/cm^2  N=0.239674D+19 1/cm^3

 J(LEAKAGE)=0.554846D+00 A/cm^2  N=0.241654D+19 1/cm^3

 J(LEAKAGE)=0.572232D+00 A/cm^2  N=0.243634D+19 1/cm^3

 J(LEAKAGE)=0.590147D+00 A/cm^2  N=0.245614D+19 1/cm^3

……….

J(LEAKAGE)=0.215349D+04 A/cm^2  N=0.788120D+19 1/cm^3

 J(LEAKAGE)=0.221784D+04 A/cm^2  N=0.790100D+19 1/cm^3

 J(LEAKAGE)=0.228410D+04 A/cm^2  N=0.792080D+19 1/cm^3

 J(LEAKAGE)=0.235231D+04 A/cm^2  N=0.794060D+19 1/cm^3

 J(LEAKAGE)=0.242253D+04 A/cm^2  N=0.796040D+19 1/cm^3

 J(LEAKAGE)=0.249481D+04 A/cm^2  N=0.798020D+19 1/cm^3

 J(LEAKAGE)=0.256922D+04 A/cm^2  N=0.800000D+19 1/cm^3

 **************************************************

 G(J) PARAMETERS FROM SINGLE WELL

 Go=0.218113D+02 1/cm  Jo=0.303353D+03 A/cm^2

 

 G(N) PARAMETERS FROM SINGLE WELL

 NGo=0.221783D+04 1/cm  XNo=0.136717D+19 1/cm^3

 

 Jtr=0.111597D+03 A/cm^2  NTR=0.502953D+18 1/cm^3

 

 

 THE OPTIMUM NUMBER OF QUANTUM WELL FOLLOWS THE ARTICLE

 BY McIlory et al. IEEE JQE-21 1985.

 

 THE OPTIMUM NUMBER OF QUANTUM WELL Nopt =           2

 INPUT Nopt(CAN BE DIFFERENT FROM ABOVE CALCULATION)=?

2

  NUMBER OF QUANTUM WELL(MAY OR MAY NOT BE Nopt)=?

2

 

  **************************************************

  **************************************************

  1ST CHECK USE SINGLE WELL TIMES # OF WELLS

  **************************************************

  **************************************************

  2ND CHECK FOLLOWS FORMULA BY McIlory IN IEEE

  JOURNAL OF QUANTUM ELECTRONIC QE-21 1985.

  **************************************************

  Gth=  28.0530 1/cm Nth=0.176316D+19 1/cm^3 IY=   85

  1ST CHECK Jth=   806.35405951 A/cm^2

  2ND CHECK Jth=   631.98567 A/cm^2

 

  1ST CHECK Ith=0.181430D+02 mA NUMBER OF WELLS=  2

  2ND CHECK Ith=0.142197D+02 mA

 

 **************************************************

CALCULATE THE P-I RELATION

 

NDATA=         316

 **************************************************

 CALCULATE THE SLOPE: mW/mA Y=A+BX

 CONSTANT A=  -7.3929014   SLOPE B=   0.4074803

 

 **************************************************

 INPUT POWER PO FOR THE LINEWIDTH, PO=0 FOR STOP

 INPUT PO=    mW

0

 INPUT 1 FOR THE DYNAMIC CALCULATION. 2 FOR SKIP

 INPUT =

2

  K-FACTOR= 0.35774 nS  MAXIUM FREQ.= 24.8387 GHz

 

  **************************************************

  INPUT 1 FOR CALCULATE THE GAIN(E) RELATION.

 

  INPUT 2 FOR CALCULATE THE LINEWIDTH ENHENCEMENT

  FACTOR AND PHOTON ENERGY RELATION

 

  INPUT 3 FOR EXIT THE PROGRAM

 

 THE INPUT # IS

1

 INPUT FERMILEVELS IN C-BAND, V-BAND, AND CARRIER DENSITY

0.139680787212E+00 -0.953800948086E-02 0.200075187970E+19

 CALCULATE THE CONVOLUTION GAIN(E) COEFFICIENT

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(LAMBDA)

COGLa.txt

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(LAMBDA)

CMGLa.txt

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(E)

COGEa.txt

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(E)

CMGEa.txt

  **************************************************

 INPUT 1 FOR REPEAT THE G(E) CALCULATION

 INPUT 2 FOR REPEAT THE ALPHA(E) CALCULATION

 INPUT 3 FOR EXIT

1

  **************************************************

  INPUT 1 FOR CALCULATE THE GAIN(E) RELATION.

 

  INPUT 2 FOR CALCULATE THE LINEWIDTH ENHENCEMENT

  FACTOR AND PHOTON ENERGY RELATION

 

  INPUT 3 FOR EXIT THE PROGRAM

 

 THE INPUT # IS

1

 INPUT FERMILEVELS IN C-BAND, V-BAND, AND CARRIER DENSITY

0.160216100041E+00 -0.259237429430E-02 0.251553884712E+19

 CALCULATE THE CONVOLUTION GAIN(E) COEFFICIENT

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(LAMBDA)

COGLb.txt

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(LAMBDA)

CMGLb.txt

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(E)

COGEb.txt

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(E)

CMGEb.txt

  **************************************************

 INPUT 1 FOR REPEAT THE G(E) CALCULATION

 INPUT 2 FOR REPEAT THE ALPHA(E) CALCULATION

 INPUT 3 FOR EXIT

3

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

7

 

c) The Output characteristics of designed laser from step 5 are summarized in Table C.1.7.

 

Table C.1.7 Characteristics of the designed laser

Optimized number of QWs (Nopt)

2

Number of QWs

2

Slope efficiency (%)

40.75

Jth (A/cm^2)

806.35 - 1st check, for matching threshold conditions

631.99 – 2nd check, using McIlory method

Ith (mA)

18.14  - 1st check, for matching threshold conditions

14.22  - 2nd check, using McIlory method

Peak l at operating temperature (um)

0.819 um for carrier density of 2.0E18 /cm3

0.819 um for carrier density of 2.5E18 /cm3

Peak material gain (1/cm)

3619.36/cm for carrier density of 2.0E18 /cm3

4386.09 /cm for carrier density of 2.5E18 /cm3

 


 

Fig. C.1.5. L-I curve of the laser

Fig. C.1.6. Optical gain-l curve of the laser

 

                                    

      Fig. C.1.7. Mode gain as a function of current density (J)


 

C.2 Material system #2: InGaAs/InGaAlAs/InP

 

This is a simulation of a seventeen-layer laser structure that contains four quantum wells (QW), two separated confinement heterostructure (SCH) layers, and two cladding layers as shown in Fig. C.2.1. This device is a real one for research purpose. We will see the characteristics of this device.

 

Figure C.2.2. Energy band diagram for the simple quantum well structure

 

C.2.1. Calculation of material compositions and energy band edges.

 

The first step of the GAIN program is to calculate the material compositions and energy band edges of the each layer. The user is asked to enter the photoluminescence wavelength, thickness, and strain of the QW, SCH, and cladding layers. After these parameters are input, the GAIN program generates two output files: cbandeg.dat and vbandeg.dat, containing the material compositions, and the conduction band edges and valence band edges respectively. The detailed explanation is provided in Chapter 2 of this manual.

 

a) The input parameters to the GAIN program in this step are listed in Table. C.2.1.

 

Table C.2.1. Input parameters to the GAIN program in this step.

Layer

l (um)

Strain

Thickness (Ǻ)

QW (Ga1-xInxAsyP1-y)

1.525

-0.012

60

SCH (Ga1-xInxAsyP1-y)

1.28

 

50

Cladding (Ga1-xInxAsyP1-y)

0.98

 

100

 

b) The steps in using the GAIN program to calculate the material compositions and energy band edges are listed in Table C.2.2

 

Table C.2.2. steps to run the GAIN program for necessary parameters.

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

1

 

 ENTER 1 FOR AlGaAs/AlGaAs

       2 FOR InGaAsP/InGaAsP/InP

       3 FOR InGaAs/InGaAsP/InP

       4 FOR InGaAlAs/InGaAlAs/InP

       5 FOR GaInP/(AlGa)0.5In0.5P/AlInP

       6 FOR InGaAs/AlGaAs/AlGaAs

       7 FOR InGaAs/InGaAsP/Ga0.51In0.49P(MATCHED GaAs)

       8 FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

       9 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/InP

      10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(matched InP)

      11 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/AlAsxSb1-x

      12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs (dilute N)

      13 FOR In(1-x)Ga(x)As(y)P(1-y)/GaAs

      14 FOR EXIT, BACK TO MAIN PAGE!

2

 INPUT THE LAYER # FOR GRIN STRUCTURE(STEP)

 STEP N=

2

  INPUT THE WELL WAVELENGTH (um)

1.525

  INPUT THE BARRIER WAVELENGTH (um)

1.28

  INPUT THE CLADDING WAVELENGTH (um)

98

  BANDGAP ENERGY OF QUANTUM WELL=   0.683804000019804

  INPUT CLADDING, BARRIER,QUANTUM WELL WIDTH (A)

100 50 60

 

  In1-xGaxAsyP1-y, in output read Ga first then AsIN OUTPUT READ Ga FIRST THEN As

 

FOR InGaAsP, only compress strain (~1.5%) available

INPUT EX

-0.012

 

FOR LATTICE MATCHED BARRIER SELECT --> 1

FOR STRAIN COMPENSATED SELECT -- 2

 

INPUT SELECTION===> ?

1

 

WRITE CONDUCTION BAND PARAMETERS INTO CBANDEG.DAT

 

  WRITE VALENCE BAND PARAMETERS INTO VBANDEG.DAT

  INPUT 1 FOR NEW CALCULATION, 2 FOR EXIT

  I= ?

2

 

  ENTER 1 FOR AlGaAs/AlGaAs

       2 FOR InGaAsP/InGaAsP/InP

       3 FOR InGaAs/InGaAsP/InP

       4 FOR InGaAlAs/InGaAlAs/InP

       5 FOR GaInP/(AlGa)0.5In0.5P/AlInP

       6 FOR InGaAs/AlGaAs/AlGaAs

       7 FOR InGaAs/InGaAsP/Ga0.51In0.49P(MATCHED GaAs)

       8 FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

       9 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/InP

      10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(matched InP)

      11 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/AlAsxSb1-x

      12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs (dilute N)

      13 FOR In(1-x)Ga(x)As(y)P(1-y)/GaAs

      14 FOR EXIT, BACK TO MAIN PAGE!

14

  THIS PROGRAM STOP HERE!, BACK TO MAIN PAGE

 

c) The output files, cbandeg.dat and vbandeg.dat are explained in Table C.2.3.

           

                Table C.2.3. Material compositions and band offsets:

 

a) cbandeg.dat for conduction band

************************************************************************

  QW strain    lattice constant

-.120000E-01  0.593923E-09

                                        material compositions

     layer thickness,                Ga                      Al        conduction band edges

    0.10000000E+03   0.50731155E-01     0.1116804     0.1763546        cladding layer

    0.50000000E+02   0.25335652E+00     0.5501187     0.0606978        SCH layer

0.60000000E+02   0.10405969E+00     0.5965452     0.0481108        quantum well

    0.50000000E+02   0.25335652E+00     0.5501187     0.0606978        SCH layer

0.10000000E+03   0.50731155E-01     0.1116804     0.1763546         cladding layer

************************************************************************

 

 

b) vbandeg.dat for valence band

**************************************************** ********************

  QW strain    lattice constant

-.120000E-01  0.593923E-09

                                          material compositions

  layer thickness,                Ga                      Al        valence band edges

    0.10000000E+03   0.50731155E-01     0.1116804    -0.2758368        cladding layer

    0.50000000E+02   0.25335652E+00     0.5501187    -0.0949375        SCH layer

    0.60000000E+02   0.10405969E+00     0.5965452    -0.0240554        quantum well

    0.50000000E+02   0.25335652E+00     0.5501187    -0.0949375        SCH layer

0.10000000E+03   0.50731155E-01     0.1116804    -0.2758368        cladding layer

************************************************************************

 

C.2.2. Energy level calculations

 

After the calculation of the material compositions and energy band edges, the GAIN program calculates energy levels in the conduction band and valence bands. The detailed explanations are discussed in Chapter 3 of this manual.

 

a) The steps of how to calculate the energy levels are shown in Table C.2.4.

 

Table C.2.4. Steps to calculate the energy levels

 

i) Steps to calculate the conduction band energy levels

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

2

  INPUT THE NUMBER OF QUANTUM WELLS NUM=?

1

  INPUT TOTAL LAYERS FOR STRUCTURE--N ODD

  INPUT N=

5

  INPUT THE LOWEST POTENTIAL LAYER(1st Q-WELL) IC= ?

3

  INPUT THE SELECTED CENTER LAYER OF STRUCTURE ICR=

3

 *******************************************************

   INPUT I=1  FOR AlGaAs

         I=2  FOR InGaAsP

         I=3  FOR In1-xGaxAs/InGaAsP/InP

         I=4  FOR InGaAlAs/InGaAlAs

         I=5  FOR GaInP/(AlGa)0.5In0.5P/AlInP

         I=6  FOR InGaAs/AlGaAs/AlGaAs

         I=7  FOR InGaAs/InGaAsP/Ga0.51In0.49P(GaAs)

         I=8  FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

         I=9  FOR InzGa1-zAs/AlxGayIn1-x-yAs/InP

         I=10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(InP)

         I=11 FOR InzGa1-zAs/AlxGayIn1-x-yAs/AlAsxSb1-x

         I=12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs

         I=13 FOR InGaAs/In(1-y)Ga(x)As(y)P(1-y)/GaAs

   INPUT I= ?

 *******************************************************

2

  ENERGY EIGENVALUE===>  0.670294366291E-01 ERROR= .3576162E-14

  ENERGY EIGENVALUE===>  0.101465108959E+00 ERROR= .3081508E-14

  ENERGY EIGENVALUE===>  0.155412249439E+00 ERROR= .2750090E-14

 

  FOR CHECKING THE Schrodinger WAVE FUNCTION INPUT I==> 1

  SKIP INPUT I==> 2

  I=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

0.670294366291E-01

  INPUT THE NAME OF OUTPUT FILE

cb1.txt

CONFINEMENT FACTOR OF    1 th LAYER = 0.11124994E-01

 CONFINEMENT FACTOR OF    2 th LAYER = 0.18768431E+00

 CONFINEMENT FACTOR OF    3 th LAYER = 0.60238139E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.18768431E+00

 CONFINEMENT FACTOR OF    5 th LAYER = 0.11124994E-01

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

0.101465108959

  INPUT THE NAME OF OUTPUT FILE

cb2.txt

CONFINEMENT FACTOR OF    1 th LAYER = 0.46526184E-01

 CONFINEMENT FACTOR OF    2 th LAYER = 0.36258718E+00

 CONFINEMENT FACTOR OF    3 th LAYER = 0.18177326E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.36258718E+00

 CONFINEMENT FACTOR OF    5 th LAYER = 0.46526184E-01

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

2

 

ii) Steps to calculate the heavy hole energy levels

 ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

3

  INPUT THE NUMBER OF QUANTUM WELLS NUM=?

1

  INPUT TOTAL LAYERS FOR STRUCTURE--N ODD

  INPUT N=

5

  INPUT THE HIGHEST POTENTIAL(1st Q-WELL) LAYER IC= ?

3

  INPUT THE SELECTED CENTER OF THE STRUCTURE ICR=?

3

 *******************************************************

   INPUT I=1  FOR AlGaAs

         I=2  FOR InGaAsP

         I=3  FOR In(1-x)Ga(x)As/InGaAsP/InP

         I=4  FOR InGaAlAs/InGaAlAs

         I=5  FOR GaInP/(AlGa)0.5In0.5P/AlInP

         I=6  FOR InGaAs/AlGaAs/AlGaAs

         I=7  FOR InGaAs/InGaAsP/Ga0.51In0.49P(GaAs)

         I=8  FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

         I=9  FOR In(z)Ga(1-z)As/AlxGayIn1-x-yAs/InP

         I=10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(InP)

         I=11 FOR InzGa1-zAs/AlxGayIn1-x-yAs/AlAsxSb1-x

         I=12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs

         I=13 FOR InGaAs/In(1-x)Ga(x)As(y)P(1-y)/GaAs

   INPUT I= ?

 *******************************************************

2

 *******************************************************

 

  DOES THE STRUCTURE STRAIN OR STRAIN-COMPENSATED?

  IF STRAIN ONLY INPUT 1, STRAIN-COMPENSATED INPUT 2

  INPUT SELECT = ?

1

  ENERGY EIGENVALUE===> -0.266289655713E+00 ERROR= .2082626E-14

  ENERGY EIGENVALUE===> -0.220090610686E+00 ERROR= .2912430E-14

  ENERGY EIGENVALUE===> -0.186287733747E+00 ERROR= .4671376E-14

  ENERGY EIGENVALUE===> -0.140850401092E+00 ERROR= .8911599E-14

  ENERGY EIGENVALUE===> -0.122228608502E+00 ERROR= .4338441E-14

  ENERGY EIGENVALUE===> -0.101432618035E+00 ERROR= .1307382E-14

  ENERGY EIGENVALUE===> -0.428488013474E-01 ERROR= .2038714E-14

  ENERGY EIGENVALUE===>  0.509274076994E-02 ERROR= .2348418E-14

 

  FOR CHECKING THE Schrodinger WAVE FUNCTION INPUT I==> 1

  SKIP INPUT I==> 2

  I=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

0.509274076994E-02

  INPUT THE NAME OF OUTPUT FILE

hh1.txt

CONFINEMENT FACTOR OF    1 th LAYER = 0.43858757E-06

 CONFINEMENT FACTOR OF    2 th LAYER = 0.19049653E-01

 CONFINEMENT FACTOR OF    3 th LAYER = 0.96189982E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.19049653E-01

 CONFINEMENT FACTOR OF    5 th LAYER = 0.43858757E-06

  SELECT=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.428488013474E-01

  INPUT THE NAME OF OUTPUT FILE

hh2.txt

CONFINEMENT FACTOR OF    1 th LAYER = 0.18387626E-04

 CONFINEMENT FACTOR OF    2 th LAYER = 0.90457734E-01

 CONFINEMENT FACTOR OF    3 th LAYER = 0.81904776E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.90457734E-01

 CONFINEMENT FACTOR OF    5 th LAYER = 0.18387626E-04

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

2

 

iii) Steps to calculate the light hole energy levels

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

4

  INPUT THE NUMBER OF QUANTUM WELLS NUM=?

1

  INPUT TOTAL LAYERS FOR STRUCTURE--N ODD

  INPUT N=

5

  INPUT THE HIGHEST POTENTIAL(1st Q-WELL) LAYER IC= ?

3

  INPUT THE SELECTED CENTER OF THE STRUCTURE ICR=?

3

 *******************************************************

   INPUT I=1  FOR AlGaAs

         I=2  FOR InGaAsP

         I=3  FOR In(1-x)Ga(x)As/InGaAsP/InP

         I=4  FOR InGaAlAs/InGaAlAs

         I=5  FOR GaInP/(AlGa)0.5In0.5P/AlInP

         I=6  FOR InGaAs/AlGaAs/AlGaAs

         I=7  FOR InGaAs/InGaAsP/Ga0.51In0.49P(GaAs)

         I=8  FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

         I=9  FOR In(z)Ga(1-z)As/AlxGayIn1-x-yAs/InP

         I=10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(InP)

         I=11 FOR InzGa1-zAs/AlxGayIn1-x-yAs/AlAsxSb1-x

         I=12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs

         I=13 FOR InGaAs/In(1-x)Ga(x)As(y)P(1-y)/GaAs

   INPUT I= ?

 *******************************************************

2

 *******************************************************

 

  DOES THE STRUCTURE STRAIN OR STRAIN-COMPENSATED?

  IF STRAIN ONLY INPUT 1, STRAIN-COMPENSATED INPUT 2

  INPUT SELECT = ?

1

  ENERGY EIGENVALUE===> -0.235564886491E+00 ERROR= .4251760E-14

  ENERGY EIGENVALUE===> -0.159589791816E+00 ERROR= .2633269E-14

  ENERGY EIGENVALUE===> -0.968705335737E-01 ERROR= .1268730E-14

 

  FOR CHECKING THE Schrodinger WAVE FUNCTION INPUT I==> 1

  SKIP INPUT I==> 2

  I=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.968705335737E-01

  INPUT THE NAME OF OUTPUT FILE

lh1.txt

CONFINEMENT FACTOR OF    1 th LAYER = 0.83034669E-02

 CONFINEMENT FACTOR OF    2 th LAYER = 0.20626333E+00

 CONFINEMENT FACTOR OF    3 th LAYER = 0.57086641E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.20626333E+00

 CONFINEMENT FACTOR OF    5 th LAYER = 0.83034669E-02

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.159589791816E+00

  INPUT THE NAME OF OUTPUT FILE

lh2.txt

CONFINEMENT FACTOR OF    1 th LAYER = 0.44635531E-01

 CONFINEMENT FACTOR OF    2 th LAYER = 0.39731088E+00

 CONFINEMENT FACTOR OF    3 th LAYER = 0.11610718E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.39731088E+00

 CONFINEMENT FACTOR OF    5 th LAYER = 0.44635531E-01

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

2

 

b) The main output file from this part of GAIN program is energy.dat, containing all the energy levels as shown in Table C.2.5. After the energy eigen values are calculated, the GAIN program asks the user whether he would like to check the wave envelope function or not. We suggest that the user check the wave envelope functions of the first and second energy levels for conduction and valence bands. The plots of the envelope functions are shown in Fig. C.2.2, Fig. C.2.3, Fig C.2.4. 

 

Table C.2.5 Output file energy.dat

  CONDUCTION BAND ENERGY===>  0.670294366291E-01 ERROR= .3576162E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.101465108959E+00 ERROR= .3081508E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.155412249439E+00 ERROR= .2750090E-14

                                                   

  HEAVY HOLE ENERGY===> -0.266289655713E+00 ERROR= .2082626E-14

                                                    

  HEAVY HOLE ENERGY===> -0.220090610686E+00 ERROR= .2912430E-14

                                                   

  HEAVY HOLE ENERGY===> -0.186287733747E+00 ERROR= .4671376E-14

                                                    

  HEAVY HOLE ENERGY===> -0.140850401092E+00 ERROR= .8911599E-14

                                                   

  HEAVY HOLE ENERGY===> -0.122228608502E+00 ERROR= .4338441E-14

                                                   

  HEAVY HOLE ENERGY===> -0.101432618035E+00 ERROR= .1307382E-14

                                                   

  HEAVY HOLE ENERGY===> -0.428488013474E-01 ERROR= .2038714E-14

                                                   

  HEAVY HOLE ENERGY===>  0.509274076994E-02 ERROR= .2348418E-14

                                                   

  LIGHT HOLE ENERGY===> -0.235564886491E+00 ERROR= .4251760E-14

                                                   

  LIGHT HOLE ENERGY===> -0.159589791816E+00 ERROR= .2633269E-14

                                                   

  LIGHT HOLE ENERGY===> -0.968705335737E-01 ERROR= .1268730E-14

 

Fig. C.2.2. Wave envelop functions for energy levels in conduction band

Fig. C.2.3. Wave envelope functions for heavy hole energy levels. There is some rounding error with plot

 

Fig. C.2.4. Wave envelope functions for light hole energy levels


 

C.2.3 Computation of Gain and Laser Characteristics

 

This is the last step of simulations using the GAIN program. With the previous calculated material composition, energy band edges, energy levels, and other parameters like material loss and Auger coefficient, the GAIN program can simulate the threshold current, threshold current density, slope efficiency, optical gain and mode gain as functions of wavelengths and photon energies, and L-I curve. The details are explained in Chapter 4 of the manual.

 

In this part of GAIN program, the input file needs to be constructed with the results of the previous steps and according to the laser design. In this example, single quantum well structure is used to simulate a three-QW laser. For the three-quantum-well laser with a ridge length of 750 µm and ridge width of 3 µm, the input file is shown in Table C.2.6. The detailed steps of simulations are listed in Table C.2.7. The main output files: L-I curve, optical gain as a function of  the wavelength, and mode gain vs. current density are plotted in Fig. C.2.5, Fig. C.2.6, and Fig. C.2.7.

 

a) The input file:

 

Table C.2.6. Input file for gain and threshold current calculation

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c     1. Input the compositions, width of well, effective index        c

c        and lasing wavelength.                                        c

c     Ex: xx,xz,qy,xy,lx,n,lam                                         c

c     for different materials the following are the forms of inputs.   c

c                                                                      c

c     w -- > well, b -- > barrier  cxz and cxy for cladding.           c

c                                                                      c

c     a.  AlxGa1-xAs : xx (Al w) xz (Al b) qy (0) xy (0)               c

c     b.  In1-xGaxAsyP1-y : xx (Ga w) xz (Ga b) qy (As w) xy (As b)    c

c     c.  In1-xGaxAs/InGaAsP : xx (Ga w) xz (Ga b) qy (0) xy (As b)    c

c     d.  AlxGayIn1-x-yAs/InP : xx (Ga w) xz (Ga b) qy (Al w) xy (Al b)c

c     e.                                                               c

c     f.  InxGa1-xAs/AlGaAs : xx (In w) xz (0) qy (0) xy (Al b)        c

c     g.                                                               c

c     h.  AlyInxGa1-x-yAs/AlGaAs : xx (Al w) xz (al b) qy (In w) xz (0)c

c     i.  In1-xGaxAs/AlGaInAs : xx (In w) xz (0) qy (Al b) xy (Ga b)   c

c     j.  In(y)Ga(1-y)As(x)N(1-x) :xx(As w),xz(As, b),qy(In w),xy(In b)c

c     k.  InGaAs/InGaAsP/GaAs: xx (In w), (0), xz(Ga w) xy (As b)

c     2. Input the energy gap,temperature, barrier band edges(both bands)

c     Ex: eg,temp,ec,ev                                                c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

0.10405969 0.25335652 0.5965452 0.5501187 6.0 3.348741 1.31

0.94656 298 0.0606978  0.0949375

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c     3. Input the ist level sub-band energy levels.                   c

c     Ex: ec1,eh1,el1                                                  c

c                                                                      c

c     4. Input the material loss, reflectivities, number of quantum    c

c        wells and beta(for spontaneous emission).                     c

c     Ex: alpha,r1,r2,mm,beta.                                         c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

0.0670294366291 -0.509274076994E-02 0.096870533574 0.101465108959  0.0428488013474  0.159589791816

12.0d0  0.30   0.30   1  5.D-5

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c     5. Input the cavity length, ridge width, internal efficiency     c

c        Auger, strain(except AlGaAs,put 0) and confinement factor.    c

c     Ex: cl,cw,etha,ca,es,confine                                     c

c                                                                      c

c     6. Input the cladding composition and band edges.                c

c     Ex: cxz,cxy,ecc,evv                                              c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

750.D-4  3D-4  0.96  1.00d-29   0.000  0.009834488

0.050731155     0.1116804   0.1763546 0.2758368

 

b) The steps for these calculations mentioned are listed in Table C.2.7

 

Table C.2.7. The steps for the gain and threshold current density calculations

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

5

  THE INPUT FILE NAME=

in1.tex

  SELECT MATERIAL=?

  1--AlGaAs

  2--InGaAsP

  3--In1-zGazAs/InGaAsP/InP

  4-- InGaAlAs

  5--GaInP/AlzGawIn1-z-wP/Al0.5In0.5P

  6-- InxGa1-xAs/AlxGa1-xAs/AlGaAs

  7--In1-xGaxAs/InGaAsP/GaxIn1-xP(X=0.51) MATCHED TO GaAs

  8--AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

  9--InzGa1-zAs/AlxGayIn1-x-yAs/InP

  10-- InGaAlAs/InGaAlAs/AlAsSb

  11--InzGa1-zAs/AlxGayIn1-x-yAs/AlAsSb

  12--In(y)Ga(1-y)As(x)N(1-x)/GaAs

  13--InGaAs/In(1-x)Ga(x)As(y)P(1-y)/GaAs

  INPUT SELECTION

2

 INPUT MODE = ? FOR TE--> MODE =1, FOR TM--> MODE =2

  INPUT TE OR TM ?

1

 IF EL1 BELOW EH1 THEN SELECT 1, OTHERWISE SELECT 2

  SELECTION=?

1

  **************************************************

 CALCULATE THE EFFECTIVE MASS

  **************************************************

  FOR QUASI-FERMI LEVEL SELECT=1,

  FOR READ EXISTING QUASI-FERMI LEVEL SELECT=2

  SELECT=?

1

 

 J(LEAKAGE)=0.522156D-01 A/cm^2  N=0.328772D+19 1/cm^3

 J(LEAKAGE)=0.544163D-01 A/cm^2  N=0.330752D+19 1/cm^3

 J(LEAKAGE)=0.567097D-01 A/cm^2  N=0.332732D+19 1/cm^3

 J(LEAKAGE)=0.590996D-01 A/cm^2  N=0.334712D+19 1/cm^3

……….

 

  J(LEAKAGE)=0.685423D+04 A/cm^2  N=0.788120D+19 1/cm^3

  J(LEAKAGE)=0.689811D+04 A/cm^2  N=0.790100D+19 1/cm^3

  J(LEAKAGE)=0.694207D+04 A/cm^2  N=0.792080D+19 1/cm^3

  J(LEAKAGE)=0.698612D+04 A/cm^2  N=0.794060D+19 1/cm^3

  J(LEAKAGE)=0.703024D+04 A/cm^2  N=0.796040D+19 1/cm^3

  J(LEAKAGE)=0.707444D+04 A/cm^2  N=0.798020D+19 1/cm^3

  J(LEAKAGE)=0.711872D+04 A/cm^2  N=0.800000D+19 1/cm^3

**************************************************

G(J) PARAMETERS FROM SINGLE WELL

  G(J) PARAMETERS FROM SINGLE WELL

  Go=0.704410D+01 1/cm  Jo=0.147036D+03 A/cm^2

 

  G(N) PARAMETERS FROM SINGLE WELL

  NGo=0.716265D+03 1/cm  XNo=0.126817D+19 1/cm^3

 

  Jtr=0.540917D+02 A/cm^2  NTR=0.466534D+18 1/cm^3

 

  THE OPTIMUM NUMBER OF QUANTUM WELL FOLLOWS THE ARTICLE

  BY McIlory et al. IEEE JQE-21 1985.

 

  THE OPTIMUM NUMBER OF QUANTUM WELL Nopt =           4

  INPUT Nopt(CAN BE DIFFERENT FROM ABOVE CALCULATION)=?

4

  NUMBER OF QUANTUM WELL(MAY OR MAY NOT BE Nopt)=?

4

 

    **************************************************

  **************************************************

  1ST CHECK USE SINGLE WELL TIMES # OF WELLS

  **************************************************

  **************************************************

  2ND CHECK FOLLOWS FORMULA BY McIlory IN IEEE

  JOURNAL OF QUANTUM ELECTRONIC QE-21 1985.

  **************************************************

  Gth=  28.0530 1/cm Nth=0.629724D+19 1/cm^3 IY=  314

   1ST CHECK Jth=  5406.36686808 A/cm^2

   2ND CHECK Jth=   612.65148 A/cm^2

 

   1ST CHECK Ith=0.121643D+03 mA NUMBER OF WELLS=  4

   2ND CHECK Ith=0.137847D+02 mA

 

  **************************************************

 CALCULATE THE P-I RELATION

 

 NDATA=          87

  **************************************************

  CALCULATE THE SLOPE: mW/mA Y=A+BX

  CONSTANT A= -32.6181898   SLOPE B=   0.2681463

 

  **************************************************

  INPUT POWER PO FOR THE LINEWIDTH, PO=0 FOR STOP

  INPUT PO=    mW

0

 INPUT 1 FOR THE DYNAMIC CALCULATION. 2 FOR SKIP

 INPUT =

2

  K-FACTOR= 0.58163 nS  MAXIUM FREQ.= 15.2773 GHz

 

  **************************************************

  INPUT 1 FOR CALCULATE THE GAIN(E) RELATION.

 

  INPUT 2 FOR CALCULATE THE LINEWIDTH ENHENCEMENT

  FACTOR AND PHOTONN ENERGY RELATION

 

  INPUT 3 FOR EXIT THE PROGRAM

 

 THE INPUT # IS

1

 INPUT FERMILEVELS IN C-BAND, V-BAND, AND CARRIER DENSITY

0.117426601301  -0.161989946432E-01 0.209974937343E+19

 CALCULATE THE CONVOLUTION GAIN(E) COEFFICIENT

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(LAMBDA)

ol1.txt

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(LAMBDA)

ml1.txt

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(E)

oe1.txt

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(E)

me1.txt

  **************************************************

 INPUT 1 FOR REPEAT THE G(E) CALCULATION

 INPUT 2 FOR REPEAT THE ALPHA(E) CALCULATION

 INPUT 3 FOR EXIT

1

  **************************************************

  INPUT 1 FOR CALCULATE THE GAIN(E) RELATION.

 

  INPUT 2 FOR CALCULATE THE LINEWIDTH ENHENCEMENT

  FACTOR AND PHOTONN ENERGY RELATION

 

  INPUT 3 FOR EXIT THE PROGRAM

 

 THE INPUT # IS

1

 INPUT FERMILEVELS IN C-BAND, V-BAND, AND CARRIER DENSITY

0.138679340946 -0.441266076305E-02 0.301052631579E+19

 CALCULATE THE CONVOLUTION GAIN(E) COEFFICIENT

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(LAMBDA)

ol2.txt

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(LAMBDA)

ml2.txt

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(E)

oe2.txt

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(E)

me2.txt

  **************************************************

 INPUT 1 FOR REPEAT THE G(E) CALCULATION

 INPUT 2 FOR REPEAT THE ALPHA(E) CALCULATION

 INPUT 3 FOR EXIT

3

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

7

 

c) The Output characteristics of designed laser from step 5 are summarized in Table C.2.7.

 

Table C.2.7 Characteristics of the designed laser

Optimized number of QWs (Nopt)

4

Number of QWs

4

Slope efficiency (%)

26.8

Jth (A/cm^2)

5406.4 - 1st check, for matching threshold conditions

612.7 – 2nd check, using McIlory method

Ith (mA)

121  mA - 1st check, for matching threshold conditions

13.7 mA - 2nd check, using McIlory method

Peak l at operating temperature (um)

1.21 um for carrier density of 2.0E19 /cm3

1.18 um for carrier density of 3.0E19 /cm3

Peak material gain (1/cm)

2362 /cm for carrier density of 2.0E19 /cm3

3360 /cm for carrier density of 3.0E19 /cm3

 


 

Fig. C.2.5. L-I curve of the laser

 

Fig. C.2.6. Optical gain-l curve of the laser

 

Fig. C.2.7. Mode gain as a function of current density (J)


C.3. Material system #3: InGaAs/InGaAsP/InP

 

This is a simulation of a five-layer laser structure that contains a single quantum well (QW), two separated confinement heterostructure (SCH) layers, and two cladding layers as shown in Fig. C.3.1.

 

Figure C.3.3. Energy band diagram for the simple quantum well structure

 

C.3.1. Calculation of material compositions and energy band edges.

 

The first step of the GAIN program is to calculate the material compositions and energy band edges of the each layer. The user is asked to enter the photoluminescence wavelength, thickness, and strain of the QW, SCH, and cladding layers. After these parameters are input, the GAIN program generates two output files: cbandeg.dat and vbandeg.dat, containing the material compositions, and the conduction band edges and valence band edges respectively. The detailed explanation is provided in Chapter 2 of this manual.

 

a) The input parameters to the GAIN program in this step is listed in Table. C.3.1.

 

Table C.3.1. Input parameters to the GAIN program in this step.

Layer

l (um)

Strain

Thickness (Ǻ)

QW (InGaAs)

1.56

0.003507

100

SCH (In1-xGaxAsyP1-y)

1.21

0

100

Cladding (InP)

0.9185

 

1000

 

b) The steps in using the GAIN program to calculate the material compositions and energy band edges are listed in Table C.3.2

 

Table C.3.2. steps to run the GAIN program for necessary parameters.

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

1

 

 ENTER 1 FOR AlGaAs/AlGaAs

       2 FOR InGaAsP/InGaAsP/InP

       3 FOR InGaAs/InGaAsP/InP

       4 FOR InGaAlAs/InGaAlAs/InP

       5 FOR GaInP/(AlGa)0.5In0.5P/AlInP

       6 FOR InGaAs/AlGaAs/AlGaAs

       7 FOR InGaAs/InGaAsP/Ga0.51In0.49P(MATCHED GaAs)

       8 FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

       9 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/InP

      10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(matched InP)

      11 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/AlAsxSb1-x

      12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs (dilute N)

      13 FOR In(1-x)Ga(x)As(y)P(1-y)/GaAs

      14 FOR EXIT, BACK TO MAIN PAGE!

3

 INPUT THE LAYER # FOR GRIN STRUCTURE(STEP)

 STEP N=

2

  INPUT THE WELL WAVELENGTH (um)

1.56

  INPUT THE BARRIER WAVELENGTH (um)

1.21

  INPUT THE CLADDING WAVELENGTH (um)

0.9185

  BANDGAP ENERGY OF QUANTUM WELL=   0.79487179

  INPUT CLADDING, BARRIER,QUANTUM WELL WIDTH (A)

1000 100 100

 

  FOR BARRIER IS LATTICE MATCHED SELECT ==>1

  FOR BARRIER IS STRAIN COMPENSATED SELECT ==> 2

 

  SELECTION IS ===> ?

1

 

STRAIN FOR In1-xGaxAs= 3.507367375368143E-003

 

  WRITE CONDUCION BAND PARAMETERS INTO CBANDEG.DAT

 

  WRITE VALENCE BAND PARAMETERS INTO VBANDEG.DAT

  INPUT 1 FOR NEW CALCULATION,   2 FOR EXIT

  I =?

2

 

 ENTER 1 FOR AlGaAs/AlGaAs

       2 FOR InGaAsP/InGaAsP/InP

       3 FOR InGaAs/InGaAsP/InP

       4 FOR InGaAlAs/InGaAlAs/InP

       5 FOR GaInP/(AlGa)0.5In0.5P/AlInP

       6 FOR InGaAs/AlGaAs/AlGaAs

       7 FOR InGaAs/InGaAsP/Ga0.51In0.49P(MATCHED GaAs)

       8 FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

       9 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/InP

      10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(matched InP)

      11 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/AlAsxSb1-x

      12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs (dilute N)

      13 FOR In(1-x)Ga(x)As(y)P(1-y)/GaAs

      14 FOR EXIT, BACK TO MAIN PAGE!

14

  THIS PROGRAM STOP HERE!, BACK TO MAIN PAGE

 

c) The output files, cbandeg.dat and vbandeg.dat are explained in Table C.3.3.

           

                Table C.3.3. Material compositions and band offsets:

 

a) cbandeg.dat for conduction band

************************************************************************

  QW strain    lattice constant

0.350737E-02 0.584822E-09

                                          material compositions

  layer thickness,                Ga                      As       conduction band edges

  0.10000000E+04   0.00000000E+00     0.0000000     0.1998462        cladding layer

   0.10000000E+03   0.21142234E+00     0.4603684     0.0827718        SCH layer

   0.10000000E+03   0.51884522E+00     0.0000000    -0.0190298        quantum well

   0.10000000E+03   0.21142234E+00     0.4603684     0.0827718        SCH layer

   0.10000000E+04   0.00000000E+00     0.0000000     0.1998462        cladding layer

************************************************************************

 

b) vbandeg.dat for valence band

**************************************************** ********************

  QW strain    lattice constant

 0.350737E-02  0.584822E-09

                                          material compositions

  layer thickness,                Ga                      As        valence band edges

   0.10000000E+04   0.00000000E+00     0.0000000    -0.3552821       cladding layer

   0.10000000E+03   0.21142234E+00     0.4603684    -0.1471498       SCH layer

   0.10000000E+03   0.51884522E+00     0.0000000     0.0095149       quantum well

   0.10000000E+03   0.21142234E+00     0.4603684    -0.1471498       SCH layer

   0.10000000E+04   0.00000000E+00     0.0000000    -0.3552821       cladding layer

************************************************************************

 

C.3.2. Energy level calculations

 

After the calculation of the material compositions and energy band edges, the GAIN program calculates energy levels in the conduction band and valence bands. The detailed explanations are discussed in Chapter 3 of this manual.

 

a) The steps of how to calculate the energy levels are shown in Table C.3.4.

 

Table C.3.4. Steps to calculate the energy levels

 

i) Steps to calculate the conduction band energy levels

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

2

  INPUT THE NUMBER OF QUANTUM WELLS NUM=?

1

  INPUT TOTAL LAYERS FOR STRUCTURE--N ODD

  INPUT N=

5

  INPUT THE LOWEST POTENTIAL LAYER(1st Q-WELL) IC= ?

3

  INPUT THE SELECTED CENTER LAYER OF STRUCTURE ICR=

3

 *******************************************************

   INPUT I=1  FOR AlGaAs

         I=2  FOR InGaAsP

         I=3  FOR In1-xGaxAs/InGaAsP/InP

         I=4  FOR InGaAlAs/InGaAlAs

         I=5  FOR GaInP/(AlGa)0.5In0.5P/AlInP

         I=6  FOR InGaAs/AlGaAs/AlGaAs

         I=7  FOR InGaAs/InGaAsP/Ga0.51In0.49P(GaAs)

         I=8  FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

         I=9  FOR InzGa1-zAs/AlxGayIn1-x-yAs/InP

         I=10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(InP)

         I=11 FOR InzGa1-zAs/AlxGayIn1-x-yAs/AlAsxSb1-x

         I=12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs

         I=13 FOR InGaAs/In(1-y)Ga(x)As(y)P(1-y)/GaAs

   INPUT I= ?

 *******************************************************

3

  ENERGY EIGENVALUE===>  0.102677331562E-01 ERROR= .4838213E-14

  ENERGY EIGENVALUE===>  0.829312203346E-01 ERROR= .3134953E-14

  ENERGY EIGENVALUE===>  0.116110587122E+00 ERROR= .1700480E-14

  ENERGY EIGENVALUE===>  0.137409592564E+00 ERROR= .2887171E-14

  ENERGY EIGENVALUE===>  0.193078448219E+00 ERROR= .2186428E-14

 

  FOR CHECKING THE Schrodinger WAVE FUNCTION INPUT I==> 1

  SKIP INPUT I==> 2

  I=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

0.0102677331562

 

  INPUT THE NAME OF OUTPUT FILE

cb1.txt

 CONFINEMENT FACTOR OF    1 th LAYER = 0.23125143E-04

 CONFINEMENT FACTOR OF    2 th LAYER = 0.60295889E-01

 CONFINEMENT FACTOR OF    3 th LAYER = 0.87936197E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.60295889E-01

 CONFINEMENT FACTOR OF    5 th LAYER = 0.23125143E-04

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

0.0829312203346

  INPUT THE NAME OF OUTPUT FILE

cb2.txt

 CONFINEMENT FACTOR OF    1 th LAYER = 0.30920015E-02

 CONFINEMENT FACTOR OF    2 th LAYER = 0.29765260E+00

 CONFINEMENT FACTOR OF    3 th LAYER = 0.39851080E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.29765260E+00

 CONFINEMENT FACTOR OF    5 th LAYER = 0.30920015E-02

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

2

 

ii) Steps to calculate the heavy hole energy levels

 ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

3

  INPUT THE NUMBER OF QUANTUM WELLS NUM=?

1

  INPUT TOTAL LAYERS FOR STRUCTURE--N ODD

  INPUT N=

5

  INPUT THE HIGHEST POTENTIAL(1st Q-WELL) LAYER IC= ?

3

  INPUT THE SELECTED CENTER OF THE STRUCTURE ICR=?

3

 *******************************************************

   INPUT I=1  FOR AlGaAs

         I=2  FOR InGaAsP

         I=3  FOR In(1-x)Ga(x)As/InGaAsP/InP

         I=4  FOR InGaAlAs/InGaAlAs

         I=5  FOR GaInP/(AlGa)0.5In0.5P/AlInP

         I=6  FOR InGaAs/AlGaAs/AlGaAs

         I=7  FOR InGaAs/InGaAsP/Ga0.51In0.49P(GaAs)

         I=8  FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

         I=9  FOR In(z)Ga(1-z)As/AlxGayIn1-x-yAs/InP

         I=10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(InP)

         I=11 FOR InzGa1-zAs/AlxGayIn1-x-yAs/AlAsxSb1-x

         I=12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs

         I=13 FOR InGaAs/In(1-x)Ga(x)As(y)P(1-y)/GaAs

   INPUT I= ?

 *******************************************************

3

 *******************************************************

 

  DOES THE STRUCTURE STRAIN OR STRAIN-COMPENSATED?

  IF STRAIN ONLY INPUT 1, STRAIN-COMPENSATED INPUT 2

  INPUT SELECT = ?

 

1

 

  ENERGY EIGENVALUE===> -0.345448893969E+00 ERROR= .5479616E-14

  ENERGY EIGENVALUE===> -0.313421614966E+00 ERROR= .4977968E-14

  ENERGY EIGENVALUE===> -0.286023116439E+00 ERROR= .3741431E-14

  ENERGY EIGENVALUE===> -0.265617316582E+00 ERROR= .4216452E-14

  ENERGY EIGENVALUE===> -0.234960966106E+00 ERROR= .1892574E-14

  ENERGY EIGENVALUE===> -0.220233112417E+00 ERROR= .3492980E-14

  ENERGY EIGENVALUE===> -0.198687987806E+00 ERROR= .2194434E-14

  ENERGY EIGENVALUE===> -0.182167124769E+00 ERROR= .5669799E-14

  ENERGY EIGENVALUE===> -0.173478187551E+00 ERROR= .3761173E-14

  ENERGY EIGENVALUE===> -0.156637644140E+00 ERROR= .4590558E-14

  ENERGY EIGENVALUE===> -0.154444131718E+00 ERROR= .2538691E-14

  ENERGY EIGENVALUE===> -0.127480216412E+00 ERROR= .2519639E-14

  ENERGY EIGENVALUE===> -0.758643937665E-01 ERROR= .2498963E-14

  ENERGY EIGENVALUE===> -0.356919987894E-01 ERROR= .2709770E-14

  ENERGY EIGENVALUE===> -0.109370594171E-01 ERROR= .2119172E-14

 

  FOR CHECKING THE Schrodinger WAVE FUNCTION INPUT I==> 1

  SKIP INPUT I==> 2

  I=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.0109370594171

  INPUT THE NAME OF OUTPUT FILE

hh1.txt

 CONFINEMENT FACTOR OF    1 th LAYER = 0.18195603E-12

 CONFINEMENT FACTOR OF    2 th LAYER = 0.48861990E-02

 CONFINEMENT FACTOR OF    3 th LAYER = 0.99022760E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.48861990E-02

 CONFINEMENT FACTOR OF    5 th LAYER = 0.18195603E-12

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.0356919987894

  INPUT THE NAME OF OUTPUT FILE

hh2.txt

 CONFINEMENT FACTOR OF    1 th LAYER = 0.60477885E-11

 CONFINEMENT FACTOR OF    2 th LAYER = 0.20535375E-01

 CONFINEMENT FACTOR OF    3 th LAYER = 0.95892925E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.20535375E-01

 CONFINEMENT FACTOR OF    5 th LAYER = 0.60477885E-11

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

2

 

iii) Steps to calculate the light hole energy levels

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

4

  INPUT THE NUMBER OF QUANTUM WELLS NUM=?

1

  INPUT TOTAL LAYERS FOR STRUCTURE--N ODD

  INPUT N=

5

  INPUT THE HIGHEST POTENTIAL(1st Q-WELL) LAYER IC= ?

3

  INPUT THE SELECTED CENTER OF THE STRUCTURE ICR=?

3

 *******************************************************

   INPUT I=1  FOR AlGaAs

         I=2  FOR InGaAsP

         I=3  FOR In(1-x)Ga(x)As/InGaAsP/InP

         I=4  FOR InGaAlAs/InGaAlAs

         I=5  FOR GaInP/(AlGa)0.5In0.5P/AlInP

         I=6  FOR InGaAs/AlGaAs/AlGaAs

         I=7  FOR InGaAs/InGaAsP/Ga0.51In0.49P(GaAs)

         I=8  FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

         I=9  FOR In(z)Ga(1-z)As/AlxGayIn1-x-yAs/InP

         I=10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(InP)

         I=11 FOR InzGa1-zAs/AlxGayIn1-x-yAs/AlAsxSb1-x

         I=12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs

         I=13 FOR InGaAs/In(1-x)Ga(x)As(y)P(1-y)/GaAs

   INPUT I= ?

 *******************************************************

3

 *******************************************************

 

  DOES THE STRUCTURE STRAIN OR STRAIN-COMPENSATED?

  IF STRAIN ONLY INPUT 1, STRAIN-COMPENSATED INPUT 2

  INPUT SELECT = ?

 

1

  ENERGY EIGENVALUE===> -0.324350665429E+00 ERROR= .2529748E-14

  ENERGY EIGENVALUE===> -0.268485842580E+00 ERROR= .4118834E-14

  ENERGY EIGENVALUE===> -0.200300476894E+00 ERROR= .3413517E-14

  ENERGY EIGENVALUE===> -0.181133391050E+00 ERROR= .2018955E-14

  ENERGY EIGENVALUE===> -0.116983827560E+00 ERROR= .3183911E-14

  ENERGY EIGENVALUE===> -0.161551734944E-01 ERROR= .3222829E-14

 

  FOR CHECKING THE Schrodinger WAVE FUNCTION INPUT I==> 1

  SKIP INPUT I==> 2

  I=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.0161551734944

  INPUT THE NAME OF OUTPUT FILE

lh1.txt

 CONFINEMENT FACTOR OF    1 th LAYER = 0.28197495E-05

 CONFINEMENT FACTOR OF    2 th LAYER = 0.39958233E-01

 CONFINEMENT FACTOR OF    3 th LAYER = 0.92007789E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.39958233E-01

 CONFINEMENT FACTOR OF    5 th LAYER = 0.28197495E-05

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.116983827560

  INPUT THE NAME OF OUTPUT FILE

lh2.txt

 CONFINEMENT FACTOR OF    1 th LAYER = 0.39043702E-03

 CONFINEMENT FACTOR OF    2 th LAYER = 0.19969312E+00

 CONFINEMENT FACTOR OF    3 th LAYER = 0.59983288E-01

 CONFINEMENT FACTOR OF    4 th LAYER = 0.19969312E+00

 CONFINEMENT FACTOR OF    5 th LAYER = 0.39043702E-03

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

2

 

b) The main output file from this part of GAIN program is energy.dat, containing all the energy levels as shown in Table C.3.5. After the energy eigen values are calculated, the GAIN program asks the user whether he would like to check the wave envelope function or not. We suggest that the user check the wave envelope functions of the first and second energy levels for conduction and valence bands. The plots of the envelope functions are shown in Fig. C.3.2, Fig. C.3.3, Fig C.3.4. 

 

Table C.3.5. output file energy.dat

  CONDUCTION BAND ENERGY===>  0.132273196491E+00 ERROR= .1825400E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.338026920933E+00 ERROR= .2075989E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.438393858497E+00 ERROR= .1374688E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.500546559386E+00 ERROR= .1783885E-14

                                                   

  HEAVY HOLE ENERGY===> -0.190388140560E+00 ERROR= .3376657E-14

                                                   

  HEAVY HOLE ENERGY===> -0.178205351549E+00 ERROR= .2794590E-14

                                                   

  HEAVY HOLE ENERGY===> -0.146868929570E+00 ERROR= .1933278E-14

                                                   

  HEAVY HOLE ENERGY===> -0.649012884792E-01 ERROR= .1722105E-14

                                                   

  HEAVY HOLE ENERGY===> -0.584031671619E-02 ERROR= .1782035E-14

                                                   

  LIGHT HOLE ENERGY===> -0.224692198534E+00 ERROR= .5190988E-14

                                                   

  LIGHT HOLE ENERGY===> -0.169366776608E+00 ERROR= .3378719E-14

                                                    

  LIGHT HOLE ENERGY===> -0.978425419323E-01 ERROR= .2045359E-14

 

Fig. C.3.2. Wave envelop functions for energy levels in conduction band

Fig. C.3.3. Wave envelop functions for heavy hole energy levels

 

Fig. C.3.4. Wave envelop functions for light hole energy levels


 

C.3.3. Computation of Gain and Laser Characteristics

 

This is the last step of simulations using the GAIN program. With the previous calculated material composition, energy band edges, energy levels, and other parameters like material loss and Auger coefficient, the GAIN program can simulate the threshold current, threshold current density, slope efficiency, optical gain and mode gain as functions of wavelengths and photo energies, and L-I curve. The details are explained in Chapter 4 of the manual.

 

In this part of GAIN program, the input file needs to be constructed with the results of the previous steps and according to the laser design. In this example, a tensile single-quantum-well laser with a ridge length of 750µm and ridge width of 3 µm, the input file is shown in Table C.3.6. The detailed steps of simulations are listed in Table C.3.7. The main output files: L-I curve, optical gain as a function of  the wavelength, and mode gain vs. current density are plotted in Fig. C.3.5, Fig. C.3.6, and Fig. C.3.7.

 

a) The input file:

 

Table C.3.6. Input file for gain and threshold current calculation

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c     1. Input the compositions, width of well, effective index         c

c        and lasing wavelength.                                         c

c     Ex: xx,xz,qy,xy,lx,n,lam                                          c

c     for different materials the following are the forms of inputs.    c

c                                                                       c

c     w -- > well, b -- > barrier  cxz and cxy for cladding.           c

c                                                                      c

c     a.  AlxGa1-xAs : xx (Al w) xz (Al b) qy (0) xy (0)               c

c     b.  In1-xGaxAsyP1-y : xx (Ga w) xz (Ga b) qy (As w) xy (As b)    c

c     c.  In1-xGaxAs/InGaAsP : xx (Ga w) xz (Ga b) qy (0) xy (As b)    c

c     d.  AlxGayIn1-x-yAs/InP : xx (Ga w) xz (Ga b) qy (Al w) xy (Al b)c

c     e.                                                               c

c     f.  InxGa1-xAs/AlGaAs : xx (In w) xz (0) qy (0) xy (Al b)        c

c     g.                                                               c

c     h.  AlyInxGa1-x-yAs/AlGaAs : xx (Al w) xz (al b) qy (In w) xz (0)c

c     i.  In1-xGaxAs/AlGaInAs : xx (In w) xz (0) qy (Al b) xy (Ga b)   c

c                                                                      c

c                                                                      c

c     2. Input the energy gap,temperature, barrier band edges(both bands)c

c     Ex: eg,temp,ec,ev                                                c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

0.51884522 0.21142234 0.0 0.4603684 10.0 3.32 1.55

0.79487179 298 0.10718016 0.1566647

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c     3. Input the ist level sub-band energy levels.                   c

c     Ex: ec1,eh1,el1                                                  c

c                                                                      c

c     4. Input the material loss, reflectivities, number of quantum    c

c        wells and beta(for spontaneous emission).                     c

c     Ex: alpha,r1,r2,mm,beta.                                         c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

0.0102677331562 0.0109370594171 0.0161551734944 0.0829312203346 0.0356919987894 0.116983827560

10.0d0 0.3000 0.300 1 5.D-5

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c     5. Input the cavity length, ridge width, internal efficiency     c

c        Auger, strain(except AlGaAs,put 0) and confinement factor.    c

c     Ex: cl,cw,etha,ca,es,confine                                     c

c                                                                      c

c     6. Input the cladding composition and band edges.                c

c     Ex: cxz,cxy,ecc,evv                                              c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

500.D-4 3D-4 0.97 3.10d-29 0.0 0.018

0.00 0.00  0.218876 0.364797

 

b) The steps for these calculations mentioned are listed in Table C.3.7

 

Table C.3.7. The steps for the gain and threshold current density calculations

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

5

  THE INPUT FILE NAME=

in1.tex

  SELECT MATERIAL=?

  1--AlGaAs

  2--InGaAsP

  3--In1-zGazAs/InGaAsP/InP

  4-- InGaAlAs

  5--GaInP/AlzGawIn1-z-wP/Al0.5In0.5P

  6-- InxGa1-xAs/AlxGa1-xAs/AlGaAs

  7--In1-xGaxAs/InGaAsP/GaxIn1-xP(X=0.51) MATCHED TO GaAs

  8--AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

  9--InzGa1-zAs/AlxGayIn1-x-yAs/InP

  10-- InGaAlAs/InGaAlAs/AlAsSb

  11--InzGa1-zAs/AlxGayIn1-x-yAs/AlAsSb

  12--In(y)Ga(1-y)As(x)N(1-x)/GaAs

  13--InGaAs/In(1-x)Ga(x)As(y)P(1-y)/GaAs

  INPUT SELECTION

3

 INPUT MODE = ? FOR TE--> MODE =1, FOR TM--> MODE =2

  INPUT TE OR TM ?

1

 IF EL1 BELOW EH1 THEN SELECT 1, OTHERWISE SELECT 2

  SELECTION=?

1

  **************************************************

 CALCULATE THE EFFECTIVE MASS

  **************************************************

  FOR QUASI-FERMI LEVEL SELECT=1,

  FOR READ EXISTING QUASI-FERMI LEVEL SELECT=2

  SELECT=?

1

 

 J(LEAKAGE)=0.104958D+03 A/cm^2  N=0.328772D+19 1/cm^3

 J(LEAKAGE)=0.108158D+03 A/cm^2  N=0.330752D+19 1/cm^3

 J(LEAKAGE)=0.111439D+03 A/cm^2  N=0.332732D+19 1/cm^3

 J(LEAKAGE)=0.114800D+03 A/cm^2  N=0.334712D+19 1/cm^3

……….

J(LEAKAGE)=0.245553D+05A/cm^2  N=0.788120D+19 1/cm^3

J(LEAKAGE)=0.246733D+05A/cm^2  N=0.790100D+19 1/cm^3

J(LEAKAGE)=0.247912D+05A/cm^2  N=0.792080D+19 1/cm^3

J(LEAKAGE)=0.249092D+05A/cm^2  N=0.794060D+19 1/cm^3

J(LEAKAGE)=0.250272D+05A/cm^2  N=0.796040D+19 1/cm^3

J(LEAKAGE)=0.251453D+05 A/cm^2  N=0.798020D+19 1/cm^3

J(LEAKAGE)=0.252633D+05 A/cm^2  N=0.800000D+19 1/cm^3

**************************************************

G(J) PARAMETERS FROM SINGLE WELL

  Go=0.178866D+02 1/cm    Jo=0.967184D+02 A/cm^2

 

  G(N) PARAMETERS FROM SINGLE WELL

  NGo=0.993699D+03 1/cm  XNo=0.951378D+18 1/cm^3

 

  Jtr=0.355807D+02 A/cm^2  NTR=0.349993D+18 1/cm^3

 

 

  THE OPTIMUM NUMBER OF QUANTUM WELL FOLLOWS THE ARTICLE

  BY McIlory et al. IEEE JQE-21 1985.

 

  THE OPTIMUM NUMBER OF QUANTUM WELL Nopt =           2

  INPUT Nopt(CAN BE DIFFERENT FROM ABOVE CALCULATION)=?

2

  NUMBER OF QUANTUM WELL(MAY OR MAY NOT BE Nopt)=?

1

 

  **************************************************

  **************************************************

  1ST CHECK USE SINGLE WELL TIMES # OF WELLS

  **************************************************

  **************************************************

  2ND CHECK FOLLOWS FORMULA BY McIlory IN IEEE

  JOURNAL OF QUANTUM ELECTRONIC QE-21 1985.

  **************************************************

  Gth=  34.0795 1/cm Nth=0.174336D+19 1/cm^3 IY=   84

   1ST CHECK Jth=   472.08528249 A/cm^2

   2ND CHECK Jth=   271.03897 A/cm^2

 

   1ST CHECK Ith=0.708128D+01 mA NUMBER OF WELLS=  2

   2ND CHECK Ith=0.406558D+01 mA

 

  **************************************************

 CALCULATE THE P-I RELATION

 

 NDATA=         317

  **************************************************

  CALCULATE THE SLOPE: mW/mA Y=A+BX

  CONSTANT A=  -1.9085326   SLOPE B=   0.2695181

 

  **************************************************

  INPUT POWER PO FOR THE LINEWIDTH, PO=0 FOR STOP

  INPUT PO=    mW

0

 INPUT 1 FOR THE DYNAMIC CALCULATION. 2 FOR SKIP

 INPUT =

2

  K-FACTOR= 0.25771 nS  MAXIUM FREQ.= 34.4792 GHz

 

  **************************************************

  INPUT 1 FOR CALCULATE THE GAIN(E) RELATION.

 

  INPUT 2 FOR CALCULATE THE LINEWIDTH ENHENCEMENT

  FACTOR AND PHOTON ENERGY RELATION

 

  INPUT 3 FOR EXIT THE PROGRAM

 

 THE INPUT # IS

1

 INPUT FERMILEVELS IN C-BAND, V-BAND, AND CARRIER DENSITY

0.136951476602 0.00757985775700 0.200075187970E+19

 CALCULATE THE CONVOLUTION GAIN(E) COEFFICIENT

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(LAMBDA)

ol1.txt

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(LAMBDA)

ml1.txt

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(E)

oe1.txt

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(E)

me1.txt

  **************************************************

 INPUT 1 FOR REPEAT THE G(E) CALCULATION

 INPUT 2 FOR REPEAT THE ALPHA(E) CALCULATION

 INPUT 3 FOR EXIT

1

  **************************************************

  INPUT 1 FOR CALCULATE THE GAIN(E) RELATION.

 

  INPUT 2 FOR CALCULATE THE LINEWIDTH ENHENCEMENT

  FACTOR AND PHOTON ENERGY RELATION

 

  INPUT 3 FOR EXIT THE PROGRAM

 

 THE INPUT # IS

1

 INPUT FERMILEVELS IN C-BAND, V-BAND, AND CARRIER DENSITY

0.292773620684 -0.223794117473E-01 0.301052631579E+19

 CALCULATE THE CONVOLUTION GAIN(E) COEFFICIENT

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(LAMBDA)

ol2.txt

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(LAMBDA)

ml2.txt

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(E)

oe2.txt

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(E)

me2.txt

  **************************************************

 INPUT 1 FOR REPEAT THE G(E) CALCULATION

 INPUT 2 FOR REPEAT THE ALPHA(E) CALCULATION

 INPUT 3 FOR EXIT

3

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

7

 

c) The Output characteristics of designed laser from step 5 are summarized in Table C.3.7.

 

Table C.3.7 Characteristics of the designed laser

Optimized number of QWs (Nopt)

2

Number of QWs

1

Slope efficiency (%)

26.9581

Jth (A/cm^2)

472.085- 1st check, for matching threshold conditions

271.03897 – 2nd check, using McIlory method

Ith (mA)

7.08128mA - 1st check, for matching threshold conditions

4.06558mA - 2nd check, using McIlory method

Peak l at operating temperature (um)

1.53509 um for carrier density of 2.0E18 /cm3

1.530496 um for carrier density of 3.0E18 /cm3

Peak material gain (1/cm)

3405.979 /cm for carrier density of 2.0E18 /cm3

4379.23 /cm for carrier density of 3.0E18 /cm3

 


 

Fig. C.3.5. L-I curve of the laser

Fig. C.3.6. Optical gain-l curve of the laser

 

 

Fig. C.3.7. Mode gain as a function of current density (J)


C.4. Material system #4: InGaAlAs/InGaAlAs/InP

 

This is a simulation of a five-layer laser structure that contains a single quantum well (QW), two separated confinement heterostructure (SCH) layers, and two cladding layers as shown in Fig. C.4.1.

 

Figure C.4.4. Energy band diagram for the single quantum well structure

 

C.4.1. Calculation of material compositions and energy band edges.

 

The first step of the GAIN program is to calculate the material compositions and energy band edges of the each layer. The user is asked to enter the photoluminescence wavelength, thickness, and strain of the QW, SCH, and cladding layers. After these parameters are input, the GAIN program generates two output files: cbandeg.dat and vbandeg.dat, containing the material compositions, and the conduction band edges and valence band edges respectively. The detailed explanation is provided in Chapter 2 of this manual.

 

a) The input parameters to the GAIN program in this step are listed in Table. C.4.1.

 

Table C.4.1. Input parameters to the GAIN program in this step.

Layer

l (um)

Strain

Thickness (Ǻ)

QW (GaxAlyIn1-x-yAs)

1.813385122

-0.011705

60

SCH (GaxAlyIn1-x-yAs)

1.023516108

0.0087769

50

Cladding (GaxAlyIn1-x-yAs)

0.828002068

 

100

 

b) The steps in using the GAIN program to calculate the material compositions and energy band edges are listed in Table C.4.2

 

Table C.4.2. steps to run the GAIN program for necessary parameters.

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

1

 

 ENTER 1 FOR AlGaAs/AlGaAs

       2 FOR InGaAsP/InGaAsP/InP

       3 FOR InGaAs/InGaAsP/InP

       4 FOR InGaAlAs/InGaAlAs/InP

       5 FOR GaInP/(AlGa)0.5In0.5P/AlInP

       6 FOR InGaAs/AlGaAs/AlGaAs

       7 FOR InGaAs/InGaAsP/Ga0.51In0.49P(MATCHED GaAs)

       8 FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

       9 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/InP

      10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(matched InP)

      11 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/AlAsxSb1-x

      12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs (dilute N)

      13 FOR In(1-x)Ga(x)As(y)P(1-y)/GaAs

      14 FOR EXIT, BACK TO MAIN PAGE!

4

 INPUT THE LAYER # FOR GRIN STRUCTURE(STEP)

 STEP N=

2

  INPUT THE WELL WAVELENGTH (um)

1.813385122

  INPUT THE BARRIER WAVELENGTH (um)

1.023516108

  INPUT THE CLADDING WAVELENGTH (um)

0.828002068

  BANDGAP ENERGY OF QUANTUM WELL=   0.683804000019804

  INPUT CLADDING, BARRIER,QUANTUM WELL WIDTH (A)

100 50 60

 

  FOR AlyGaxIn(1-x-y)As, in output read Ga first then Al

 

  IF ONE OF THE COMPONENTS IN ACTIVE REGION IS ZERO,

  YOU HAVE TO TRY ANOTHER INITIAL GUESS FOR

  BOTH WAVELENGTH AND STRAIN

 

  INPUT STRAIN

-0.011704948

 

  FOR Eg relation from Dr. Chuang,s book input 1,

 for Industrial experimental formula input 2

 

  INPUT =--> ?

1

 

  FOR BARRIER IS LATTICE MATCHED SELECT ==>1

  FOR BARRIER IS STRAIN COMPENSATED SELECT ==> 2

 

  SELECTION IS ===> ?

2

 

  FOR Eg relation from Dr. Chuang,s book input 1,

 for Industrial experimental formula input 2

 

  INPUT =--> ?

1

  INPUT STRAIN==>?

0.008776922

 

  WRITE CONDUCTION BAND PARAMETERS INTO CBANDEG.DAT

 

  WRITE VALENCE BAND PARAMETERS INTO VBANDEG.DAT

  INPUT 1 FOR NEW CALCULATION

        2 FOR EXIT

  INPUT =?

2

 

 ENTER 1 FOR AlGaAs/AlGaAs

       2 FOR InGaAsP/InGaAsP/InP

       3 FOR InGaAs/InGaAsP/InP

       4 FOR InGaAlAs/InGaAlAs/InP

       5 FOR GaInP/(AlGa)0.5In0.5P/AlInP

       6 FOR InGaAs/AlGaAs/AlGaAs

       7 FOR InGaAs/InGaAsP/Ga0.51In0.49P(MATCHED GaAs)

       8 FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

       9 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/InP

      10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(matched InP)

      11 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/AlAsxSb1-x

      12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs (dilute N)

      13 FOR In(1-x)Ga(x)As(y)P(1-y)/GaAs

      14 FOR EXIT, BACK TO MAIN PAGE!

14

  THIS PROGRAM STOP HERE!, BACK TO MAIN PAGE

 

c) The output files, cbandeg.dat and vbandeg.dat are explained in Table C.4.3.

           

                Table C.4.3. Material compositions and band offsets:

 

a) cbandeg.dat for conduction band

************************************************************************

  QW strain    lattice constant

-.117049E-01  0.593758E-09

                                          material compositions

  layer thickness,                Ga                      Al        conduction band edges

   0.10000000E+03   0.00000000E+00     0.4829333     0.5859193        cladding layer

   0.50000000E+02   0.34879557E+00     0.2505339     0.3327401        SCH layer

   0.60000000E+02   0.21964924E+00     0.0801355     0.0538058        quantum well

   0.50000000E+02   0.34879557E+00     0.2505339     0.3327401        SCH layer

   0.10000000E+03   0.00000000E+00     0.4829333     0.5859193        cladding layer

************************************************************************

 

b) vbandeg.dat for valence band

**************************************************** ********************

  QW strain    lattice constant

 -.117049E-01  0.593758E-09

                                          material compositions

  layer thickness,                Ga                      Al        valence band edges

   0.10000000E+03   0.00000000E+00     0.4829333    -0.2278575       cladding layer

   0.50000000E+02   0.34879557E+00     0.2505339    -0.1241536       SCH layer

   0.60000000E+02   0.21964924E+00     0.0801355    -0.0269029       quantum well

   0.50000000E+02   0.34879557E+00     0.2505339    -0.1241536       SCH layer

   0.10000000E+03   0.00000000E+00     0.4829333    -0.2278575       cladding layer

************************************************************************

 

C.4.2. Energy level calculations

 

After the calculation of the material compositions and energy band edges, the GAIN program calculates energy levels in the conduction band and valence bands. The detailed explanations are discussed in Chapter 3 of this manual.

 

a) The steps of how to calculate the energy levels are shown in Table C.4.4.

 

Table C.4.4. Steps to calculate the energy levels

 

i) Steps to calculate the conduction band energy levels

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

2

  INPUT THE NUMBER OF QUANTUM WELLS NUM=?

1

  INPUT TOTAL LAYERS FOR STRUCTURE--N ODD

  INPUT N=

5

  INPUT THE LOWEST POTENTIAL LAYER(1st Q-WELL) IC= ?

3

  INPUT THE SELECTED CENTER LAYER OF STRUCTURE ICR=

3

 *******************************************************

   INPUT I=1  FOR AlGaAs

         I=2  FOR InGaAsP

         I=3  FOR In1-xGaxAs/InGaAsP/InP

         I=4  FOR InGaAlAs/InGaAlAs

         I=5  FOR GaInP/(AlGa)0.5In0.5P/AlInP

         I=6  FOR InGaAs/AlGaAs/AlGaAs

         I=7  FOR InGaAs/InGaAsP/Ga0.51In0.49P(GaAs)

         I=8  FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

         I=9  FOR InzGa1-zAs/AlxGayIn1-x-yAs/InP

         I=10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(InP)

         I=11 FOR InzGa1-zAs/AlxGayIn1-x-yAs/AlAsxSb1-x

         I=12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs

         I=13 FOR InGaAs/In(1-y)Ga(x)As(y)P(1-y)/GaAs

   INPUT I= ?

 *******************************************************

4

  ENERGY EIGENVALUE===>  0.132273196491E+00 ERROR= .1825400E-14

  ENERGY EIGENVALUE===>  0.338026920933E+00 ERROR= .2075989E-14

  ENERGY EIGENVALUE===>  0.438393858497E+00 ERROR= .1374688E-14

  ENERGY EIGENVALUE===>  0.500546559386E+00 ERROR= .1783885E-14

 

  FOR CHECKING THE Schrodinger WAVE FUNCTION INPUT I==> 1

  SKIP INPUT I==> 2

  I=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

0.132273196491

  INPUT THE NAME OF OUTPUT FILE

cb1.txt

 CONFINEMENT FACTOR OF    1 th LAYER = 0.58761391E-04

 CONFINEMENT FACTOR OF    2 th LAYER = 0.60148156E-01

 CONFINEMENT FACTOR OF    3 th LAYER = 0.87958617E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.60148156E-01

 CONFINEMENT FACTOR OF    5 th LAYER = 0.58761391E-04

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

0.338026920933

  INPUT THE NAME OF OUTPUT FILE

cb2.txt

 CONFINEMENT FACTOR OF    1 th LAYER = 0.56890043E-02

 CONFINEMENT FACTOR OF    2 th LAYER = 0.28761534E+00

 CONFINEMENT FACTOR OF    3 th LAYER = 0.41339131E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.28761534E+00

 CONFINEMENT FACTOR OF    5 th LAYER = 0.56890043E-02

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

2

 

ii) Steps to calculate the heavy hole energy levels

 ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

3

  INPUT THE NUMBER OF QUANTUM WELLS NUM=?

1

  INPUT TOTAL LAYERS FOR STRUCTURE--N ODD

  INPUT N=

5

  INPUT THE HIGHEST POTENTIAL(1st Q-WELL) LAYER IC= ?

3

  INPUT THE SELECTED CENTER OF THE STRUCTURE ICR=?

3

 *******************************************************

   INPUT I=1  FOR AlGaAs

         I=2  FOR InGaAsP

         I=3  FOR In(1-x)Ga(x)As/InGaAsP/InP

         I=4  FOR InGaAlAs/InGaAlAs

         I=5  FOR GaInP/(AlGa)0.5In0.5P/AlInP

         I=6  FOR InGaAs/AlGaAs/AlGaAs

         I=7  FOR InGaAs/InGaAsP/Ga0.51In0.49P(GaAs)

         I=8  FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

         I=9  FOR In(z)Ga(1-z)As/AlxGayIn1-x-yAs/InP

         I=10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(InP)

         I=11 FOR InzGa1-zAs/AlxGayIn1-x-yAs/AlAsxSb1-x

         I=12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs

         I=13 FOR InGaAs/In(1-x)Ga(x)As(y)P(1-y)/GaAs

   INPUT I= ?

 *******************************************************

4

 *******************************************************

 

  DOES THE STRUCTURE STRAIN OR STRAIN-COMPENSATED?

  IF STRAIN ONLY INPUT 1, STRAIN-COMPENSATED INPUT 2

  INPUT SELECT = ?

 

2

  INPUT BARRIER STRAIN =?

0.008776922

  ENERGY EIGENVALUE===> -0.190388140560E+00 ERROR= .3376657E-14

  ENERGY EIGENVALUE===> -0.178205351549E+00 ERROR= .2794590E-14

  ENERGY EIGENVALUE===> -0.146868929570E+00 ERROR= .1933278E-14

  ENERGY EIGENVALUE===> -0.649012884792E-01 ERROR= .1722105E-14

  ENERGY EIGENVALUE===> -0.584031671619E-02 ERROR= .1782035E-14

 

  FOR CHECKING THE Schrodinger WAVE FUNCTION INPUT I==> 1

  SKIP INPUT I==> 2

  I=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.584031671619E-02

  INPUT THE NAME OF OUTPUT FILE

hh1.txt

 CONFINEMENT FACTOR OF    1 th LAYER = 0.10778777E-06

 CONFINEMENT FACTOR OF    2 th LAYER = 0.15062630E-01

 CONFINEMENT FACTOR OF    3 th LAYER = 0.96987452E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.15062630E-01

 CONFINEMENT FACTOR OF    5 th LAYER = 0.10778777E-06

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.649012884792E-01

  INPUT THE NAME OF OUTPUT FILE

hh2.txt

 CONFINEMENT FACTOR OF    1 th LAYER = 0.51712890E-05

 CONFINEMENT FACTOR OF    2 th LAYER = 0.68039794E-01

 CONFINEMENT FACTOR OF    3 th LAYER = 0.86391007E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.68039794E-01

 CONFINEMENT FACTOR OF    5 th LAYER = 0.51712890E-05

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

2

 

iii) Steps to calculate the light hole energy levels

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

4

  INPUT THE NUMBER OF QUANTUM WELLS NUM=?

1

  INPUT TOTAL LAYERS FOR STRUCTURE--N ODD

  INPUT N=

5

  INPUT THE HIGHEST POTENTIAL(1st Q-WELL) LAYER IC= ?

3

  INPUT THE SELECTED CENTER OF THE STRUCTURE ICR=?

3

 *******************************************************

   INPUT I=1  FOR AlGaAs

         I=2  FOR InGaAsP

         I=3  FOR In(1-x)Ga(x)As/InGaAsP/InP

         I=4  FOR InGaAlAs/InGaAlAs

         I=5  FOR GaInP/(AlGa)0.5In0.5P/AlInP

         I=6  FOR InGaAs/AlGaAs/AlGaAs

         I=7  FOR InGaAs/InGaAsP/Ga0.51In0.49P(GaAs)

         I=8  FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

         I=9  FOR In(z)Ga(1-z)As/AlxGayIn1-x-yAs/InP

         I=10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(InP)

         I=11 FOR InzGa1-zAs/AlxGayIn1-x-yAs/AlAsxSb1-x

         I=12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs

         I=13 FOR InGaAs/In(1-x)Ga(x)As(y)P(1-y)/GaAs

   INPUT I= ?

 *******************************************************

4

 *******************************************************

 

  DOES THE STRUCTURE STRAIN OR STRAIN-COMPENSATED?

  IF STRAIN ONLY INPUT 1, STRAIN-COMPENSATED INPUT 2

  INPUT SELECT = ?

 

2

  INPUT BARRIER STRAIN =?

0.008776922

  ENERGY EIGENVALUE===> -0.224692198534E+00 ERROR= .5190988E-14

  ENERGY EIGENVALUE===> -0.169366776608E+00 ERROR= .3378719E-14

  ENERGY EIGENVALUE===> -0.978425419323E-01 ERROR= .2045359E-14

 

  FOR CHECKING THE Schrodinger WAVE FUNCTION INPUT I==> 1

  SKIP INPUT I==> 2

  I=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.978425419323E-01

  INPUT THE NAME OF OUTPUT FILE

lh1.txt

 CONFINEMENT FACTOR OF    1 th LAYER = 0.10863305E-01

 CONFINEMENT FACTOR OF    2 th LAYER = 0.19796026E+00

 CONFINEMENT FACTOR OF    3 th LAYER = 0.58235288E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.19796026E+00

 CONFINEMENT FACTOR OF    5 th LAYER = 0.10863305E-01

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.169366776608

  INPUT THE NAME OF OUTPUT FILE

lh2.txt

 CONFINEMENT FACTOR OF    1 th LAYER = 0.90021097E-01

 CONFINEMENT FACTOR OF    2 th LAYER = 0.36387798E+00

 CONFINEMENT FACTOR OF    3 th LAYER = 0.92201838E-01

 CONFINEMENT FACTOR OF    4 th LAYER = 0.36387798E+00

 CONFINEMENT FACTOR OF    5 th LAYER = 0.90021097E-01

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

2

 

b) The main output file from this part of GAIN program is energy.dat, containing all the energy levels as shown in Table C.4.5. After the energy eigen values are calculated, the GAIN program asks the user whether he would like to check the wave envelope function or not. We suggest that the user check the wave envelope functions of the first and second energy levels for conduction and valence bands. The plots of the envelope functions are shown in Fig. C.4.2, Fig. C.4.3, Fig C.4.4. 

 

Table C.4.5. output file energy.dat

  CONDUCTION BAND ENERGY===>  0.132273196491E+00 ERROR= .1825400E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.338026920933E+00 ERROR= .2075989E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.438393858497E+00 ERROR= .1374688E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.500546559386E+00 ERROR= .1783885E-14

                                                   

  HEAVY HOLE ENERGY===> -0.190388140560E+00 ERROR= .3376657E-14

                                                   

  HEAVY HOLE ENERGY===> -0.178205351549E+00 ERROR= .2794590E-14

                                                   

  HEAVY HOLE ENERGY===> -0.146868929570E+00 ERROR= .1933278E-14

                                                   

  HEAVY HOLE ENERGY===> -0.649012884792E-01 ERROR= .1722105E-14

                                                   

  HEAVY HOLE ENERGY===> -0.584031671619E-02 ERROR= .1782035E-14

                                                   

  LIGHT HOLE ENERGY===> -0.224692198534E+00 ERROR= .5190988E-14

                                                   

  LIGHT HOLE ENERGY===> -0.169366776608E+00 ERROR= .3378719E-14

                                                    

  LIGHT HOLE ENERGY===> -0.978425419323E-01 ERROR= .2045359E-14

 

Fig. C.4.2. Wave envelope functions for energy levels in conduction band

Fig. C.4.3. Wave envelope functions for heavy hole energy levels

 

Fig. C.4.4. Wave envelope functions for light hole energy levels


 

C.4.3. Simulations of Gain and Laser properties

 

This is the last step of simulations using the GAIN program. With the previous calculated material composition, energy band edges, energy levels, and other parameters like material loss and Auger coefficient, the GAIN program can simulate the threshold current, threshold current density, slope efficiency, optical gain and mode gain as functions of wavelengths and photon energies, and L-I curve. The details are explained in Chapter 4 of the manual.

 

In this part of GAIN program, the input file needs to be constructed with the results of the previous steps and according to the laser design. In this example, single quantum well structure is used to simulate a three-QW laser. For the three-quantum-well laser with a ridge length of 750 µm and ridge width of 3 µm, the input file is shown in Table C.4.6. The detailed steps of simulations are listed in Table C.4.7. The main output files: L-I curve, optical gain as a function of  the wavelength, and mode gain vs. current density are plotted in Fig. C.4.5, Fig. C.4.6, and Fig. C.4.7.

 

a) The input file:

 

Table C.4.6. Input file for gain and threshold current calculation

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c     1. Input the compositions, width of well, effective index        c

c        and lasing wavelength.                                        c

c     Ex: xx,xz,qy,xy,lx,n,lam                                         c

c     for different materials the following are the forms of inputs.   c

c                                                                      c

c     w -- > well, b -- > barrier  cxz and cxy for cladding.           c

c                                                                      c

c     a.  AlxGa1-xAs : xx (Al w) xz (Al b) qy (0) xy (0)               c

c     b.  In1-xGaxAsyP1-y : xx (Ga w) xz (Ga b) qy (As w) xy (As b)    c

c     c.  In1-xGaxAs/InGaAsP : xx (Ga w) xz (Ga b) qy (0) xy (As b)    c

c     d.  AlxGayIn1-x-yAs/InP : xx (Ga w) xz (Ga b) qy (Al w) xy (Al b)c

c     e.                                                               c

c     f.  InxGa1-xAs/AlGaAs : xx (In w) xz (0) qy (0) xy (Al b)        c

c     g.                                                               c

c     h.  AlyInxGa1-x-yAs/AlGaAs : xx (Al w) xz (al b) qy (In w) xz (0)c

c     i.  In1-xGaxAs/AlGaInAs : xx (In w) xz (0) qy (Al b) xy (Ga b)   c

c     j.  In(y)Ga(1-y)As(x)N(1-x) :xx(As w),xz(As, b),qy(In w),xy(In b)c

c     k.  InGaAs/InGaAsP/GaAs: xx (In w), (0), xz(Ga w) xy (As b)

c     2. Input the energy gap,temperature, barrier band edges(both bands)

c     Ex: eg,temp,ec,ev                                                c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

0.21964924 0.34879557  0.0801355  0.2505339  6.0  3.218741  1.5

0.683804 298 0.3327401 0.1241536

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c     3. Input the ist level sub-band energy levels.                   c

c     Ex: ec1,eh1,el1                                                  c

c                                                                      c

c     4. Input the material loss, reflectivities, number of quantum    c

c        wells and beta(for spontaneous emission).                     c

c     Ex: alpha,r1,r2,mm,beta.                                         c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

0.132273291719  0.584032029186E-02  0.978425521147E-01  1  1  1

12.0d0  0.30   0.30   1  5.D-5

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c     5. Input the cavity length, ridge width, internal efficiency     c

c        Auger, strain(except AlGaAs,put 0) and confinement factor.    c

c     Ex: cl,cw,etha,ca,es,confine                                     c

c                                                                      c

c     6. Input the cladding composition and band edges.                c

c     Ex: cxz,cxy,ecc,evv                                              c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

750.D-4  3D-4  0.96  1.00d-29   0.000  0.009834488

0.48 0.0  0.5859193  0.2278575

 

b) The steps for these calculations mentioned are listed in Table C.4.7

 

Table C.4.7. The steps for the gain and threshold current density calculations

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

5

  THE INPUT FILE NAME=

in1.tex

  SELECT MATERIAL=?

  1--AlGaAs

  2--InGaAsP

  3--In1-zGazAs/InGaAsP/InP

  4-- InGaAlAs

  5--GaInP/AlzGawIn1-z-wP/Al0.5In0.5P

  6-- InxGa1-xAs/AlxGa1-xAs/AlGaAs

  7--In1-xGaxAs/InGaAsP/GaxIn1-xP(X=0.51) MATCHED TO GaAs

  8--AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

  9--InzGa1-zAs/AlxGayIn1-x-yAs/InP

  10-- InGaAlAs/InGaAlAs/AlAsSb

  11--InzGa1-zAs/AlxGayIn1-x-yAs/AlAsSb

  12--In(y)Ga(1-y)As(x)N(1-x)/GaAs

  13--InGaAs/In(1-x)Ga(x)As(y)P(1-y)/GaAs

  INPUT SELECTION

4

 INPUT MODE = ? FOR TE--> MODE =1, FOR TM--> MODE =2

  INPUT TE OR TM ?

1

 IF EL1 BELOW EH1 THEN SELECT 1, OTHERWISE SELECT 2

  SELECTION=?

1

  **************************************************

 CALCULATE THE EFFECTIVE MASS

  **************************************************

  FOR QUASI-FERMI LEVEL SELECT=1,

  FOR READ EXISTING QUASI-FERMI LEVEL SELECT=2

  SELECT=?

1

 

 J(LEAKAGE)=0.522156D-01 A/cm^2  N=0.328772D+19 1/cm^3

 J(LEAKAGE)=0.544163D-01 A/cm^2  N=0.330752D+19 1/cm^3

 J(LEAKAGE)=0.567097D-01 A/cm^2  N=0.332732D+19 1/cm^3

 J(LEAKAGE)=0.590996D-01 A/cm^2  N=0.334712D+19 1/cm^3

……….

J(LEAKAGE)=0.654295D+03 A/cm^2  N=0.788120D+19 1/cm^3

J(LEAKAGE)=0.678642D+03 A/cm^2  N=0.790100D+19 1/cm^3

J(LEAKAGE)=0.703785D+03 A/cm^2  N=0.792080D+19 1/cm^3

J(LEAKAGE)=0.729743D+03 A/cm^2  N=0.794060D+19 1/cm^3

J(LEAKAGE)=0.756533D+03 A/cm^2  N=0.796040D+19 1/cm^3

J(LEAKAGE)=0.784174D+03 A/cm^2  N=0.798020D+19 1/cm^3

J(LEAKAGE)=0.812685D+03 A/cm^2  N=0.800000D+19 1/cm^3

**************************************************

G(J) PARAMETERS FROM SINGLE WELL

  Go=0.158181D+02 1/cm  Jo=0.954942D+02 A/cm^2

 

  G(N) PARAMETERS FROM SINGLE WELL

  NGo=0.160843D+04 1/cm  XNo=0.911779D+18 1/cm^3

 

  Jtr=0.351304D+02 A/cm^2  NTR=0.335425D+18 1/cm^3

 

 

  THE OPTIMUM NUMBER OF QUANTUM WELL FOLLOWS THE ARTICLE

  BY McIlory et al. IEEE JQE-21 1985.

 

  THE OPTIMUM NUMBER OF QUANTUM WELL Nopt =           2

  INPUT Nopt(CAN BE DIFFERENT FROM ABOVE CALCULATION)=?

2

  NUMBER OF QUANTUM WELL(MAY OR MAY NOT BE Nopt)=?

3

 

  **************************************************

  **************************************************

  1ST CHECK USE SINGLE WELL TIMES # OF WELLS

  **************************************************

  **************************************************

  2ND CHECK FOLLOWS FORMULA BY McIlory IN IEEE

  JOURNAL OF QUANTUM ELECTRONIC QE-21 1985.

  **************************************************

  Gth=  28.0530 1/cm Nth=0.170376D+19 1/cm^3 IY=   82

   1ST CHECK Jth=   381.42697085 A/cm^2

   2ND CHECK Jth=   213.82690 A/cm^2

 

   1ST CHECK Ith=0.858211D+01 mA NUMBER OF WELLS=  2

   2ND CHECK Ith=0.481111D+01 mA

 

  **************************************************

 CALCULATE THE P-I RELATION

 

 NDATA=         319

  **************************************************

  CALCULATE THE SLOPE: mW/mA Y=A+BX

  CONSTANT A=  -1.8744106   SLOPE B=   0.2184091

 

  **************************************************

  INPUT POWER PO FOR THE LINEWIDTH, PO=0 FOR STOP

  INPUT PO=    mW

0

 INPUT 1 FOR THE DYNAMIC CALCULATION. 2 FOR SKIP

 INPUT =

2

  K-FACTOR= 0.33294 nS  MAXIUM FREQ.= 26.6891 GHz

 

  **************************************************

  INPUT 1 FOR CALCULATE THE GAIN(E) RELATION.

 

  INPUT 2 FOR CALCULATE THE LINEWIDTH ENHENCEMENT

  FACTOR AND PHOTON ENERGY RELATION

 

  INPUT 3 FOR EXIT THE PROGRAM

 

 THE INPUT # IS

1

 INPUT FERMILEVELS IN C-BAND, V-BAND, AND CARRIER DENSITY

0.238566456069 -0.666558305734E-02 0.200075187970E+19

 CALCULATE THE CONVOLUTION GAIN(E) COEFFICIENT

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(LAMBDA)

ol1.txt

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(LAMBDA)

ml1.txt

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(E)

oe1.txt

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(E)

me1.txt

  **************************************************

 INPUT 1 FOR REPEAT THE G(E) CALCULATION

 INPUT 2 FOR REPEAT THE ALPHA(E) CALCULATION

 INPUT 3 FOR EXIT

1

  **************************************************

  INPUT 1 FOR CALCULATE THE GAIN(E) RELATION.

 

  INPUT 2 FOR CALCULATE THE LINEWIDTH ENHENCEMENT

  FACTOR AND PHOTON ENERGY RELATION

 

  INPUT 3 FOR EXIT THE PROGRAM

 

 THE INPUT # IS

1

 INPUT FERMILEVELS IN C-BAND, V-BAND, AND CARRIER DENSITY

0.292773620684 -0.223794117473E-01 0.301052631579E+19

 CALCULATE THE CONVOLUTION GAIN(E) COEFFICIENT

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(LAMBDA)

ol2.txt

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(LAMBDA)

ml2.txt

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(E)

oe2.txt

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(E)

me2.txt

  **************************************************

 INPUT 1 FOR REPEAT THE G(E) CALCULATION

 INPUT 2 FOR REPEAT THE ALPHA(E) CALCULATION

 INPUT 3 FOR EXIT

3

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

7

 

c) The Output characteristics of designed laser from step 5 are summarized in Table C.4.7.

 

Table C.4.7 Characteristics of the designed laser

Optimized number of QWs (Nopt)

2

Number of QWs

3

Slope efficiency (%)

21.84

Jth (A/cm^2)

381.4 - 1st check, for matching threshold conditions

213.8 – 2nd check, using McIlory method

Ith (mA)

8.58 mA - 1st check, for matching threshold conditions

4. 81 mA - 2nd check, using McIlory method

Peak l at operating temperature (um)

1.52 um for carrier density of 2.0E18 /cm3

1.53 um for carrier density of 3.0E18 /cm3

Peak material gain (1/cm)

3160.1 /cm for carrier density of 2.0E18 /cm3

2115.6 /cm for carrier density of 3.0E18 /cm3

 


 

Fig. C.4.5. L-I curve of the laser

Fig. C.4.6. Optical gain-l curve of the laser

 

Fig. C.4.7. Mode gain as a function of current density (J)


C.5. Material system #5: GaInP/AlzGawIn1-z-wP/Al0.5In0.5P

 

This is a simulation of a five-layer laser structure that contains a single quantum well (QW), two separated confinement heterostructure (SCH) layers, and two cladding layers as shown in Fig. C.5.1.

 

Figure C.5.5. Energy band diagram for the simple quantum well structure

 

C.5.1. Calculation of material compositions and energy band edges.

 

The first step of the GAIN program is to calculate the material compositions and energy band edges of the each layer. The user is asked to enter the photoluminescence wavelength, thickness, and strain of the QW, SCH, and cladding layers. After these parameters are input, the GAIN program generates two output files: cbandeg.dat and vbandeg.dat, containing the material compositions, and the conduction band edges and valence band edges respectively. The detailed explanation is provided in Chapter 2 of this manual.

 

a) The input parameters to the GAIN program in this step islisted in Table. C.5.1.

 

Table C.5.1. Input parameters to the GAIN program in this step.

Layer

l (um)

Strain

Thickness (Ǻ)

QW (Ga0.6In0.4P)

0.63

-0.0027

80

SCH ((Al0.6Ga0.4)0.5In0.5P)

0.545

0

1063

Cladding (Al0.5In0.5P)

0.491

0

10000

 

b) The steps in using the GAIN program to calculate the material compositions and energy band edges are listed in Table C.5.2

 

Table C.5.2. steps to run the GAIN program for necessary parameters.

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

1

 

 ENTER 1 FOR AlGaAs/AlGaAs

       2 FOR InGaAsP/InGaAsP/InP

       3 FOR InGaAs/InGaAsP/InP

       4 FOR InGaAlAs/InGaAlAs/InP

       5 FOR GaInP/(AlGa)0.5In0.5P/AlInP

       6 FOR InGaAs/AlGaAs/AlGaAs

       7 FOR InGaAs/InGaAsP/Ga0.51In0.49P(MATCHED GaAs)

       8 FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

       9 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/InP

      10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(matched InP)

      11 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/AlAsxSb1-x

      12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs (dilute N)

      13 FOR In(1-x)Ga(x)As(y)P(1-y)/GaAs

      14 FOR EXIT, BACK TO MAIN PAGE!

5

 

  Ga(x)In(1-x)P/AlGaInP/AlGaInP(matched to GaAs)

  If x=0.5 then GaInP(Eg=1.891eV) lattice matched to GaAs

 

  The barrier region can be latticed matched to GaAs

  or strained composition.

 

  In QW region x->Ga, y->0

  Both barrier(SCH) and cladding, X->Ga, Y->Al

 

 INPUT THE LAYER # FOR GRIN STRUCTURE(STEP)

 STEP N=

2

  INPUT THE WELL WAVELENGTH (um)

0.63

  INPUT THE BARRIER WAVELENGTH (um)

0.545

  INPUT THE CLADDING WAVELENGTH (um)

0.491

  BANDGAP ENERGY OF QUANTUM WELL=    1.96825396825397       eV

  INPUT CLADDING, BARRIER,QUANTUM WELL WIDTH (A)

10000 1063 80

  For AlGaInP lattice matched to GaAs select -->1

  For AlGaInP lattice mismatch select --> 2

 

  SELECTION ===> ?

1

  STRAIN FOR GaInP   2.714641526427632E-003

 

  WRITE CONDUCTION BAND PARAMETERS INTO CBANDEG.DAT

 

  WRITE VALENCE BAND PARAMETERS INTO VBANDEG.DAT

  INPUT 1 FOR NEW CALCULATION, 2 FOR EXIT

  I= ?

2

 

 ENTER 1 FOR AlGaAs/AlGaAs

       2 FOR InGaAsP/InGaAsP/InP

       3 FOR InGaAs/InGaAsP/InP

       4 FOR InGaAlAs/InGaAlAs/InP

       5 FOR GaInP/(AlGa)0.5In0.5P/AlInP

       6 FOR InGaAs/AlGaAs/AlGaAs

       7 FOR InGaAs/InGaAsP/Ga0.51In0.49P(MATCHED GaAs)

       8 FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

       9 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/InP

      10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(matched InP)

      11 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/AlAsxSb1-x

      12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs (dilute N)

      13 FOR In(1-x)Ga(x)As(y)P(1-y)/GaAs

      14 FOR EXIT, BACK TO MAIN PAGE!

14

  THIS PROGRAM STOP HERE!, BACK TO MAIN PAGE

 

c) The output files, cbandeg.dat and vbandeg.dat are explained in Table C.5.3.

           

                Table C.5.3. Material compositions and band offsets:

 

a) cbandeg.dat for conduction band

************************************************************************

  QW strain    lattice constant

  0.271464E-02  0.563795E-09

                                          material compositions AlyGaxIn1-x-yP

  layer thickness,                Ga                      Al        conduction band edges

   0.10000000E+05  -0.44739897E-02     0.5044740     0.1950215        cladding layer

   0.10630000E+04   0.20063165E+00     0.2993683     0.1074414        SCH layer

   0.80000000E+02   0.55257950E+00     0.0000000    -0.0142929        quantum well

   0.10630000E+04   0.20063165E+00     0.2993683     0.1074414        SCH layer

   0.10000000E+05  -0.44739897E-02     0.5044740     0.1950215        cladding layer

************************************************************************

 

b) vbandeg.dat for valence band

**************************************************** ********************

  QW strain    lattice constant

  0.271464E-02  0.563795E-09

                                          material compositions AlyGaxIn1-x-yP

  layer thickness,                Ga                      Al        valence band edges

   0.10000000E+05  -0.44739897E-02     0.5044740    -0.3621828       cladding layer

   0.10630000E+04   0.20063165E+00     0.2993683    -0.1995340       SCH layer

   0.80000000E+02   0.55257950E+00     0.0000000     0.0071464       quantum well

   0.10630000E+04   0.20063165E+00     0.2993683    -0.1995340       SCH layer

   0.10000000E+05  -0.44739897E-02     0.5044740    -0.3621828       cladding layer

************************************************************************

 

C.5.2. Energy level calculations

 

After the calculation of the material compositions and energy band edges, the GAIN program calculates energy levels in the conduction band and valence bands. The detailed explanations are discussed in Chapter 3 of this manual.

 

a) The steps of how to calculate the energy levels are shown in Table C.5.4.

 

Table C.5.4. Steps to calculate the energy levels

 

i) Steps to calculate the conduction band energy levels

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

2

  INPUT THE NUMBER OF QUANTUM WELLS NUM=?

1

  INPUT TOTAL LAYERS FOR STRUCTURE--N ODD

  INPUT N=

5

  INPUT THE LOWEST POTENTIAL LAYER(1st Q-WELL) IC= ?

3

  INPUT THE SELECTED CENTER LAYER OF STRUCTURE ICR=

3

 *******************************************************

   INPUT I=1  FOR AlGaAs

         I=2  FOR InGaAsP

         I=3  FOR In1-xGaxAs/InGaAsP/InP

         I=4  FOR InGaAlAs/InGaAlAs

         I=5  FOR GaInP/(AlGa)0.5In0.5P/AlInP

         I=6  FOR InGaAs/AlGaAs/AlGaAs

         I=7  FOR InGaAs/InGaAsP/Ga0.51In0.49P(GaAs)

         I=8  FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

         I=9  FOR InzGa1-zAs/AlxGayIn1-x-yAs/InP

         I=10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(InP)

         I=11 FOR InzGa1-zAs/AlxGayIn1-x-yAs/AlAsxSb1-x

         I=12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs

         I=13 FOR InGaAs/In(1-y)Ga(x)As(y)P(1-y)/GaAs

   INPUT I= ?

 *******************************************************

5

  ENERGY EIGENVALUE===>  0.961974438375E-02 ERROR= .2786910E-14

  ENERGY EIGENVALUE===>  0.743662554277E-01 ERROR= .2580380E-14

  ENERGY EIGENVALUE===>  0.107675191040E+00 ERROR= .4266368E-14

  ENERGY EIGENVALUE===>  0.107688174734E+00 ERROR= .2463437E-14

  ENERGY EIGENVALUE===>  0.108376258685E+00 ERROR= .6317963E-14

  ENERGY EIGENVALUE===>  0.108428037338E+00 ERROR= .1442872E-14

  ENERGY EIGENVALUE===>  0.109543687391E+00 ERROR= .2900562E-14

  ENERGY EIGENVALUE===>  0.109659654907E+00 ERROR= .1483391E-14

  ENERGY EIGENVALUE===>  0.111175954839E+00 ERROR= .2524093E-14

  ENERGY EIGENVALUE===>  0.111380963353E+00 ERROR= .1915930E-14

  ENERGY EIGENVALUE===>  0.113270939913E+00 ERROR= .2521982E-14

  ENERGY EIGENVALUE===>  0.113589356334E+00 ERROR= .2292240E-14

  ENERGY EIGENVALUE===>  0.115825939696E+00 ERROR= .2102730E-14

  ENERGY EIGENVALUE===>  0.116281876661E+00 ERROR= .1980838E-14

  ENERGY EIGENVALUE===>  0.118837702628E+00 ERROR= .2070679E-14

  ENERGY EIGENVALUE===>  0.119455372783E+00 ERROR= .1414132E-14

  ENERGY EIGENVALUE===>  0.122302488065E+00 ERROR= .2748183E-14

  ENERGY EIGENVALUE===>  0.123106599250E+00 ERROR= .1286513E-14

  ENERGY EIGENVALUE===>  0.126216164546E+00 ERROR= .2382521E-14

  ENERGY EIGENVALUE===>  0.127232254643E+00 ERROR= .1318435E-14

  ENERGY EIGENVALUE===>  0.130574357571E+00 ERROR= .3582667E-14

  ENERGY EIGENVALUE===>  0.131828958191E+00 ERROR= .2236097E-14

  ENERGY EIGENVALUE===>  0.135372648300E+00 ERROR= .2832335E-14

  ENERGY EIGENVALUE===>  0.136893165876E+00 ERROR= .2662248E-14

  ENERGY EIGENVALUE===>  0.140606801955E+00 ERROR= .2075560E-14

  ENERGY EIGENVALUE===>  0.142421018041E+00 ERROR= .2486680E-14

  ENERGY EIGENVALUE===>  0.146272964900E+00 ERROR= .2509426E-14

  ENERGY EIGENVALUE===>  0.148408090543E+00 ERROR= .1416510E-14

  ENERGY EIGENVALUE===>  0.152367710782E+00 ERROR= .3201183E-14

  ENERGY EIGENVALUE===>  0.154848978871E+00 ERROR= .2597122E-14

  ENERGY EIGENVALUE===>  0.158887734556E+00 ERROR= .1766965E-14

  ENERGY EIGENVALUE===>  0.161736541616E+00 ERROR= .2628242E-14

  ENERGY EIGENVALUE===>  0.165828843460E+00 ERROR= .2472018E-14

  ENERGY EIGENVALUE===>  0.169060333436E+00 ERROR= .1986998E-14

  ENERGY EIGENVALUE===>  0.173183433744E+00 ERROR= .3017043E-14

  ENERGY EIGENVALUE===>  0.176802685912E+00 ERROR= .1597014E-14

  ENERGY EIGENVALUE===>  0.180933567715E+00 ERROR= .2328795E-14

  ENERGY EIGENVALUE===>  0.184925313643E+00 ERROR= .2516799E-14

  ENERGY EIGENVALUE===>  0.189021845141E+00 ERROR= .1893777E-14

  ENERGY EIGENVALUE===>  0.193267857341E+00 ERROR= .2992086E-14

 

  FOR CHECKING THE Schrodinger WAVE FUNCTION INPUT I==> 1

  SKIP INPUT I==> 2

  I=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

0.00962

  INPUT THE NAME OF OUTPUT FILE

v1

 CONFINEMENT FACTOR OF    1 th LAYER = 0.19880306E-80

 CONFINEMENT FACTOR OF    2 th LAYER = 0.37682916E+00

 CONFINEMENT FACTOR OF    3 th LAYER = 0.11196418E-24

 CONFINEMENT FACTOR OF    4 th LAYER = 0.62317084E+00

 CONFINEMENT FACTOR OF    5 th LAYER = 0.19880985E-80

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

0.07437

  INPUT THE NAME OF OUTPUT FILE

v2

 CONFINEMENT FACTOR OF    1 th LAYER = 0.15868871E-32

 CONFINEMENT FACTOR OF    2 th LAYER = 0.15724277E+00

 CONFINEMENT FACTOR OF    3 th LAYER = 0.68556334E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.15719389E+00

 CONFINEMENT FACTOR OF    5 th LAYER = 0.15863938E-32

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

2

Fig. C.5.2 Envelope functions for conduction band

 

 

ii) Steps to calculate the heavy hole energy levels

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

3

  INPUT THE NUMBER OF QUANTUM WELLS NUM=?

1

  INPUT TOTAL LAYERS FOR STRUCTURE--N ODD

  INPUT N=

5

  INPUT THE HIGHEST POTENTIAL(1st Q-WELL) LAYER IC= ?

3

  INPUT THE SELECTED CENTER OF THE STRUCTURE ICR=?

3

 *******************************************************

   INPUT I=1  FOR AlGaAs

         I=2  FOR InGaAsP

         I=3  FOR In(1-x)Ga(x)As/InGaAsP/InP

         I=4  FOR InGaAlAs/InGaAlAs

         I=5  FOR GaInP/(AlGa)0.5In0.5P/AlInP

         I=6  FOR InGaAs/AlGaAs/AlGaAs

         I=7  FOR InGaAs/InGaAsP/Ga0.51In0.49P(GaAs)

         I=8  FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

         I=9  FOR In(z)Ga(1-z)As/AlxGayIn1-x-yAs/InP

         I=10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(InP)

         I=11 FOR InzGa1-zAs/AlxGayIn1-x-yAs/AlAsxSb1-x

         I=12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs

         I=13 FOR InGaAs/In(1-x)Ga(x)As(y)P(1-y)/GaAs

   INPUT I= ?

 *******************************************************

5

 *******************************************************

 

  DOES THE STRUCTURE STRAIN OR STRAIN-COMPENSATED?

  IF STRAIN ONLY INPUT 1, STRAIN-COMPENSATED INPUT 2

  INPUT SELECT = ?

 

1

  ENERGY EIGENVALUE===> -0.361192916606E+00 ERROR= .2318346E-14

  ENERGY EIGENVALUE===> -0.358485532473E+00 ERROR= .4956447E-14

  ENERGY EIGENVALUE===> -0.354716248972E+00 ERROR= .5526373E-14

  ENERGY EIGENVALUE===> -0.351913554427E+00 ERROR= .5317960E-14

  ENERGY EIGENVALUE===> -0.348266207154E+00 ERROR= .2918676E-14

  ENERGY EIGENVALUE===> -0.345413437374E+00 ERROR= .3749323E-14

  ENERGY EIGENVALUE===> -0.341928545612E+00 ERROR= .3487911E-14

  ENERGY EIGENVALUE===> -0.339023804865E+00 ERROR= .4983602E-14

  ENERGY EIGENVALUE===> -0.335719117586E+00 ERROR= .2977748E-14

  ENERGY EIGENVALUE===> -0.332757485607E+00 ERROR= .2663835E-14

  ENERGY EIGENVALUE===> -0.329642979500E+00 ERROR= .4769990E-14

  ENERGY EIGENVALUE===> -0.326621008574E+00 ERROR= .2474339E-14

  ENERGY EIGENVALUE===> -0.323701256646E+00 ERROR= .4188658E-14

  ENERGY EIGENVALUE===> -0.320618410761E+00 ERROR= .4940924E-14

  ENERGY EIGENVALUE===> -0.317893261288E+00 ERROR= .3395574E-14

  ENERGY EIGENVALUE===> -0.314752486888E+00 ERROR= .2722462E-14

  ENERGY EIGENVALUE===> -0.312217533281E+00 ERROR= .3080726E-14

  ENERGY EIGENVALUE===> -0.309025316890E+00 ERROR= .3714707E-14

  ENERGY EIGENVALUE===> -0.306672506150E+00 ERROR= .3651204E-14

  ENERGY EIGENVALUE===> -0.303438526815E+00 ERROR= .4852848E-14

  ENERGY EIGENVALUE===> -0.301256950156E+00 ERROR= .2606583E-14

  ENERGY EIGENVALUE===> -0.297993433199E+00 ERROR= .3079430E-14

  ENERGY EIGENVALUE===> -0.295970220156E+00 ERROR= .3775307E-14

  ENERGY EIGENVALUE===> -0.292691130035E+00 ERROR= .5023247E-14

  ENERGY EIGENVALUE===> -0.290812329627E+00 ERROR= .4216785E-14

  ENERGY EIGENVALUE===> -0.287532544737E+00 ERROR= .2473812E-14

  ENERGY EIGENVALUE===> -0.285783893576E+00 ERROR= .3723957E-14

  ENERGY EIGENVALUE===> -0.282518476130E+00 ERROR= .5303396E-14

  ENERGY EIGENVALUE===> -0.280885995969E+00 ERROR= .4570210E-14

  ENERGY EIGENVALUE===> -0.277649621354E+00 ERROR= .3537788E-14

  ENERGY EIGENVALUE===> -0.276120032911E+00 ERROR= .4293540E-14

  ENERGY EIGENVALUE===> -0.272926595561E+00 ERROR= .3632004E-14

  ENERGY EIGENVALUE===> -0.271487567178E+00 ERROR= .2909894E-14

  ENERGY EIGENVALUE===> -0.268349946744E+00 ERROR= .3976899E-14

  ENERGY EIGENVALUE===> -0.266990212090E+00 ERROR= .4204415E-14

  ENERGY EIGENVALUE===> -0.263920167090E+00 ERROR= .1103405E-13

  ENERGY EIGENVALUE===> -0.262629549143E+00 ERROR= .1689306E-14

  ENERGY EIGENVALUE===> -0.259637701783E+00 ERROR= .3319052E-14

  ENERGY EIGENVALUE===> -0.258407076018E+00 ERROR= .3786958E-14

  ENERGY EIGENVALUE===> -0.255502955805E+00 ERROR= .1151041E-13

  ENERGY EIGENVALUE===> -0.254324178366E+00 ERROR= .4380337E-14

  ENERGY EIGENVALUE===> -0.251516299101E+00 ERROR= .1407601E-13

  ENERGY EIGENVALUE===> -0.250382118475E+00 ERROR= .2547440E-14

  ENERGY EIGENVALUE===> -0.247678070270E+00 ERROR= .9114289E-14

  ENERGY EIGENVALUE===> -0.246582034966E+00 ERROR= .2802900E-14

  ENERGY EIGENVALUE===> -0.243988578824E+00 ERROR= .4761360E-14

  ENERGY EIGENVALUE===> -0.242924949068E+00 ERROR= .2434459E-14

  ENERGY EIGENVALUE===> -0.240448105895E+00 ERROR= .3480106E-14

  ENERGY EIGENVALUE===> -0.239411774399E+00 ERROR= .4274582E-14

  ENERGY EIGENVALUE===> -0.237056903110E+00 ERROR= .6999869E-14

  ENERGY EIGENVALUE===> -0.236043328190E+00 ERROR= .3901435E-14

  ENERGY EIGENVALUE===> -0.233815189170E+00 ERROR= .4571935E-14

  ENERGY EIGENVALUE===> -0.232820342717E+00 ERROR= .2810531E-14

  ENERGY EIGENVALUE===> -0.230723143380E+00 ERROR= .3910965E-14

  ENERGY EIGENVALUE===> -0.229743476197E+00 ERROR= .1968086E-14

  ENERGY EIGENVALUE===> -0.227780895151E+00 ERROR= .4565070E-14

  ENERGY EIGENVALUE===> -0.226813322769E+00 ERROR= .2321745E-14

  ENERGY EIGENVALUE===> -0.224988508124E+00 ERROR= .5484183E-14

  ENERGY EIGENVALUE===> -0.224030421380E+00 ERROR= .1919168E-14

  ENERGY EIGENVALUE===> -0.222345957410E+00 ERROR= .1879845E-14

  ENERGY EIGENVALUE===> -0.221395263540E+00 ERROR= .1827758E-14

  ENERGY EIGENVALUE===> -0.219853098509E+00 ERROR= .4186959E-14

  ENERGY EIGENVALUE===> -0.218908299959E+00 ERROR= .3620360E-14

  ENERGY EIGENVALUE===> -0.217509627335E+00 ERROR= .2453680E-14

  ENERGY EIGENVALUE===> -0.216569946120E+00 ERROR= .3220033E-14

  ENERGY EIGENVALUE===> -0.215315033070E+00 ERROR= .3463684E-14

  ENERGY EIGENVALUE===> -0.214380586860E+00 ERROR= .2219382E-14

  ENERGY EIGENVALUE===> -0.213268550022E+00 ERROR= .2777570E-14

  ENERGY EIGENVALUE===> -0.212340580018E+00 ERROR= .2743067E-14

  ENERGY EIGENVALUE===> -0.211369121597E+00 ERROR= .4226083E-14

  ENERGY EIGENVALUE===> -0.210450259232E+00 ERROR= .3692444E-14

  ENERGY EIGENVALUE===> -0.209615397194E+00 ERROR= .3171740E-14

  ENERGY EIGENVALUE===> -0.208709935933E+00 ERROR= .4209780E-14

  ENERGY EIGENVALUE===> -0.208005786497E+00 ERROR= .1814778E-14

  ENERGY EIGENVALUE===> -0.207119900601E+00 ERROR= .3397305E-14

  ENERGY EIGENVALUE===> -0.206538587407E+00 ERROR= .3003403E-14

  ENERGY EIGENVALUE===> -0.205680423359E+00 ERROR= .3543397E-14

  ENERGY EIGENVALUE===> -0.205212178908E+00 ERROR= .2834381E-14

  ENERGY EIGENVALUE===> -0.204391753956E+00 ERROR= .3372802E-14

  ENERGY EIGENVALUE===> -0.204025235404E+00 ERROR= .1580920E-14

  ENERGY EIGENVALUE===> -0.203254121238E+00 ERROR= .3043020E-14

  ENERGY EIGENVALUE===> -0.202976896095E+00 ERROR= .2298392E-14

  ENERGY EIGENVALUE===> -0.202267732184E+00 ERROR= .3884085E-14

  ENERGY EIGENVALUE===> -0.202066832823E+00 ERROR= .1442648E-14

  ENERGY EIGENVALUE===> -0.201432770625E+00 ERROR= .3171156E-14

  ENERGY EIGENVALUE===> -0.201295200743E+00 ERROR= .2947302E-14

  ENERGY EIGENVALUE===> -0.200749395757E+00 ERROR= .5270798E-14

  ENERGY EIGENVALUE===> -0.200662501388E+00 ERROR= .1723172E-14

  ENERGY EIGENVALUE===> -0.200217740582E+00 ERROR= .3038427E-14

  ENERGY EIGENVALUE===> -0.200169410122E+00 ERROR= .1957778E-14

  ENERGY EIGENVALUE===> -0.199837910396E+00 ERROR= .3248494E-14

  ENERGY EIGENVALUE===> -0.199816614058E+00 ERROR= .1532467E-14

  ENERGY EIGENVALUE===> -0.199609981468E+00 ERROR= .5295449E-14

  ENERGY EIGENVALUE===> -0.199604685919E+00 ERROR= .1312598E-14

  ENERGY EIGENVALUE===> -0.148632604544E+00 ERROR= .2080935E-14

  ENERGY EIGENVALUE===> -0.876451923558E-01 ERROR= .2306744E-14

  ENERGY EIGENVALUE===> -0.412267198395E-01 ERROR= .2280033E-14

  ENERGY EIGENVALUE===> -0.126212972547E-01 ERROR= .1971012E-14

 

  FOR CHECKING THE Schrodinger WAVE FUNCTION INPUT I==> 1

  SKIP INPUT I==> 2

  I=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.01262

  INPUT THE NAME OF OUTPUT FILE

v1

 CONFINEMENT FACTOR OF    1 th LAYER = 0.52282888-137

 CONFINEMENT FACTOR OF    2 th LAYER = 0.34694604E-02

 CONFINEMENT FACTOR OF    3 th LAYER = 0.99306255E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.34679900E-02

 CONFINEMENT FACTOR OF    5 th LAYER = 0.52260731-137

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.04123

  INPUT THE NAME OF OUTPUT FILE

v2

 CONFINEMENT FACTOR OF    1 th LAYER = 0.10877571-125

 CONFINEMENT FACTOR OF    2 th LAYER = 0.14859493E-01

 CONFINEMENT FACTOR OF    3 th LAYER = 0.97028911E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.14851394E-01

 CONFINEMENT FACTOR OF    5 th LAYER = 0.10871642-125

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

2

Fig. C.5.3.  Envelope functions for heavy holes

 

iii) Steps to calculate the light hole energy levels

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

4

  INPUT THE NUMBER OF QUANTUM WELLS NUM=?

1

  INPUT TOTAL LAYERS FOR STRUCTURE--N ODD

  INPUT N=

5

  INPUT THE HIGHEST POTENTIAL(1st Q-WELL) LAYER IC= ?

3

  INPUT THE SELECTED CENTER OF THE STRUCTURE ICR=?

3

 *******************************************************

   INPUT I=1  FOR AlGaAs

         I=2  FOR InGaAsP

         I=3  FOR In(1-x)Ga(x)As/InGaAsP/InP

         I=4  FOR InGaAlAs/InGaAlAs

         I=5  FOR GaInP/(AlGa)0.5In0.5P/AlInP

         I=6  FOR InGaAs/AlGaAs/AlGaAs

         I=7  FOR InGaAs/InGaAsP/Ga0.51In0.49P(GaAs)

         I=8  FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

         I=9  FOR In(z)Ga(1-z)As/AlxGayIn1-x-yAs/InP

         I=10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(InP)

         I=11 FOR InzGa1-zAs/AlxGayIn1-x-yAs/AlAsxSb1-x

         I=12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs

         I=13 FOR InGaAs/In(1-x)Ga(x)As(y)P(1-y)/GaAs

   INPUT I= ?

 *******************************************************

5

 *******************************************************

 

  DOES THE STRUCTURE STRAIN OR STRAIN-COMPENSATED?

  IF STRAIN ONLY INPUT 1, STRAIN-COMPENSATED INPUT 2

  INPUT SELECT = ?

 

1

  ENERGY EIGENVALUE===> -0.355569923291E+00 ERROR= .2120444E-14

  ENERGY EIGENVALUE===> -0.350213432069E+00 ERROR= .2426284E-14

  ENERGY EIGENVALUE===> -0.342922783182E+00 ERROR= .3165783E-14

  ENERGY EIGENVALUE===> -0.337911435179E+00 ERROR= .5718315E-14

  ENERGY EIGENVALUE===> -0.330625015453E+00 ERROR= .2861106E-14

  ENERGY EIGENVALUE===> -0.326008761019E+00 ERROR= .4734580E-14

  ENERGY EIGENVALUE===> -0.318798731413E+00 ERROR= .1888460E-14

  ENERGY EIGENVALUE===> -0.314568675940E+00 ERROR= .1013061E-13

  ENERGY EIGENVALUE===> -0.307483438965E+00 ERROR= .3719772E-14

  ENERGY EIGENVALUE===> -0.303617431871E+00 ERROR= .5426840E-14

  ENERGY EIGENVALUE===> -0.296698810286E+00 ERROR= .1928970E-14

  ENERGY EIGENVALUE===> -0.293170593472E+00 ERROR= .4117972E-14

  ENERGY EIGENVALUE===> -0.286456711046E+00 ERROR= .2087373E-14

  ENERGY EIGENVALUE===> -0.283239553955E+00 ERROR= .5116587E-14

  ENERGY EIGENVALUE===> -0.276765133426E+00 ERROR= .4002561E-14

  ENERGY EIGENVALUE===> -0.273833711271E+00 ERROR= .3188520E-14

  ENERGY EIGENVALUE===> -0.267629853353E+00 ERROR= .2473219E-13

  ENERGY EIGENVALUE===> -0.264961286499E+00 ERROR= .4783343E-14

  ENERGY EIGENVALUE===> -0.259055249198E+00 ERROR= .1445075E-13

  ENERGY EIGENVALUE===> -0.256629650468E+00 ERROR= .2986270E-14

  ENERGY EIGENVALUE===> -0.251044756020E+00 ERROR= .4368280E-14

  ENERGY EIGENVALUE===> -0.248845466028E+00 ERROR= .3916633E-14

  ENERGY EIGENVALUE===> -0.243601143953E+00 ERROR= .3203893E-14

  ENERGY EIGENVALUE===> -0.241614764042E+00 ERROR= .3829278E-14

  ENERGY EIGENVALUE===> -0.236726707646E+00 ERROR= .2318723E-14

  ENERGY EIGENVALUE===> -0.234942997591E+00 ERROR= .4144951E-14

  ENERGY EIGENVALUE===> -0.230423413478E+00 ERROR= .3722336E-14

  ENERGY EIGENVALUE===> -0.228835088921E+00 ERROR= .1889767E-14

  ENERGY EIGENVALUE===> -0.224693035843E+00 ERROR= .7133531E-14

  ENERGY EIGENVALUE===> -0.223295471814E+00 ERROR= .2689170E-14

  ENERGY EIGENVALUE===> -0.219537311510E+00 ERROR= .3510794E-14

  ENERGY EIGENVALUE===> -0.218328128086E+00 ERROR= .1768869E-14

  ENERGY EIGENVALUE===> -0.214958149620E+00 ERROR= .2491797E-14

  ENERGY EIGENVALUE===> -0.213936616153E+00 ERROR= .2951357E-14

  ENERGY EIGENVALUE===> -0.210957957871E+00 ERROR= .5197287E-14

  ENERGY EIGENVALUE===> -0.210124090200E+00 ERROR= .3596255E-14

  ENERGY EIGENVALUE===> -0.207540190458E+00 ERROR= .2365701E-14

  ENERGY EIGENVALUE===> -0.206893309508E+00 ERROR= .1630595E-14

  ENERGY EIGENVALUE===> -0.204710293790E+00 ERROR= .2473877E-14

  ENERGY EIGENVALUE===> -0.204246638588E+00 ERROR= .1699402E-14

  ENERGY EIGENVALUE===> -0.202477269514E+00 ERROR= .4978716E-14

  ENERGY EIGENVALUE===> -0.202186039835E+00 ERROR= .1133236E-14

  ENERGY EIGENVALUE===> -0.200855776105E+00 ERROR= .3613962E-14

  ENERGY EIGENVALUE===> -0.200713061214E+00 ERROR= .2681968E-14

  ENERGY EIGENVALUE===> -0.199867089971E+00 ERROR= .4376218E-14

  ENERGY EIGENVALUE===> -0.199828822046E+00 ERROR= .2747680E-14

  ENERGY EIGENVALUE===> -0.194053584736E+00 ERROR= .2807414E-14

  ENERGY EIGENVALUE===> -0.921176591126E-01 ERROR= .2804206E-14

  ENERGY EIGENVALUE===> -0.113712309471E-01 ERROR= .2367096E-14

 

  FOR CHECKING THE Schrodinger WAVE FUNCTION INPUT I==> 1

  SKIP INPUT I==> 2

  I=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.01137

  INPUT THE NAME OF OUTPUT FILE

v1

 CONFINEMENT FACTOR OF    1 th LAYER = 0.74617117-109

 CONFINEMENT FACTOR OF    2 th LAYER = 0.42705762E+00

 CONFINEMENT FACTOR OF    3 th LAYER = 0.60268078E-39

 CONFINEMENT FACTOR OF    4 th LAYER = 0.57294238E+00

 CONFINEMENT FACTOR OF    5 th LAYER = 0.74606910-109

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.09212

  INPUT THE NAME OF OUTPUT FILE

v2

 CONFINEMENT FACTOR OF    1 th LAYER = 0.15954161E-52

 CONFINEMENT FACTOR OF    2 th LAYER = 0.75010282E-01

 CONFINEMENT FACTOR OF    3 th LAYER = 0.84999032E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.74999400E-01

 CONFINEMENT FACTOR OF    5 th LAYER = 0.15951847E-52

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

2

Fig. C.5.4.  Envelope functions for light holes

 

b) The main output file from this part of GAIN program is energy.dat, containing all the energy levels as shown in Table C.5.5. After the energy eigen values are calculated, the GAIN program asks the user whether he would like to check the wave envelope function or not. We suggest that the user check the wave envelope functions of the first and second energy levels for conduction and valence bands.

 

Table C.5.5. output file energy.dat

CONDUCTION BAND ENERGY===>  0.961974438375E-02 ERROR= .2786910E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.743662554277E-01 ERROR= .2580380E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.107675191040E+00 ERROR= .4266368E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.107688174734E+00 ERROR= .2463437E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.108376258685E+00 ERROR= .6317963E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.108428037338E+00 ERROR= .1442872E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.109543687391E+00 ERROR= .2900562E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.109659654907E+00 ERROR= .1483391E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.111175954839E+00 ERROR= .2524093E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.111380963353E+00 ERROR= .1915930E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.113270939913E+00 ERROR= .2521982E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.113589356334E+00 ERROR= .2292240E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.115825939696E+00 ERROR= .2102730E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.116281876661E+00 ERROR= .1980838E-14

                                                    

  CONDUCTION BAND ENERGY===>  0.118837702628E+00 ERROR= .2070679E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.119455372783E+00 ERROR= .1414132E-14

                                                    

  CONDUCTION BAND ENERGY===>  0.122302488065E+00 ERROR= .2748183E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.123106599250E+00 ERROR= .1286513E-14

                                                    

  CONDUCTION BAND ENERGY===>  0.126216164546E+00 ERROR= .2382521E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.127232254643E+00 ERROR= .1318435E-14

                                                    

  CONDUCTION BAND ENERGY===>  0.130574357571E+00 ERROR= .3582667E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.131828958191E+00 ERROR= .2236097E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.135372648300E+00 ERROR= .2832335E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.136893165876E+00 ERROR= .2662248E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.140606801955E+00 ERROR= .2075560E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.142421018041E+00 ERROR= .2486680E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.146272964900E+00 ERROR= .2509426E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.148408090543E+00 ERROR= .1416510E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.152367710782E+00 ERROR= .3201183E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.154848978871E+00 ERROR= .2597122E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.158887734556E+00 ERROR= .1766965E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.161736541616E+00 ERROR= .2628242E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.165828843460E+00 ERROR= .2472018E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.169060333436E+00 ERROR= .1986998E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.173183433744E+00 ERROR= .3017043E-14

                                                    

  CONDUCTION BAND ENERGY===>  0.176802685912E+00 ERROR= .1597014E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.180933567715E+00 ERROR= .2328795E-14

                                                    

  CONDUCTION BAND ENERGY===>  0.184925313643E+00 ERROR= .2516799E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.189021845141E+00 ERROR= .1893777E-14

                                                    

  CONDUCTION BAND ENERGY===>  0.193267857341E+00 ERROR= .2992086E-14

                                                   

  HEAVY HOLE ENERGY===> -0.361192916606E+00 ERROR= .2318346E-14

                                                    

  HEAVY HOLE ENERGY===> -0.358485532473E+00 ERROR= .4956447E-14

                                                   

  HEAVY HOLE ENERGY===> -0.354716248972E+00 ERROR= .5526373E-14

                                                   

  HEAVY HOLE ENERGY===> -0.351913554427E+00 ERROR= .5317960E-14

                                                   

  HEAVY HOLE ENERGY===> -0.348266207154E+00 ERROR= .2918676E-14

                                                   

  HEAVY HOLE ENERGY===> -0.345413437374E+00 ERROR= .3749323E-14

                                                   

  HEAVY HOLE ENERGY===> -0.341928545612E+00 ERROR= .3487911E-14

                                                   

  HEAVY HOLE ENERGY===> -0.339023804865E+00 ERROR= .4983602E-14

                                                   

  HEAVY HOLE ENERGY===> -0.335719117586E+00 ERROR= .2977748E-14

                                                   

  HEAVY HOLE ENERGY===> -0.332757485607E+00 ERROR= .2663835E-14

                                                    

  HEAVY HOLE ENERGY===> -0.329642979500E+00 ERROR= .4769990E-14

                                                   

  HEAVY HOLE ENERGY===> -0.326621008574E+00 ERROR= .2474339E-14

                                                    

  HEAVY HOLE ENERGY===> -0.323701256646E+00 ERROR= .4188658E-14

                                                   

  HEAVY HOLE ENERGY===> -0.320618410761E+00 ERROR= .4940924E-14

                                                   

  HEAVY HOLE ENERGY===> -0.317893261288E+00 ERROR= .3395574E-14

                                                   

  HEAVY HOLE ENERGY===> -0.314752486888E+00 ERROR= .2722462E-14

                                                   

  HEAVY HOLE ENERGY===> -0.312217533281E+00 ERROR= .3080726E-14

                                                   

  HEAVY HOLE ENERGY===> -0.309025316890E+00 ERROR= .3714707E-14

                                                   

  HEAVY HOLE ENERGY===> -0.306672506150E+00 ERROR= .3651204E-14

                                                   

  HEAVY HOLE ENERGY===> -0.303438526815E+00 ERROR= .4852848E-14

                                                   

  HEAVY HOLE ENERGY===> -0.301256950156E+00 ERROR= .2606583E-14

                                                    

  HEAVY HOLE ENERGY===> -0.297993433199E+00 ERROR= .3079430E-14

                                                   

  HEAVY HOLE ENERGY===> -0.295970220156E+00 ERROR= .3775307E-14

                                                    

  HEAVY HOLE ENERGY===> -0.292691130035E+00 ERROR= .5023247E-14

                                                   

  HEAVY HOLE ENERGY===> -0.290812329627E+00 ERROR= .4216785E-14

                                                    

  HEAVY HOLE ENERGY===> -0.287532544737E+00 ERROR= .2473812E-14

                                                   

  HEAVY HOLE ENERGY===> -0.285783893576E+00 ERROR= .3723957E-14

                                                   

  HEAVY HOLE ENERGY===> -0.282518476130E+00 ERROR= .5303396E-14

                                                   

  HEAVY HOLE ENERGY===> -0.280885995969E+00 ERROR= .4570210E-14

                                                   

  HEAVY HOLE ENERGY===> -0.277649621354E+00 ERROR= .3537788E-14

                                                   

  HEAVY HOLE ENERGY===> -0.276120032911E+00 ERROR= .4293540E-14

                                                   

  HEAVY HOLE ENERGY===> -0.272926595561E+00 ERROR= .3632004E-14

                                                   

  HEAVY HOLE ENERGY===> -0.271487567178E+00 ERROR= .2909894E-14

                                                   

  HEAVY HOLE ENERGY===> -0.268349946744E+00 ERROR= .3976899E-14

                                                    

  HEAVY HOLE ENERGY===> -0.266990212090E+00 ERROR= .4204415E-14

                                                   

  HEAVY HOLE ENERGY===> -0.263920167090E+00 ERROR= .1103405E-13

                                                    

  HEAVY HOLE ENERGY===> -0.262629549143E+00 ERROR= .1689306E-14

                                                   

  HEAVY HOLE ENERGY===> -0.259637701783E+00 ERROR= .3319052E-14

                                                   

  HEAVY HOLE ENERGY===> -0.258407076018E+00 ERROR= .3786958E-14

                                                   

  HEAVY HOLE ENERGY===> -0.255502955805E+00 ERROR= .1151041E-13

                                                   

  HEAVY HOLE ENERGY===> -0.254324178366E+00 ERROR= .4380337E-14

                                                   

  HEAVY HOLE ENERGY===> -0.251516299101E+00 ERROR= .1407601E-13

                                                   

  HEAVY HOLE ENERGY===> -0.250382118475E+00 ERROR= .2547440E-14

                                                   

  HEAVY HOLE ENERGY===> -0.247678070270E+00 ERROR= .9114289E-14

                                                   

  HEAVY HOLE ENERGY===> -0.246582034966E+00 ERROR= .2802900E-14

                                                    

  HEAVY HOLE ENERGY===> -0.243988578824E+00 ERROR= .4761360E-14

                                                   

  HEAVY HOLE ENERGY===> -0.242924949068E+00 ERROR= .2434459E-14

                                                    

  HEAVY HOLE ENERGY===> -0.240448105895E+00 ERROR= .3480106E-14

                                                   

  HEAVY HOLE ENERGY===> -0.239411774399E+00 ERROR= .4274582E-14

                                                   

  HEAVY HOLE ENERGY===> -0.237056903110E+00 ERROR= .6999869E-14

                                                   

  HEAVY HOLE ENERGY===> -0.236043328190E+00 ERROR= .3901435E-14

                                                   

  HEAVY HOLE ENERGY===> -0.233815189170E+00 ERROR= .4571935E-14

                                                   

  HEAVY HOLE ENERGY===> -0.232820342717E+00 ERROR= .2810531E-14

                                                   

  HEAVY HOLE ENERGY===> -0.230723143380E+00 ERROR= .3910965E-14

                                                   

  HEAVY HOLE ENERGY===> -0.229743476197E+00 ERROR= .1968086E-14

                                                   

  HEAVY HOLE ENERGY===> -0.227780895151E+00 ERROR= .4565070E-14

                                                    

  HEAVY HOLE ENERGY===> -0.226813322769E+00 ERROR= .2321745E-14

                                                   

  HEAVY HOLE ENERGY===> -0.224988508124E+00 ERROR= .5484183E-14

                                                    

  HEAVY HOLE ENERGY===> -0.224030421380E+00 ERROR= .1919168E-14

                                                   

  HEAVY HOLE ENERGY===> -0.222345957410E+00 ERROR= .1879845E-14

                                                   

  HEAVY HOLE ENERGY===> -0.221395263540E+00 ERROR= .1827758E-14

                                                   

  HEAVY HOLE ENERGY===> -0.219853098509E+00 ERROR= .4186959E-14

                                                   

  HEAVY HOLE ENERGY===> -0.218908299959E+00 ERROR= .3620360E-14

                                                   

  HEAVY HOLE ENERGY===> -0.217509627335E+00 ERROR= .2453680E-14

                                                   

  HEAVY HOLE ENERGY===> -0.216569946120E+00 ERROR= .3220033E-14

                                                   

  HEAVY HOLE ENERGY===> -0.215315033070E+00 ERROR= .3463684E-14

                                                   

  HEAVY HOLE ENERGY===> -0.214380586860E+00 ERROR= .2219382E-14

                                                   

  HEAVY HOLE ENERGY===> -0.213268550022E+00 ERROR= .2777570E-14

                                                   

  HEAVY HOLE ENERGY===> -0.212340580018E+00 ERROR= .2743067E-14

                                                    

  HEAVY HOLE ENERGY===> -0.211369121597E+00 ERROR= .4226083E-14

                                                   

  HEAVY HOLE ENERGY===> -0.210450259232E+00 ERROR= .3692444E-14

                                                    

  HEAVY HOLE ENERGY===> -0.209615397194E+00 ERROR= .3171740E-14

                                                   

  HEAVY HOLE ENERGY===> -0.208709935933E+00 ERROR= .4209780E-14

                                                   

  HEAVY HOLE ENERGY===> -0.208005786497E+00 ERROR= .1814778E-14

                                                   

  HEAVY HOLE ENERGY===> -0.207119900601E+00 ERROR= .3397305E-14

                                                   

  HEAVY HOLE ENERGY===> -0.206538587407E+00 ERROR= .3003403E-14

                                                   

  HEAVY HOLE ENERGY===> -0.205680423359E+00 ERROR= .3543397E-14

                                                   

  HEAVY HOLE ENERGY===> -0.205212178908E+00 ERROR= .2834381E-14

                                                   

  HEAVY HOLE ENERGY===> -0.204391753956E+00 ERROR= .3372802E-14

                                                   

  HEAVY HOLE ENERGY===> -0.204025235404E+00 ERROR= .1580920E-14

                                                    

  HEAVY HOLE ENERGY===> -0.203254121238E+00 ERROR= .3043020E-14

                                                   

  HEAVY HOLE ENERGY===> -0.202976896095E+00 ERROR= .2298392E-14

                                                    

  HEAVY HOLE ENERGY===> -0.202267732184E+00 ERROR= .3884085E-14

                                                   

  HEAVY HOLE ENERGY===> -0.202066832823E+00 ERROR= .1442648E-14

                                                   

  HEAVY HOLE ENERGY===> -0.201432770625E+00 ERROR= .3171156E-14

                                                   

  HEAVY HOLE ENERGY===> -0.201295200743E+00 ERROR= .2947302E-14

                                                   

  HEAVY HOLE ENERGY===> -0.200749395757E+00 ERROR= .5270798E-14

                                                   

  HEAVY HOLE ENERGY===> -0.200662501388E+00 ERROR= .1723172E-14

                                                   

  HEAVY HOLE ENERGY===> -0.200217740582E+00 ERROR= .3038427E-14

                                                   

  HEAVY HOLE ENERGY===> -0.200169410122E+00 ERROR= .1957778E-14

                                                   

  HEAVY HOLE ENERGY===> -0.199837910396E+00 ERROR= .3248494E-14

                                                    

  HEAVY HOLE ENERGY===> -0.199816614058E+00 ERROR= .1532467E-14

                                                   

  HEAVY HOLE ENERGY===> -0.199609981468E+00 ERROR= .5295449E-14

                                                    

  HEAVY HOLE ENERGY===> -0.199604685919E+00 ERROR= .1312598E-14

                                                   

  HEAVY HOLE ENERGY===> -0.148632604544E+00 ERROR= .2080935E-14

                                                   

  HEAVY HOLE ENERGY===> -0.876451923558E-01 ERROR= .2306744E-14

                                                   

  HEAVY HOLE ENERGY===> -0.412267198395E-01 ERROR= .2280033E-14

                                                   

  HEAVY HOLE ENERGY===> -0.126212972547E-01 ERROR= .1971012E-14

                                                   

  LIGHT HOLE ENERGY===> -0.355569923291E+00 ERROR= .2120444E-14

                                                   

  LIGHT HOLE ENERGY===> -0.350213432069E+00 ERROR= .2426284E-14

                                                   

  LIGHT HOLE ENERGY===> -0.342922783182E+00 ERROR= .3165783E-14

                                                   

  LIGHT HOLE ENERGY===> -0.337911435179E+00 ERROR= .5718315E-14

                                                    

  LIGHT HOLE ENERGY===> -0.330625015453E+00 ERROR= .2861106E-14

                                                   

  LIGHT HOLE ENERGY===> -0.326008761019E+00 ERROR= .4734580E-14

                                                    

  LIGHT HOLE ENERGY===> -0.318798731413E+00 ERROR= .1888460E-14

                                                   

  LIGHT HOLE ENERGY===> -0.314568675940E+00 ERROR= .1013061E-13

                                                    

  LIGHT HOLE ENERGY===> -0.307483438965E+00 ERROR= .3719772E-14

                                                   

  LIGHT HOLE ENERGY===> -0.303617431871E+00 ERROR= .5426840E-14

                                                   

  LIGHT HOLE ENERGY===> -0.296698810286E+00 ERROR= .1928970E-14

                                                   

  LIGHT HOLE ENERGY===> -0.293170593472E+00 ERROR= .4117972E-14

                                                   

  LIGHT HOLE ENERGY===> -0.286456711046E+00 ERROR= .2087373E-14

                                                   

  LIGHT HOLE ENERGY===> -0.283239553955E+00 ERROR= .5116587E-14

                                                   

  LIGHT HOLE ENERGY===> -0.276765133426E+00 ERROR= .4002561E-14

                                                   

  LIGHT HOLE ENERGY===> -0.273833711271E+00 ERROR= .3188520E-14

                                                   

  LIGHT HOLE ENERGY===> -0.267629853353E+00 ERROR= .2473219E-13

                                                    

  LIGHT HOLE ENERGY===> -0.264961286499E+00 ERROR= .4783343E-14

                                                   

  LIGHT HOLE ENERGY===> -0.259055249198E+00 ERROR= .1445075E-13

                                                    

  LIGHT HOLE ENERGY===> -0.256629650468E+00 ERROR= .2986270E-14

                                                   

  LIGHT HOLE ENERGY===> -0.251044756020E+00 ERROR= .4368280E-14

                                                   

  LIGHT HOLE ENERGY===> -0.248845466028E+00 ERROR= .3916633E-14

                                                   

  LIGHT HOLE ENERGY===> -0.243601143953E+00 ERROR= .3203893E-14

                                                   

  LIGHT HOLE ENERGY===> -0.241614764042E+00 ERROR= .3829278E-14

                                                   

  LIGHT HOLE ENERGY===> -0.236726707646E+00 ERROR= .2318723E-14

                                                   

  LIGHT HOLE ENERGY===> -0.234942997591E+00 ERROR= .4144951E-14

                                                   

  LIGHT HOLE ENERGY===> -0.230423413478E+00 ERROR= .3722336E-14

                                                   

  LIGHT HOLE ENERGY===> -0.228835088921E+00 ERROR= .1889767E-14

                                                    

  LIGHT HOLE ENERGY===> -0.224693035843E+00 ERROR= .7133531E-14

                                                   

  LIGHT HOLE ENERGY===> -0.223295471814E+00 ERROR= .2689170E-14

                                                    

  LIGHT HOLE ENERGY===> -0.219537311510E+00 ERROR= .3510794E-14

                                                   

  LIGHT HOLE ENERGY===> -0.218328128086E+00 ERROR= .1768869E-14

                                                   

  LIGHT HOLE ENERGY===> -0.214958149620E+00 ERROR= .2491797E-14

                                                   

  LIGHT HOLE ENERGY===> -0.213936616153E+00 ERROR= .2951357E-14

                                                   

  LIGHT HOLE ENERGY===> -0.210957957871E+00 ERROR= .5197287E-14

                                                   

  LIGHT HOLE ENERGY===> -0.210124090200E+00 ERROR= .3596255E-14

                                                   

  LIGHT HOLE ENERGY===> -0.207540190458E+00 ERROR= .2365701E-14

                                                   

  LIGHT HOLE ENERGY===> -0.206893309508E+00 ERROR= .1630595E-14

                                                   

  LIGHT HOLE ENERGY===> -0.204710293790E+00 ERROR= .2473877E-14

                                                    

  LIGHT HOLE ENERGY===> -0.204246638588E+00 ERROR= .1699402E-14

                                                   

  LIGHT HOLE ENERGY===> -0.202477269514E+00 ERROR= .4978716E-14

                                                    

  LIGHT HOLE ENERGY===> -0.202186039835E+00 ERROR= .1133236E-14

                                                   

  LIGHT HOLE ENERGY===> -0.200855776105E+00 ERROR= .3613962E-14

                                                    

  LIGHT HOLE ENERGY===> -0.200713061214E+00 ERROR= .2681968E-14

                                                   

  LIGHT HOLE ENERGY===> -0.199867089971E+00 ERROR= .4376218E-14

                                                   

  LIGHT HOLE ENERGY===> -0.199828822046E+00 ERROR= .2747680E-14

                                                   

  LIGHT HOLE ENERGY===> -0.194053584736E+00 ERROR= .2807414E-14

                                                   

  LIGHT HOLE ENERGY===> -0.921176591126E-01 ERROR= .2804206E-14

                                                   

  LIGHT HOLE ENERGY===> -0.113712309471E-01 ERROR= .2367096E-14

                                                   


 

C.5.3. Computation of Gain and Laser Characteristics

 

This is the last step of simulations using the GAIN program. With the previous calculated material composition, energy band edges, energy levels, and other parameters like material loss and Auger coefficient, the GAIN program can simulate the threshold current, threshold current density, slope efficiency, optical gain and mode gain as functions of wavelengths and photo energies, and L-I curve. The details are explained in Chapter 4 of the manual, and the basic theory is discussed in Appendix C.

 

In this part of GAIN program, the input file needs to be constructed with the results of the previous steps and according to the laser design. In this example, single quantum well structure is used with a ridge length of 500 µm and ridge width of 5 µm, the input file is shown in Table C.5.6. The detailed steps of simulations are listed in Table C.5.7. The main output files: L-I curve, optical gain as a function of  the wavelength, and mode gain vs. current density are plotted in Fig. C.5.5, Fig. C.5.6, and Fig. C.5.7.

 

a) The input file:

 

Table C.5.6. Input file for gain and threshold current calculation

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c     1. Input the compositions, width of well, effective index        c

c        and lasing wavelength.                                        c

c     Ex: xx,xz,qy,xy,lx,n,lam                                         c

c     for different materials the following are the forms of inputs.   c

c                                                                      c

c     w -- > well, b -- > barrier  cxz and cxy for cladding.           c

c                                                                      c

c     a.  AlxGa1-xAs : xx (Al w) xz (Al b) qy (0) xy (0)               c

c     b.  In1-xGaxAsyP1-y : xx (Ga w) xz (Ga b) qy (As w) xy (As b)    c

c     c.  In1-xGaxAs/InGaAsP : xx (Ga w) xz (Ga b) qy (0) xy (As b)    c

c     d.  AlxGayIn1-x-yAs/InP : xx (Ga w) xz (Ga b) qy (Al w) xy (Al b)c

c     e.                                                               c

c     f.  InxGa1-xAs/AlGaAs : xx (In w) xz (0) qy (0) xy (Al b)        c

c     g.                                                               c

c     h.  AlyInxGa1-x-yAs/AlGaAs : xx (Al w) xz (al b) qy (In w) xz (0)c

c     i.  InxGa1-xAs/AlGaInAs : xx (In w) xz (0) qy (Al b) xy (Ga b)   c

c     j.  In(y)Ga(1-y)As(x)N(1-x) :xx(As w),xz(As, b),qy(In w),xy(In b)c

c     k.  InGaAs/InGaAsP/GaAs: xx (In w), (0), xz(Ga w) xy (As b)

c     2. Input the energy gap,temperature, barrier band edges(both bands)

c     Ex: eg,temp,ec,ev                                                c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

0.4 0.0E+00 0.3 0.2  8D0 3.329233 0.635d0

1.968 300  0.1074 0.1995 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c     3. Input the ist level sub-band energy levels.                   c

c     Ex: ec1,eh1,el1                                                  c

c                                                                      c

c     4. Input the material loss, reflectivities, number of quantum    c

c        wells and beta(for spontaneous emission).                     c

c     Ex: alpha,r1,r2,mm,beta.                                         c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

0.00962 0.01262 0.01137 0.07437 0.04123 0.09212

2.0d0  0.300   0.300   1  5.D-5

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c     5. Input the cavity length, ridge width, internal efficiency     c

c        Auger, strain(except AlGaAs,put 0) and confinement factor.    c

c     Ex: cl,cw,etha,ca,es,confine                                     c

c                                                                      c

c     6. Input the cladding composition and band edges.                c

c     Ex: cxz,cxy,ecc,evv                                              c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

500.D-4  5.0D-4  0.97  1.00d-29   0.0027  0.03028

0.0  0.5  0.195 0.362

 

b) The steps for these calculations mentioned are listed in Table C.5.7

 

Table C.5.7. The steps for the gain and threshold current density calculations

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

5

  THE INPUT FILE NAME=

RED2

  SELECT MATERIAL=?

  1--AlGaAs

  2--InGaAsP

  3--In1-zGazAs/InGaAsP/InP

  4-- InGaAlAs

  5--GaInP/AlzGawIn1-z-wP/Al0.5In0.5P

  6-- InxGa1-xAs/AlxGa1-xAs/AlGaAs

  7--In1-xGaxAs/InGaAsP/GaxIn1-xP(X=0.51) MATCHED TO GaAs

  8--AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

  9--InzGa1-zAs/AlxGayIn1-x-yAs/InP

  10-- InGaAlAs/InGaAlAs/AlAsSb

  11--InzGa1-zAs/AlxGayIn1-x-yAs/AlAsSb

  12--In(y)Ga(1-y)As(x)N(1-x)/GaAs

  13--InGaAs/In(1-x)Ga(x)As(y)P(1-y)/GaAs

  INPUT SELECTION

5

 INPUT MODE = ? FOR TE--> MODE =1, FOR TM--> MODE =2

  INPUT TE OR TM ?

1

 IF EL1 BELOW EH1 THEN SELECT 1, OTHERWISE SELECT 2

  SELECTION=?

1

  **************************************************

 CALCULATE THE EFFECTIVE MASS

  **************************************************

  FOR QUASI-FERMI LEVEL SELECT=1,

  FOR READ EXISTING QUASI-FERMI LEVEL SELECT=2

  SELECT=?

1

 

……….

  J(LEAKAGE)=0.235638D+05 A/cm^2  N=0.792080D+19 1/cm^3

  J(LEAKAGE)=0.238799D+05 A/cm^2  N=0.794060D+19 1/cm^3

  J(LEAKAGE)=0.241994D+05 A/cm^2  N=0.796040D+19 1/cm^3

  J(LEAKAGE)=0.245222D+05 A/cm^2  N=0.798020D+19 1/cm^3

  J(LEAKAGE)=0.248484D+05 A/cm^2  N=0.800000D+19 1/cm^3

  **************************************************

  G(J) PARAMETERS FROM SINGLE WELL

  Go=0.279835D+02 1/cm  Jo=0.595524D+03 A/cm^2

 

  G(N) PARAMETERS FROM SINGLE WELL

  NGo=0.924158D+03 1/cm  XNo=0.213935D+19 1/cm^3

 

  Jtr=0.219081D+03 A/cm^2  NTR=0.787022D+18 1/cm^3

 

 

  THE OPTIMUM NUMBER OF QUANTUM WELL FOLLOWS THE ARTICLE

  BY McIlory et al. IEEE JQE-21 1985.

 

  THE OPTIMUM NUMBER OF QUANTUM WELL Nopt =           1

  INPUT Nopt(CAN BE DIFFERENT FROM ABOVE CALCULATION)=?

1

  NUMBER OF QUANTUM WELL(MAY OR MAY NOT BE Nopt)=?

1

 

  **************************************************

  **************************************************

  1ST CHECK USE SINGLE WELL TIMES # OF WELLS

  **************************************************

  **************************************************

  2ND CHECK FOLLOWS FORMULA BY McIlory IN IEEE

  JOURNAL OF QUANTUM ELECTRONIC QE-21 1985.

  **************************************************

  Gth=  26.0795 1/cm Nth=0.206015D+19 1/cm^3 IY=  100

   1ST CHECK Jth=   559.67770378 A/cm^2

   2ND CHECK Jth=   613.94244 A/cm^2

 

   1ST CHECK Ith=0.139919D+02 mA NUMBER OF WELLS=  1

   2ND CHECK Ith=0.153486D+02 mA

 

  **************************************************

 CALCULATE THE P-I RELATION

 

 NDATA=         301

  **************************************************

  CALCULATE THE SLOPE: mW/mA Y=A+BX

  CONSTANT A= -12.2471182   SLOPE B=   0.8752979

 

  **************************************************

  INPUT POWER PO FOR THE LINEWIDTH, PO=0 FOR STOP

  INPUT PO=    mW

0

 INPUT 1 FOR THE DYNAMIC CALCULATION. 2 FOR SKIP

 INPUT =

2

  K-FACTOR= 0.23795 nS  MAXIUM FREQ.= 37.3426 GHz

 

  **************************************************

  INPUT 1 FOR CALCULATE THE GAIN(E) RELATION.

 

  INPUT 2 FOR CALCULATE THE LINEWIDTH ENHENCEMENT

  FACTOR AND PHOTON ENERGY RELATION

 

  INPUT 3 FOR EXIT THE PROGRAM

 

 THE INPUT # IS

1

 INPUT FERMILEVELS IN C-BAND, V-BAND, AND CARRIER DENSITY

0.0908 0.00389 3E18

 CALCULATE THE CONVOLUTION GAIN(E) COEFFICIENT

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(LAMBDA)

gl3

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(LAMBDA)

glm3

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(E)

ge3

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(E)

gem3

  **************************************************

 INPUT 1 FOR REPEAT THE G(E) CALCULATION

 INPUT 2 FOR REPEAT THE ALPHA(E) CALCULATION

 INPUT 3 FOR EXIT

1

  **************************************************

  INPUT 1 FOR CALCULATE THE GAIN(E) RELATION.

 

  INPUT 2 FOR CALCULATE THE LINEWIDTH ENHENCEMENT

  FACTOR AND PHOTON ENERGY RELATION

 

  INPUT 3 FOR EXIT THE PROGRAM

 

 THE INPUT # IS

1

 INPUT FERMILEVELS IN C-BAND, V-BAND, AND CARRIER DENSITY

0.0332 -0.0289 1E18

 CALCULATE THE CONVOLUTION GAIN(E) COEFFICIENT

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(LAMBDA)

gl1

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(LAMBDA)

glm1

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(E)

ge1

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(E)

gem1

  **************************************************

 INPUT 1 FOR REPEAT THE G(E) CALCULATION

 INPUT 2 FOR REPEAT THE ALPHA(E) CALCULATION

 INPUT 3 FOR EXIT

1

  **************************************************

  INPUT 1 FOR CALCULATE THE GAIN(E) RELATION.

 

  INPUT 2 FOR CALCULATE THE LINEWIDTH ENHENCEMENT

  FACTOR AND PHOTON ENERGY RELATION

 

  INPUT 3 FOR EXIT THE PROGRAM

 

 THE INPUT # IS

1

 INPUT FERMILEVELS IN C-BAND, V-BAND, AND CARRIER DENSITY

0.132 0.0214 5E18

 CALCULATE THE CONVOLUTION GAIN(E) COEFFICIENT

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(LAMBDA)

gl5

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(LAMBDA)

glm5

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(E)

ge5

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(E)

gem5

  **************************************************

 INPUT 1 FOR REPEAT THE G(E) CALCULATION

 INPUT 2 FOR REPEAT THE ALPHA(E) CALCULATION

 INPUT 3 FOR EXIT

3

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

7

 

c) The Output characteristics of designed laser from step 5 are summarized in Table C.5.7.

 

Table C.5.7 Characteristics of the designed laser

Optimized number of QWs (Nopt)

2

Number of QWs

3

Slope efficiency (%)

21.84

Jth (A/cm^2)

560 - 1st check, for matching threshold conditions

614 – 2nd check, using McIlory method

Ith (mA)

14.0 mA - 1st check, for matching threshold conditions

15.3 mA - 2nd check, using McIlory method

Peak l at operating temperature (um)

631 nm for carrier density of 3.0E18 /cm3

631 nm for carrier density of 5.0E18 /cm3

Peak material gain (1/cm)

3152 /cm for carrier density of 2.0E18 /cm3

4808 /cm for carrier density of 2.0E18 /cm3

 


Fig. C.5.5. L-I curve of the laser

Fig. C.5.6. Optical gain-l curve of the laser

Fig. C.5.7. Mode gain as a function of current density (J)


C.6. Material system #6: InGaAs/AlGaAs/AlGaAs

 

This is a simulation of a five-layer laser structure that contains a single compressively strained quantum well (QW), two separated confinement heterostructure (SCH) layers, and two cladding layers as shown in Fig. C.6.1.

 

Figure C.6.6. Energy band diagram for the single quantum well structure

 

C.6.1. Calculation of material compositions and energy band edges.

 

The first step of the GAIN program is to calculate the material compositions and energy band edges of the each layer. The user is asked to enter the photoluminescence wavelength, thickness, and strain of the QW, SCH, and cladding layers. After these parameters are input, the GAIN program generates two output files: cbandeg.dat and vbandeg.dat, containing the material compositions, and the conduction band edges and valence band edges respectively. The detailed explanation is provided in Chapter 2 of this manual.

 

a) The input parameters to the GAIN program in this step are listed in Table. C.6.1.

 

Table C.6.1. Input parameters to the GAIN program in this step.

Layer

l (um)

Strain

Thickness (Ǻ)

QW (InxGa1-xAs1-y)

1.06

-0.0119285

90

SCH (AlxGa1-xAs1-y)

0.871

-

100

Cladding (AlxGa1-xAs1-y)

0.6665

-

100

 

b) The steps in using the GAIN program to calculate the material compositions and energy band edges are listed in Table C.6.2

 

Table C.6.2. Steps to run the GAIN program for necessary parameters.

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

1

 

 ENTER 1 FOR AlGaAs/AlGaAs

       2 FOR InGaAsP/InGaAsP/InP

       3 FOR InGaAs/InGaAsP/InP

       4 FOR InGaAlAs/InGaAlAs/InP

       5 FOR GaInP/(AlGa)0.5In0.5P/AlInP

       6 FOR InGaAs/AlGaAs/AlGaAs

       7 FOR InGaAs/InGaAsP/Ga0.51In0.49P(MATCHED GaAs)

       8 FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

       9 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/InP

      10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(matched InP)

      11 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/AlAsxSb1-x

      12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs (dilute N)

      13 FOR In(1-x)Ga(x)As(y)P(1-y)/GaAs

      14 FOR EXIT, BACK TO MAIN PAGE!

6

 INPUT THE LAYER # FOR GRIN STRUCTURE(STEP)

 STEP N=

2

  INPUT THE WELL WAVELENGTH (um)

1.06

  INPUT THE BARRIER WAVELENGTH (um)

0.871

  INPUT THE CLADDING WAVELENGTH (um)

0.6665

  BANDGAP ENERGY OF QUANTUM WELL=    1.16981132075472       eV

  INPUT CLADDING, BARRIER,QUANTUM WELL WIDTH (A)

100 100 90

  STRAIN FOR InGaAs/AlGaAs IS  -1.192854285325509E-002

 

  WRITE CONDUCTION BAND PARAMETERS INTO CBANDEG.DAT

 

  WRITE VALENCE BAND PARAMETERS INTO VBANDEG.DAT

  INPUT 1 FOR NEW CALCULATION, 2 FOR EXIT

  I= ?

2

 

 ENTER 1 FOR AlGaAs/AlGaAs

       2 FOR InGaAsP/InGaAsP/InP

       3 FOR InGaAs/InGaAsP/InP

       4 FOR InGaAlAs/InGaAlAs/InP

       5 FOR GaInP/(AlGa)0.5In0.5P/AlInP

       6 FOR InGaAs/AlGaAs/AlGaAs

       7 FOR InGaAs/InGaAsP/Ga0.51In0.49P(MATCHED GaAs)

       8 FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

       9 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/InP

      10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(matched InP)

      11 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/AlAsxSb1-x

      12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs (dilute N)

      13 FOR In(1-x)Ga(x)As(y)P(1-y)/GaAs

      14 FOR EXIT, BACK TO MAIN PAGE!

14

  THIS PROGRAM STOP HERE!, BACK TO MAIN PAGE

 

c) The output files, cbandeg.dat and vbandeg.dat are explained in Table C.6.3.

           

                Table C.6.3. Material compositions and band offsets:

 

a) cbandeg.dat for conduction band

************************************************************************

  QW strain    lattice constant

  -.119285E-01  0.572074E-09

                                          material compositions(see Table C.6.1 for x and y)

  layer thickness,                x                          y       conduction band edges

   0.10000000E+03   0.35001212E+00     0.0000000     0.4143923        cladding layer

   0.10000000E+03   0.00000000E+00     0.0000000     0.1525132        SCH layer

   0.90000000E+02   0.16650773E+00     0.0000000     0.0779318        quantum well                     

   0.10000000E+03   0.00000000E+00     0.0000000     0.1525132        SCH layer

   0.10000000E+03   0.35001212E+00     0.0000000     0.4143923        cladding layer

************************************************************************

 

b) vbandeg.dat for valence band

**************************************************** ********************

  QW strain    lattice constant

-.119285E-01  0.572074E-09

                                          material compositions(see Table C.6.1 for x and y)

  layer thickness,                x                            y      valence band edges

   0.10000000E+03   0.35001212E+00     0.0000000    -0.2762615      cladding layer

   0.10000000E+03   0.00000000E+00     0.0000000    -0.1016755       SCH layer

   0.90000000E+02   0.16650773E+00     0.0000000    -0.0389659       quantum well

   0.10000000E+03   0.00000000E+00     0.0000000    -0.1016755       SCH layer

   0.10000000E+03   0.35001212E+00     0.0000000    -0.2762615       cladding layer

************************************************************************

 

C.6.2. Energy level calculations

 

After the calculation of the material compositions and energy band edges, the GAIN program calculates energy levels in the conduction band and valence bands. The detailed explanations are discussed in Chapter 3 of this manual.

 

a) The steps of how to calculate the energy levels are shown in Table C.6.4.

 

Table C.6.4. Steps to calculate the energy levels

 

i) Steps to calculate the conduction band energy levels

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

2

  INPUT THE NUMBER OF QUANTUM WELLS NUM=?

1

  INPUT TOTAL LAYERS FOR STRUCTURE--N ODD

  INPUT N=

5

  INPUT THE LOWEST POTENTIAL LAYER(1st Q-WELL) IC= ?

3

  INPUT THE SELECTED CENTER LAYER OF STRUCTURE ICR=

3

 *******************************************************

   INPUT I=1  FOR AlGaAs

         I=2  FOR InGaAsP

         I=3  FOR In1-xGaxAs/InGaAsP/InP

         I=4  FOR InGaAlAs/InGaAlAs

         I=5  FOR GaInP/(AlGa)0.5In0.5P/AlInP

         I=6  FOR InGaAs/AlGaAs/AlGaAs

         I=7  FOR InGaAs/InGaAsP/Ga0.51In0.49P(GaAs)

         I=8  FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

         I=9  FOR InzGa1-zAs/AlxGayIn1-x-yAs/InP

         I=10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(InP)

         I=11 FOR InzGa1-zAs/AlxGayIn1-x-yAs/AlAsxSb1-x

         I=12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs

         I=13 FOR InGaAs/In(1-y)Ga(x)As(y)P(1-y)/GaAs

   INPUT I= ?

 *******************************************************

6

  ENERGY EIGENVALUE===>  0.103971205206E+00 ERROR= .2196720E-14

  ENERGY EIGENVALUE===>  0.160339839908E+00 ERROR= .4536506E-14

  ENERGY EIGENVALUE===>  0.188593940032E+00 ERROR= .1502184E-14

  ENERGY EIGENVALUE===>  0.216772324699E+00 ERROR= .1762640E-14

  ENERGY EIGENVALUE===>  0.274768762405E+00 ERROR= .2171751E-14

  ENERGY EIGENVALUE===>  0.325125329658E+00 ERROR= .2457422E-14

  ENERGY EIGENVALUE===>  0.391898735270E+00 ERROR= .3003635E-14

  FOR CHECKING THE Schrodinger WAVE FUNCTION INPUT I==> 1

  SKIP INPUT I==> 2

  I=?

1

  INPUT THE EIGENVALUE

0.103971205206E+00

  INPUT THE NAME OF OUTPUT FILE

cb1.txt

 CONFINEMENT FACTOR OF    1 th LAYER = 0.30876860E-04

 CONFINEMENT FACTOR OF    2 th LAYER = 0.77269958E-01

 CONFINEMENT FACTOR OF    3 th LAYER = 0.84539833E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.77269958E-01

 CONFINEMENT FACTOR OF    5 th LAYER = 0.30876860E-04

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

0.160339839908E+00

  INPUT THE NAME OF OUTPUT FILE

cb2.txt

CONFINEMENT FACTOR OF    1 th LAYER = 0.17971109E-02

CONFINEMENT FACTOR OF    2 th LAYER = 0.34495801E+00

CONFINEMENT FACTOR OF    3 th LAYER = 0.30648976E+00

CONFINEMENT FACTOR OF    4 th LAYER = 0.34495801E+00

CONFINEMENT FACTOR OF    5 th LAYER = 0.17971109E-02

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

2

 

ii) Steps to calculate the heavy hole energy levels

 ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

3

  INPUT THE NUMBER OF QUANTUM WELLS NUM=?

1

  INPUT TOTAL LAYERS FOR STRUCTURE--N ODD

  INPUT N=

5

  INPUT THE HIGHEST POTENTIAL(1st Q-WELL) LAYER IC= ?

3

  INPUT THE SELECTED CENTER OF THE STRUCTURE ICR=?

3

 *******************************************************

   INPUT I=1  FOR AlGaAs

         I=2  FOR InGaAsP

         I=3  FOR In(1-x)Ga(x)As/InGaAsP/InP

         I=4  FOR InGaAlAs/InGaAlAs

         I=5  FOR GaInP/(AlGa)0.5In0.5P/AlInP

         I=6  FOR InGaAs/AlGaAs/AlGaAs

         I=7  FOR InGaAs/InGaAsP/Ga0.51In0.49P(GaAs)

         I=8  FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

         I=9  FOR In(z)Ga(1-z)As/AlxGayIn1-x-yAs/InP

         I=10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(InP)

         I=11 FOR InzGa1-zAs/AlxGayIn1-x-yAs/AlAsxSb1-x

         I=12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs

         I=13 FOR InGaAs/In(1-x)Ga(x)As(y)P(1-y)/GaAs

   INPUT I= ?

 *******************************************************

6

 *******************************************************

 

  DOES THE STRUCTURE STRAIN OR STRAIN-COMPENSATED?

  IF STRAIN ONLY INPUT 1, STRAIN-COMPENSATED INPUT 2

  INPUT SELECT = ?

 

1

ENERGY EIGENVALUE===> -0.276161746518E+00 ERROR= .3213873E-14

ENERGY EIGENVALUE===> -0.249003066242E+00 ERROR= .3486414E-14

ENERGY EIGENVALUE===> -0.228161537631E+00 ERROR= .4497189E-14

ENERGY EIGENVALUE===> -0.203092263186E+00 ERROR= .5310731E-14

ENERGY EIGENVALUE===> -0.180916942916E+00 ERROR= .3511095E-14

ENERGY EIGENVALUE===> -0.165761178280E+00 ERROR= .4162485E-14

ENERGY EIGENVALUE===> -0.143069425545E+00 ERROR= .4250671E-14

ENERGY EIGENVALUE===> -0.133410067391E+00 ERROR= .3870578E-14

ENERGY EIGENVALUE===> -0.118223143065E+00 ERROR= .4899315E-14

ENERGY EIGENVALUE===> -0.110268204173E+00 ERROR= .1851366E-14

ENERGY EIGENVALUE===> -0.105757454777E+00 ERROR= .1558283E-14

ENERGY EIGENVALUE===> -0.699260205944E-01 ERROR= .1407043E-14

ENERGY EIGENVALUE===> -0.320975532071E-01 ERROR= .1616452E-14

ENERGY EIGENVALUE===> -0.777880626765E-02 ERROR= .2132668E-14

  FOR CHECKING THE Schrodinger WAVE FUNCTION INPUT I==> 1

  SKIP INPUT I==> 2

  I=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.777880626765E-02

  INPUT THE NAME OF OUTPUT FILE

hh1.txt

 CONFINEMENT FACTOR OF    1 th LAYER = 0.10519999E-10

 CONFINEMENT FACTOR OF    2 th LAYER = 0.76950168E-02

 CONFINEMENT FACTOR OF    3 th LAYER = 0.98460997E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.76950168E-02

 CONFINEMENT FACTOR OF    5 th LAYER = 0.10519999E-10

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.320975532071E-01

  INPUT THE NAME OF OUTPUT FILE

hh2.txt

CONFINEMENT FACTOR OF    1 th LAYER = 0.54106617E-09

CONFINEMENT FACTOR OF    2 th LAYER = 0.33991734E-01

CONFINEMENT FACTOR OF    3 th LAYER = 0.93201653E+00

CONFINEMENT FACTOR OF    4 th LAYER = 0.33991734E-01

CONFINEMENT FACTOR OF    5 th LAYER = 0.54106617E-09

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

2

 

iii) Steps to calculate the light hole energy levels

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

4

  INPUT THE NUMBER OF QUANTUM WELLS NUM=?

1

  INPUT TOTAL LAYERS FOR STRUCTURE--N ODD

  INPUT N=

5

  INPUT THE HIGHEST POTENTIAL(1st Q-WELL) LAYER IC= ?

3

  INPUT THE SELECTED CENTER OF THE STRUCTURE ICR=?

3

 *******************************************************

   INPUT I=1  FOR AlGaAs

         I=2  FOR InGaAsP

         I=3  FOR In(1-x)Ga(x)As/InGaAsP/InP

         I=4  FOR InGaAlAs/InGaAlAs

         I=5  FOR GaInP/(AlGa)0.5In0.5P/AlInP

         I=6  FOR InGaAs/AlGaAs/AlGaAs

         I=7  FOR InGaAs/InGaAsP/Ga0.51In0.49P(GaAs)

         I=8  FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

         I=9  FOR In(z)Ga(1-z)As/AlxGayIn1-x-yAs/InP

         I=10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(InP)

         I=11 FOR InzGa1-zAs/AlxGayIn1-x-yAs/AlAsxSb1-x

         I=12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs

         I=13 FOR InGaAs/In(1-x)Ga(x)As(y)P(1-y)/GaAs

   INPUT I= ?

 *******************************************************

6

 *******************************************************

 

  DOES THE STRUCTURE STRAIN OR STRAIN-COMPENSATED?

  IF STRAIN ONLY INPUT 1, STRAIN-COMPENSATED INPUT 2

  INPUT SELECT = ?

 

1

 

ENERGY EIGENVALUE===> -0.241668303016E+00 ERROR= .4759339E-14

ENERGY EIGENVALUE===> -0.204240716400E+00 ERROR= .3625060E-14

ENERGY EIGENVALUE===> -0.163104914064E+00 ERROR= .6006058E-14

ENERGY EIGENVALUE===> -0.133943830987E+00 ERROR= .3084882E-14

ENERGY EIGENVALUE===> -0.117111299716E+00 ERROR= .1442205E-14

ENERGY EIGENVALUE===> -0.914197602868E-01 ERROR= .2400351E-14

  FOR CHECKING THE Schrodinger WAVE FUNCTION INPUT I==> 1

  SKIP INPUT I==> 2

  I=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.914197602868E-01

  INPUT THE NAME OF OUTPUT FILE

lh1.txt

 CONFINEMENT FACTOR OF    1 th LAYER = 0.29896156E-03

 CONFINEMENT FACTOR OF    2 th LAYER = 0.15044882E+00

 CONFINEMENT FACTOR OF    3 th LAYER = 0.69850443E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.15044882E+00

 CONFINEMENT FACTOR OF    5 th LAYER = 0.29896156E-03

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.117111299716E+00

  INPUT THE NAME OF OUTPUT FILE

lh2.txt

CONFINEMENT FACTOR OF    1 th LAYER = 0.47451492E-02

CONFINEMENT FACTOR OF    2 th LAYER = 0.42827779E+00

CONFINEMENT FACTOR OF    3 th LAYER = 0.13395411E+00

CONFINEMENT FACTOR OF    4 th LAYER = 0.42827779E+00

CONFINEMENT FACTOR OF    5 th LAYER = 0.47451492E-02

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

2

 

b) The main output file from this part of GAIN program is energy.dat, containing all the energy levels as shown in Table C.6.5. After the energy eigen values are calculated, the GAIN program asks the user whether he would like to check the wave envelope function or not. We suggest that the user check the wave envelope functions of the first and second energy levels for conduction, heavy hole and light-hole bands. The plots of the envelope functions are shown in Fig. C.6.2, Fig. C.6.3, Fig C.6.4. 

 

Table C.6.5. output file energy.dat

  CONDUCTION BAND ENERGY===>  0.103971205206E+00 ERROR= .2196720E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.160339839908E+00 ERROR= .4536506E-14

                                                   

………….

                                                   

  HEAVY HOLE ENERGY===> -0.320975532071E-01 ERROR= .1616452E-14

                                                   

  HEAVY HOLE ENERGY===> -0.777880626765E-02 ERROR= .2132668E-14

                                                    

…………..

 

  LIGHT HOLE ENERGY===> -0.117111299716E+00 ERROR= .1442205E-14

                                                   

  LIGHT HOLE ENERGY===> -0.914197602868E-01 ERROR= .2400351E-14

                                                                                                        

 

 

Fig. C.6.2. Wave envelope functions for energy levels in conduction band

 

Fig. C.6.3. Wave envelope functions for heavy hole energy levels

 

Fig. C.6.4. Wave envelope functions for light hole energy levels

 

C.6.3. Computation of Gain and Laser Characteristics

 

This is the last step of simulations using the GAIN program. With the previous calculated material composition, energy band edges, energy levels, and other parameters like material loss and Auger coefficient, the GAIN program can simulate the threshold current, threshold current density, slope efficiency, optical gain and mode gain as functions of wavelengths and photon energies, and L-I curve. The details are explained in Chapter 4 of the manual.

 

In this part of GAIN program, the input file needs to be constructed with the results of the previous steps and according to the laser design. The input file of material #6 is shown in Table C.6.6. The detailed steps of simulations are listed in Table C.6.7. The main output files: L-I curve, optical gain as a function of  the wavelength, and mode gain vs. current density are plotted in Fig. C.6.5, Fig. C.6.6, and Fig. C.6.7.

 

a) The input file:

 

Table C.6.6. Input file (mat_13.txt) for gain and threshold current calculation

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c     1. Input the compositions, width of well, effective index                              c

c        and lasing wavelength.                                                                                c

c     Ex: xx,xz,qy,xy,lx,n,lam                                                                                c

c     for different materials the following are the forms of inputs.                        c

c                                                                                                                             c

c     w -- > well, b -- > barrier  cxz and cxy for cladding.                                     c

c                                                                                                                             c

c     a.  AlxGa1-xAs : xx (Al w) xz (Al b) qy (0) xy (0)                                       c

c     b.  In1-xGaxAsyP1-y : xx (Ga w) xz (Ga b) qy (As w) xy (As b)                 c

c     c.  In1-xGaxAs/InGaAsP : xx (Ga w) xz (Ga b) qy (0) xy (As b)                 c

c     d.  AlxGayIn1-x-yAs/InP : xx (Ga w) xz (Ga b) qy (Al w) xy (Al b)           c

c     e.                                                                                                                     c

c     f.  InxGa1-xAs/AlGaAs : xx (In w) xz (0) qy (0) xy (Al b)                        c

c     g.                                                                                                                     c

c     h.  AlyInxGa1-x-yAs/AlGaAs : xx (Al w) xz (al b) qy (In w) xz (0)            c

c     i.  In1-xGaxAs/AlGaInAs : xx (In w) xz (0) qy (Al b) xy (Ga b)                  c

c     j.  In(y)Ga(1-y)As(x)N(1-x) :xx(As w),xz(As, b),qy(In w),xy(In b)             c

c     k.  InGaAs/InGaAsP/GaAs: xx (In w), (0), xz(Ga w) xy (As b)

c     2. Input the energy gap,temperature, barrier band edges(both bands)

c     Ex: eg,temp,ec,ev                                                                                           c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

0.16650773E+00    0.0          0.0          0.0         9          3.33             0.975

1.1698                    298         0.1525132                    0.1016755              

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c     3. Input the ist level sub-band energy levels.                                                 c

c     Ex: ec1,eh1,el1                                                                                               c

c                                                                                                                             c

c     4. Input the material loss, reflectivities, number of quantum                         c

c        wells and beta(for spontaneous emission).                                                  c

c     Ex: alpha,r1,r2,mm,beta.                                                                                c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

0.103971     0.0077788      0.09141976      0.16034      0.03209756     0.1171113

6.0d0         0.3000              0.300             1              5.D-5

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c     5. Input the cavity length, ridge width, internal efficiency                            c

c        Auger, strain(except AlGaAs,put 0) and confinement factor.                     c

c     Ex: cl,cw,etha,ca,es,confine                                                                           c

c                                                                                                                             c

c     6. Input the cladding composition and band edges.                                        c

c     Ex: cxz,cxy,ecc,evv                                                                                        c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

1000.D-4         4.0D-4         0.86           1.00d-29         0.000         0.018

0.35001212       0.0       0.4143923   0.2762615

 

b) The steps for these calculations mentioned are listed in Table C.6.7

 

Table C.6.7. The steps for the gain and threshold current density calculations

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

5

  THE INPUT FILE NAME=

mat_6.tex

  SELECT MATERIAL=?

  1--AlGaAs

  2--InGaAsP

  3--In1-zGazAs/InGaAsP/InP

  4-- InGaAlAs

  5--GaInP/AlzGawIn1-z-wP/Al0.5In0.5P

  6-- InxGa1-xAs/AlxGa1-xAs/AlGaAs

  7--In1-xGaxAs/InGaAsP/GaxIn1-xP(X=0.51) MATCHED TO GaAs

  8--AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

  9--InzGa1-zAs/AlxGayIn1-x-yAs/InP

  10-- InGaAlAs/InGaAlAs/AlAsSb

  11--InzGa1-zAs/AlxGayIn1-x-yAs/AlAsSb

  12--In(y)Ga(1-y)As(x)N(1-x)/GaAs

  13--InGaAs/In(1-x)Ga(x)As(y)P(1-y)/GaAs

  INPUT SELECTION

6

 INPUT MODE = ? FOR TE--> MODE =1, FOR TM--> MODE =2

  INPUT TE OR TM ?

1

 IF EL1 BELOW EH1 THEN SELECT 1, OTHERWISE SELECT 2

  SELECTION=?

1

  **************************************************

 CALCULATE THE EFFECTIVE MASS

  **************************************************

  FOR QUASI-FERMI LEVEL SELECT=1,

  FOR READ EXISTING QUASI-FERMI LEVEL SELECT=2

  SELECT=?

1

 

……….

J(LEAKAGE)=0.274159D+05 A/cm^2  N=0.780201D+19 1/cm^3

J(LEAKAGE)=0.280129D+05 A/cm^2  N=0.782180D+19 1/cm^3

J(LEAKAGE)=0.286204D+05 A/cm^2  N=0.784160D+19 1/cm^3

J(LEAKAGE)=0.292386D+05 A/cm^2  N=0.786140D+19 1/cm^3

J(LEAKAGE)=0.298675D+05 A/cm^2  N=0.788120D+19 1/cm^3

J(LEAKAGE)=0.305072D+05 A/cm^2  N=0.790100D+19 1/cm^3

J(LEAKAGE)=0.311578D+05 A/cm^2  N=0.792080D+19 1/cm^3

J(LEAKAGE)=0.318195D+05 A/cm^2  N=0.794060D+19 1/cm^3

J(LEAKAGE)=0.324922D+05 A/cm^2  N=0.796040D+19 1/cm^3

J(LEAKAGE)=0.331761D+05 A/cm^2  N=0.798020D+19 1/cm^3

J(LEAKAGE)=0.338712D+05 A/cm^2  N=0.800000D+19 1/cm^3

  **************************************************

    G(J) PARAMETERS FROM SINGLE WELL

  Go=0.348368D+02 1/cm  Jo=0.261496D+03 A/cm^2

 

  G(N) PARAMETERS FROM SINGLE WELL

  NGo=0.193538D+04 1/cm  XNo=0.134737D+19 1/cm^3

 

  Jtr=0.961992D+02 A/cm^2  NTR=0.495669D+18 1/cm^3

 

 

  THE OPTIMUM NUMBER OF QUANTUM WELL FOLLOWS THE ARTICLE

  BY McIlory et al. IEEE JQE-21 1985.

 

  THE OPTIMUM NUMBER OF QUANTUM WELL Nopt =           1

  INPUT Nopt(CAN BE DIFFERENT FROM ABOVE CALCULATION)=?

1

  NUMBER OF QUANTUM WELL(MAY OR MAY NOT BE Nopt)=?

1

  **************************************************

  **************************************************

  1ST CHECK USE SINGLE WELL TIMES # OF WELLS

  **************************************************

  **************************************************

  2ND CHECK FOLLOWS FORMULA BY McIlory IN IEEE

  JOURNAL OF QUANTUM ELECTRONIC QE-21 1985.

  **************************************************

    Gth=  18.0397 1/cm Nth=0.753383D+18 1/cm^3 IY=   34

   1ST CHECK Jth=   152.41859383 A/cm^2

   2ND CHECK Jth=   304.06565 A/cm^2

 

   1ST CHECK Ith=0.609674D+01 mA NUMBER OF WELLS=  1

   2ND CHECK Ith=0.121626D+02 mA

 

  **************************************************

 CALCULATE THE P-I RELATION

 

 NDATA=         367

  **************************************************

  CALCULATE THE SLOPE: mW/mA Y=A+BX

  CONSTANT A=  -3.2295952   SLOPE B=   0.3609355

 

  **************************************************

  INPUT POWER PO FOR THE LINEWIDTH, PO=0 FOR STOP

  INPUT PO=    mW

0

 INPUT 1 FOR THE DYNAMIC CALCULATION. 2 FOR SKIP

 INPUT =

2

  K-FACTOR= 0.25787 nS  MAXIUM FREQ.= 34.4582 GHz

  **************************************************

  INPUT 1 FOR CALCULATE THE GAIN(E) RELATION.

 

  INPUT 2 FOR CALCULATE THE LINEWIDTH ENHENCEMENT

  FACTOR AND PHOTON ENERGY RELATION

 

  INPUT 3 FOR EXIT THE PROGRAM

 

 THE INPUT # IS

1

INPUT FERMILEVELS IN C-BAND, V-BAND, AND CARRIER DENSITY

0.196827942412E+00 0.314112077552E-02 0.200075187970E+19

 CALCULATE THE CONVOLUTION GAIN(E) COEFFICIENT

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(LAMBDA)

ol1_mat6

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(LAMBDA)

ml1_mat6

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(E)

oe1_mat6

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(E)

me1_mat6

  **************************************************

 INPUT 1 FOR REPEAT THE G(E) CALCULATION

 INPUT 2 FOR REPEAT THE ALPHA(E) CALCULATION

 INPUT 3 FOR EXIT

1

  ************************************************** 

  INPUT 1 FOR CALCULATE THE GAIN(E) RELATION.

 

  INPUT 2 FOR CALCULATE THE LINEWIDTH ENHENCEMENT

  FACTOR AND PHOTON ENERGY RELATION

 

  INPUT 3 FOR EXIT THE PROGRAM

 

 THE INPUT # IS

1

INPUT FERMILEVELS IN C-BAND, V-BAND, AND CARRIER DENSITY

0.232657297045E+00 0.168447625974E-01  0.299072681704E+19

 CALCULATE THE CONVOLUTION GAIN(E) COEFFICIENT

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(LAMBDA)

ol2_mat6

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(LAMBDA)

ml2_mat6

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(E)

oe2_mat6

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(E)

me2_mat6

  **************************************************

 INPUT 1 FOR REPEAT THE G(E) CALCULATION

 INPUT 2 FOR REPEAT THE ALPHA(E) CALCULATION

 INPUT 3 FOR EXIT

3

 

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

7

 

c) The Output characteristics of designed laser from step 5 are summarized in Table C.6.7.

 

Table C.6.7 Characteristics of the designed laser

Optimized number of QWs (Nopt)

1

Number of QWs

1

Slope efficiency (%)

36.12

Jth (A/cm^2)

152.42 - 1st check, for matching threshold conditions

304.07  - 2nd check, using McIlory method

Peak l at operating temperature (um)

0.973 um for carrier density of 2.0E18 /cm3

0.974 um for carrier density of 3.0E18 /cm3

Peak material gain (1/cm)

2724/cm for carrier density of 2.0E18 /cm3

3472 /cm for carrier density of 3.0E18 /cm3

 


 

Fig. C.6.5. L-I curve of the laser

Fig. C.6.6. Optical gain-l curve of the laser

 

 

Fig. C.6.7. Mode gain as a function of current density (J)

 

 

 


C.8. Material system #8: AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

 

This is a simulation of a five-layer laser structure that contains a single quantum well (QW), two separated confinement heterostructure (SCH) layers, and two cladding layers as shown in Fig. C.8.1.

 

Figure C.8.7. Energy band diagram for the simple quantum well structure

 

C.8.1. Calculation of material compositions and energy band edges.

 

The first step of the GAIN program is to calculate the material compositions and energy band edges of the each layer. The user is asked to enter the photoluminescence wavelength, thickness, and strain of the QW, SCH, and cladding layers. After these parameters are input, the GAIN program generates two output files: cbandeg.dat and vbandeg.dat, containing the material compositions, and the conduction band edges and valence band edges respectively. The detailed explanation is provided in Chapter 2 of this manual.

 

a) The input parameters to the GAIN program in this step is listed in Table. C.8.1.

 

Table C.4.1. Input parameters to the GAIN program in this step.

Layer

l (um)

Strain

Thickness (Ǻ)

QW (AlyInxGa1-x-yAs)

0.9397

-0.016

70

SCH (AlzGa1-zAs)

0.74101

 

100

Cladding (AlzGa1-zAs)

0.56

 

1000

 

b) The steps in using the GAIN program to calculate the material compositions and energy band edges are listed in Table C.8.2

 

Table C.8.2. steps to run the GAIN program for necessary parameters.

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

1

 

 ENTER 1 FOR AlGaAs/AlGaAs

       2 FOR InGaAsP/InGaAsP/InP

       3 FOR InGaAs/InGaAsP/InP

       4 FOR InGaAlAs/InGaAlAs/InP

       5 FOR GaInP/(AlGa)0.5In0.5P/AlInP

       6 FOR InGaAs/AlGaAs/AlGaAs

       7 FOR InGaAs/InGaAsP/Ga0.51In0.49P(MATCHED GaAs)

       8 FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

       9 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/InP

      10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(matched InP)

      11 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/AlAsxSb1-x

      12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs (dilute N)

      13 FOR In(1-x)Ga(x)As(y)P(1-y)/GaAs

      14 FOR EXIT, BACK TO MAIN PAGE!

8

 INPUT THE LAYER # FOR GRIN STRUCTURE(STEP)

 STEP N=

2

  INPUT THE WELL WAVELENGTH (um)

0.9397

  INPUT THE BARRIER WAVELENGTH (um)

0.74101

  INPUT THE CLADDING WAVELENGTH (um)

0.56

    BANDGAP ENERGY OF QUANTUM WELL=    1.31957007555603       eV

  INPUT CLADDING, BARRIER,QUANTUM WELL WIDTH (A)

1000 100 70

 

CALCULATE AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

 

  INPUT STRAIN

-0.016

 

WELL LATTICE =    5.74375727038792       BARRIER LATTICE =

   5.65485994822169

  STRAIN =  -1.572051703847871E-002

 

  WRITE CONDUCTION BAND PARAMETERS INTO CBANDEG.DAT

 

  WRITE VALENCE BAND PARAMETERS INTO VBANDEG.DAT

  INPUT 1 FOR NEW CALCULATION, 2 FOR EXIT

  I= ?

 

2

 

 ENTER 1 FOR AlGaAs/AlGaAs

       2 FOR InGaAsP/InGaAsP/InP

       3 FOR InGaAs/InGaAsP/InP

       4 FOR InGaAlAs/InGaAlAs/InP

       5 FOR GaInP/(AlGa)0.5In0.5P/AlInP

       6 FOR InGaAs/AlGaAs/AlGaAs

       7 FOR InGaAs/InGaAsP/Ga0.51In0.49P(MATCHED GaAs)

       8 FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

       9 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/InP

      10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(matched InP)

      11 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/AlAsxSb1-x

      12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs (dilute N)

      13 FOR In(1-x)Ga(x)As(y)P(1-y)/GaAs

      14 FOR EXIT, BACK TO MAIN PAGE!

14

  THIS PROGRAM STOP HERE!, BACK TO MAIN PAGE

 

c) The output files, cbandeg.dat and vbandeg.dat are explained in Table C.8.3.

           

                Table C.8.3. Material compositions and band offsets:

 

a) cbandeg.dat for conduction band

************************************************************************

  QW strain    lattice constant

  -.157205E-01  0.574376E-09

                                          material compositions

  layer thickness,     Al(barrier)In (qw)    Al(qw)     conduction band edges

   0.10000000E+04   0.61015643E+00     0.0000000     0.6084067        cladding layer

   0.10000000E+03   0.19999336E+00     0.0000000     0.2405987        SCH layer

   0.70000000E+02   0.22040026E+00     0.1504008     0.0964814        quantum well

   0.10000000E+03   0.19999336E+00     0.0000000     0.2405987        SCH layer

  0.10000000E+04   0.61015643E+00     0.0000000     0.6084067        cladding layer

************************************************************************

 

b) vbandeg.dat for valence band

**************************************************** ********************

  QW strain    lattice constant

-.157205E-01  0.574376E-09

                                          material compositions

  layer thickness,      Al(barrier)In (qw)    Al(qw)     valence band edges

   0.10000000E+04   0.61015643E+00     0.0000000    -0.2863090       cladding layer

   0.10000000E+03   0.19999336E+00     0.0000000    -0.1132229       SCH layer

   0.70000000E+02   0.22040026E+00     0.1504008    -0.0482407       quantum well

   0.10000000E+03   0.19999336E+00     0.0000000    -0.1132229       SCH layer

   0.10000000E+04   0.61015643E+00     0.0000000    -0.2863090      cladding layer

************************************************************************

 

C.8.2. Energy level calculations

 

After the calculation of the material compositions and energy band edges, the GAIN program calculates energy levels in the conduction band and valence bands. The detailed explanations are discussed in Chapter 3 of this manual.

 

a) The steps of how to calculate the energy levels are shown in Table C.8.4.

 

Table C.8.4. Steps to calculate the energy levels

 

i) Steps to calculate the conduction band energy levels

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

2

  INPUT THE NUMBER OF QUANTUM WELLS NUM=?

1

  INPUT TOTAL LAYERS FOR STRUCTURE--N ODD

  INPUT N=

5

  INPUT THE LOWEST POTENTIAL LAYER(1st Q-WELL) IC= ?

3

  INPUT THE SELECTED CENTER LAYER OF STRUCTURE ICR=

3

 *******************************************************

   INPUT I=1  FOR AlGaAs

         I=2  FOR InGaAsP

         I=3  FOR In1-xGaxAs/InGaAsP/InP

         I=4  FOR InGaAlAs/InGaAlAs

         I=5  FOR GaInP/(AlGa)0.5In0.5P/AlInP

         I=6  FOR InGaAs/AlGaAs/AlGaAs

         I=7  FOR InGaAs/InGaAsP/Ga0.51In0.49P(GaAs)

         I=8  FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

         I=9  FOR InzGa1-zAs/AlxGayIn1-x-yAs/InP

         I=10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(InP)

         I=11 FOR InzGa1-zAs/AlxGayIn1-x-yAs/AlAsxSb1-x

         I=12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs

         I=13 FOR InGaAs/In(1-y)Ga(x)As(y)P(1-y)/GaAs

   INPUT I= ?

 *******************************************************

8

  ENERGY EIGENVALUE===>  0.138709276765E+00 ERROR= .4799291E-14

  ENERGY EIGENVALUE===>  0.232901930540E+00 ERROR= .6412287E-14

  ENERGY EIGENVALUE===>  0.276726767247E+00 ERROR= .3711948E-14

  ENERGY EIGENVALUE===>  0.303014125323E+00 ERROR= .1551081E-14

  ENERGY EIGENVALUE===>  0.367974646637E+00 ERROR= .1433712E-14

  ENERGY EIGENVALUE===>  0.425273029859E+00 ERROR= .1640863E-14

  ENERGY EIGENVALUE===>  0.501513800567E+00 ERROR= .2646723E-14

  ENERGY EIGENVALUE===>  0.583662116165E+00 ERROR= .1561274E-14

 

  FOR CHECKING THE Schrodinger WAVE FUNCTION INPUT I==> 1

  SKIP INPUT I==> 2

  I=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

0.138709276765E+00

  INPUT THE NAME OF OUTPUT FILE

ce1.dat

CONFINEMENT FACTOR OF    1 th LAYER = 0.21621179E-05

 CONFINEMENT FACTOR OF    2 th LAYER = 0.54850032E-01

 CONFINEMENT FACTOR OF    3 th LAYER = 0.89029561E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.54850032E-01

 CONFINEMENT FACTOR OF    5 th LAYER = 0.21621179E-05

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

0.232901930540E+00

  INPUT THE NAME OF OUTPUT FILE

ce2.dat

  CONFINEMENT FACTOR OF    1 th LAYER = 0.41673581E-03

 CONFINEMENT FACTOR OF    2 th LAYER = 0.29132209E+00

 CONFINEMENT FACTOR OF    3 th LAYER = 0.41652235E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.29132209E+00

 CONFINEMENT FACTOR OF    5 th LAYER = 0.41673581E-03

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

2

 

ii) Steps to calculate the heavy hole energy levels

 ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

3

  INPUT THE NUMBER OF QUANTUM WELLS NUM=?

1

  INPUT TOTAL LAYERS FOR STRUCTURE--N ODD

  INPUT N=

5

  INPUT THE HIGHEST POTENTIAL(1st Q-WELL) LAYER IC= ?

3

  INPUT THE SELECTED CENTER OF THE STRUCTURE ICR=?

3

 *******************************************************

   INPUT I=1  FOR AlGaAs

         I=2  FOR InGaAsP

         I=3  FOR In(1-x)Ga(x)As/InGaAsP/InP

         I=4  FOR InGaAlAs/InGaAlAs

         I=5  FOR GaInP/(AlGa)0.5In0.5P/AlInP

         I=6  FOR InGaAs/AlGaAs/AlGaAs

         I=7  FOR InGaAs/InGaAsP/Ga0.51In0.49P(GaAs)

         I=8  FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

         I=9  FOR In(z)Ga(1-z)As/AlxGayIn1-x-yAs/InP

         I=10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(InP)

         I=11 FOR InzGa1-zAs/AlxGayIn1-x-yAs/AlAsxSb1-x

         I=12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs

         I=13 FOR InGaAs/In(1-x)Ga(x)As(y)P(1-y)/GaAs

   INPUT I= ?

 *******************************************************

8

 *******************************************************

 

  DOES THE STRUCTURE STRAIN OR STRAIN-COMPENSATED?

  IF STRAIN ONLY INPUT 1, STRAIN-COMPENSATED INPUT 2

  INPUT SELECT = ?

 

1

 

  ENERGY EIGENVALUE===> -0.284385739775E+00 ERROR= .1839577E-14

  ENERGY EIGENVALUE===> -0.255905460776E+00 ERROR= .2322763E-14

  ENERGY EIGENVALUE===> -0.234841860479E+00 ERROR= .2272918E-14

  ENERGY EIGENVALUE===> -0.206302710392E+00 ERROR= .4324053E-14

  ENERGY EIGENVALUE===> -0.187763267853E+00 ERROR= .5809361E-14

  ENERGY EIGENVALUE===> -0.168383437529E+00 ERROR= .2956487E-14

  ENERGY EIGENVALUE===> -0.149353291457E+00 ERROR= .5093768E-14

  ENERGY EIGENVALUE===> -0.140222438643E+00 ERROR= .2070569E-14

  ENERGY EIGENVALUE===> -0.123256448240E+00 ERROR= .3857883E-14

  ENERGY EIGENVALUE===> -0.120525810269E+00 ERROR= .2284583E-14

  ENERGY EIGENVALUE===> -0.969071742920E-01 ERROR= .2454913E-14

  ENERGY EIGENVALUE===> -0.453040076948E-01 ERROR= .1799212E-14

  ENERGY EIGENVALUE===> -0.972318690802E-02 ERROR= .2326139E-14

 

  FOR CHECKING THE Schrodinger WAVE FUNCTION INPUT I==> 1

  SKIP INPUT I==> 2

  I=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.972318690802E-02

  INPUT THE NAME OF OUTPUT FILE

hhe1.dat

  CONFINEMENT FACTOR OF    1 th LAYER = 0.63895895E-11

 CONFINEMENT FACTOR OF    2 th LAYER = 0.11454696E-01

 CONFINEMENT FACTOR OF    3 th LAYER = 0.97709061E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.11454696E-01

 CONFINEMENT FACTOR OF    5 th LAYER = 0.63895895E-11

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.649012884792E-01

  INPUT THE NAME OF OUTPUT FILE

hhe2.dat

CONFINEMENT FACTOR OF    1 th LAYER = 0.99899806E-09

 CONFINEMENT FACTOR OF    2 th LAYER = 0.52677815E-01

 CONFINEMENT FACTOR OF    3 th LAYER = 0.89464437E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.52677815E-01

 CONFINEMENT FACTOR OF    5 th LAYER = 0.99899806E-09

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

2

 

iii) Steps to calculate the light hole energy levels

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

4

  INPUT THE NUMBER OF QUANTUM WELLS NUM=?

1

  INPUT TOTAL LAYERS FOR STRUCTURE--N ODD

  INPUT N=

5

  INPUT THE HIGHEST POTENTIAL(1st Q-WELL) LAYER IC= ?

3

  INPUT THE SELECTED CENTER OF THE STRUCTURE ICR=?

3

 *******************************************************

   INPUT I=1  FOR AlGaAs

         I=2  FOR InGaAsP

         I=3  FOR In(1-x)Ga(x)As/InGaAsP/InP

         I=4  FOR InGaAlAs/InGaAlAs

         I=5  FOR GaInP/(AlGa)0.5In0.5P/AlInP

         I=6  FOR InGaAs/AlGaAs/AlGaAs

         I=7  FOR InGaAs/InGaAsP/Ga0.51In0.49P(GaAs)

         I=8  FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

         I=9  FOR In(z)Ga(1-z)As/AlxGayIn1-x-yAs/InP

         I=10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(InP)

         I=11 FOR InzGa1-zAs/AlxGayIn1-x-yAs/AlAsxSb1-x

         I=12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs

         I=13 FOR InGaAs/In(1-x)Ga(x)As(y)P(1-y)/GaAs

   INPUT I= ?

 *******************************************************

8

 *******************************************************

 

  DOES THE STRUCTURE STRAIN OR STRAIN-COMPENSATED?

  IF STRAIN ONLY INPUT 1, STRAIN-COMPENSATED INPUT 2

  INPUT SELECT = ?

1

 

  ENERGY EIGENVALUE===> -0.269466833989E+00 ERROR= .5288152E-14

  ENERGY EIGENVALUE===> -0.226547460437E+00 ERROR= .5259840E-14

  ENERGY EIGENVALUE===> -0.186071818477E+00 ERROR= .2292515E-14

  ENERGY EIGENVALUE===> -0.151389428652E+00 ERROR= .1780460E-14

  ENERGY EIGENVALUE===> -0.131943108468E+00 ERROR= .2798805E-14

  ENERGY EIGENVALUE===> -0.110796843027E+00 ERROR= .2434081E-14

 

  FOR CHECKING THE Schrodinger WAVE FUNCTION INPUT I==> 1

  SKIP INPUT I==> 2

  I=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.110796843027E+00

  INPUT THE NAME OF OUTPUT FILE

lhe1.dat

CONFINEMENT FACTOR OF    1 th LAYER = 0.70421019E-03

 CONFINEMENT FACTOR OF    2 th LAYER = 0.22417666E+00

 CONFINEMENT FACTOR OF    3 th LAYER = 0.55023826E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.22417666E+00

 CONFINEMENT FACTOR OF    5 th LAYER = 0.70421019E-03  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.131943108468E+00

  INPUT THE NAME OF OUTPUT FILE

lhe2.dat

CONFINEMENT FACTOR OF    1 th LAYER = 0.59278096E-02

 CONFINEMENT FACTOR OF    2 th LAYER = 0.45844574E+00

 CONFINEMENT FACTOR OF    3 th LAYER = 0.71252902E-01

 CONFINEMENT FACTOR OF    4 th LAYER = 0.45844574E+00

 CONFINEMENT FACTOR OF    5 th LAYER = 0.59278096E-02

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

2

 

b) The main output file from this part of GAIN program is energy.dat, containing all the energy levels as shown in Table C.8.5. After the energy eigen values are calculated, the GAIN program asks the user whether he would like to check the wave envelope function or not. We suggest that the user check the wave envelope functions of the first and second energy levels for conduction and valence bands. The plots of the envelope functions are shown in Fig. C.8.2, Fig. C.8.3, Fig C.8.4. 

 

Table C.8.5. output file energy.dat

  CONDUCTION BAND ENERGY===>  0.138709276765E+00 ERROR= .4799291E-14

                                                    

  CONDUCTION BAND ENERGY===>  0.232901930540E+00 ERROR= .6412287E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.276726767247E+00 ERROR= .3711948E-14

                                                    

  CONDUCTION BAND ENERGY===>  0.303014125323E+00 ERROR= .1551081E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.367974646637E+00 ERROR= .1433712E-14

                                                    

  CONDUCTION BAND ENERGY===>  0.425273029859E+00 ERROR= .1640863E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.501513800567E+00 ERROR= .2646723E-14

                                                    

  CONDUCTION BAND ENERGY===>  0.583662116165E+00 ERROR= .1561274E-14

                                                   

  HEAVY HOLE ENERGY===> -0.284385739775E+00 ERROR= .1839577E-14

                                                   

  HEAVY HOLE ENERGY===> -0.255905460776E+00 ERROR= .2322763E-14

                                                   

  HEAVY HOLE ENERGY===> -0.234841860479E+00 ERROR= .2272918E-14

                                                   

  HEAVY HOLE ENERGY===> -0.206302710392E+00 ERROR= .4324053E-14

                                                   

  HEAVY HOLE ENERGY===> -0.187763267853E+00 ERROR= .5809361E-14

                                                   

  HEAVY HOLE ENERGY===> -0.168383437529E+00 ERROR= .2956487E-14

                                                   

  HEAVY HOLE ENERGY===> -0.149353291457E+00 ERROR= .5093768E-14

                                                   

  HEAVY HOLE ENERGY===> -0.140222438643E+00 ERROR= .2070569E-14

                                                    

  HEAVY HOLE ENERGY===> -0.123256448240E+00 ERROR= .3857883E-14

                                                   

  HEAVY HOLE ENERGY===> -0.120525810269E+00 ERROR= .2284583E-14

                                                    

  HEAVY HOLE ENERGY===> -0.969071742920E-01 ERROR= .2454913E-14

                                                   

  HEAVY HOLE ENERGY===> -0.453040076948E-01 ERROR= .1799212E-14

                                                   

  HEAVY HOLE ENERGY===> -0.972318690802E-02 ERROR= .2326139E-14

                                                   

  LIGHT HOLE ENERGY===> -0.269466833989E+00 ERROR= .5288152E-14

                                                   

  LIGHT HOLE ENERGY===> -0.226547460437E+00 ERROR= .5259840E-14

                                                   

  LIGHT HOLE ENERGY===> -0.186071818477E+00 ERROR= .2292515E-14

                                                   

  LIGHT HOLE ENERGY===> -0.151389428652E+00 ERROR= .1780460E-14

                                                   

  LIGHT HOLE ENERGY===> -0.131943108468E+00 ERROR= .2798805E-14

                                                   

  LIGHT HOLE ENERGY===> -0.110796843027E+00 ERROR= .2434081E-14

 

Fig. C.8.2. Wave envelop functions for energy levels in conduction band

Fig. C.8.3. Wave envelop functions for heavy hole energy levels

 

Fig. C.8.4. Wave envelop functions for light hole energy levels

 

C.8.3. Computation of Gain and Laser Characteristics

 

This is the last step of simulations using the GAIN program. With the previous calculated material composition, energy band edges, energy levels, and other parameters like material loss and Auger coefficient, the GAIN program can simulate the threshold current, threshold current density, slope efficiency, optical gain and mode gain as functions of wavelengths and photo energies, and L-I curve. The details are explained in Chapter 4 of the manual.

 

In this part of GAIN program, the input file needs to be constructed with the results of the previous steps and according to the laser design. In this example, single quantum well structure is used. For the three-quantum-well laser with a ridge length of 425 µm and ridge width of 3 µm, the input file is shown in Table C.8.6. The detailed steps of simulations are listed in Table C.8.7. The main output files: L-I curve, optical gain as a function of the wavelength, and mode gain vs. current density are plotted in Fig. C.8.5, Fig. C.8.6, and Fig. C.8.7.

 

a) The input file:

 

Table C.8.6. Input file for gain and threshold current calculation

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c     1. Input the compositions, width of well, effective index        c

c        and lasing wavelength.                                        c

c     Ex: xx,xz,qy,xy,lx,n,lam                                         c

c     for different materials the following are the forms of inputs.   c

c                                                                      c

c     w -- > well, b -- > barrier  cxz and cxy for cladding.           c

c                                                                      c

c     a.  AlxGa1-xAs : xx (Al w) xz (Al b) qy (0) xy (0)               c

c     b.  In1-xGaxAsyP1-y : xx (Ga w) xz (Ga b) qy (As w) xy (As b)    c

c     c.  In1-xGaxAs/InGaAsP : xx (Ga w) xz (Ga b) qy (0) xy (As b)    c

c     d.  AlxGayIn1-x-yAs/InP : xx (Ga w) xz (Ga b) qy (Al w) xy (Al b)c

c     e.                                                               c

c     f.  InxGa1-xAs/AlGaAs : xx (In w) xz (0) qy (0) xy (Al b)        c

c     g.                                                               c

c     h.  AlyInxGa1-x-yAs/AlGaAs : xx (Al w) xz (al b) qy (In w) xz (0)c

c     i.  In1-xGaxAs/AlGaInAs : xx (In w) xz (0) qy (Al b) xy (Ga b)   c

c     j.  In(y)Ga(1-y)As(x)N(1-x) :xx(As w),xz(As, b),qy(In w),xy(In b)c

c     k.  InGaAs/InGaAsP/GaAs: xx (In w), (0), xz(Ga w) xy (As b)

c     2. Input the energy gap,temperature, barrier band edges(both bands)

c     Ex: eg,temp,ec,ev                                                c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

0.22040026E+00 0.19999336E+00 0.1504008 0.0000  7.0 3.2567 0.8500d0

1.31957 298  0.2405987 0.1132229

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c     3. Input the ist level sub-band energy levels.                   c

c     Ex: ec1,eh1,el1                                                  c

c                                                                      c

c     4. Input the material loss, reflectivities, number of quantum    c

c        wells and beta(for spontaneous emission).                     c

c     Ex: alpha,r1,r2,mm,beta.                                         c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

0.138709276765E+00  0.972318690802E-02  0.110796843027E+00  0.232901930540E+00  0.453040076948E-01  1

3.0d0  0.996   0.9994   1  5.D-5cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c     5. Input the cavity length, ridge width, internal efficiency     c

c        Auger, strain(except AlGaAs,put 0) and confinement factor.    c

c     Ex: cl,cw,etha,ca,es,confine                                     c

c                                                                      c

c     6. Input the cladding composition and band edges.                c

c     Ex: cxz,cxy,ecc,evv                                              c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

425.D-4  3.0D-4  0.90  1.00d-29   0.016  0.977

0.61015643E+00  0.00  0.6084067 0.2863090

 

b) The steps for these calculations mentioned are listed in Table C.4.7

 

Table C.8.7. The steps for the gain and threshold current density calculations

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

5

  THE INPUT FILE NAME=

2schsqwalingaas85.tex

  SELECT MATERIAL=?

  1--AlGaAs

  2--InGaAsP

  3--In1-zGazAs/InGaAsP/InP

  4-- InGaAlAs

  5--GaInP/AlzGawIn1-z-wP/Al0.5In0.5P

  6-- InxGa1-xAs/AlxGa1-xAs/AlGaAs

  7--In1-xGaxAs/InGaAsP/GaxIn1-xP(X=0.51) MATCHED TO GaAs

  8--AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

  9--InzGa1-zAs/AlxGayIn1-x-yAs/InP

  10-- InGaAlAs/InGaAlAs/AlAsSb

  11--InzGa1-zAs/AlxGayIn1-x-yAs/AlAsSb

  12--In(y)Ga(1-y)As(x)N(1-x)/GaAs

  13--InGaAs/In(1-x)Ga(x)As(y)P(1-y)/GaAs

  INPUT SELECTION

8

 INPUT MODE = ? FOR TE--> MODE =1, FOR TM--> MODE =2

  INPUT TE OR TM ?

1

 IF EL1 BELOW EH1 THEN SELECT 1, OTHERWISE SELECT 2

  SELECTION=?

1

  **************************************************

 CALCULATE THE EFFECTIVE MASS

  **************************************************

  FOR QUASI-FERMI LEVEL SELECT=1,

  FOR READ EXISTING QUASI-FERMI LEVEL SELECT=2

  SELECT=?

1

 

  J(LEAKAGE)=0.282088D-01 A/cm^2  N=0.239674D+19 1/cm^3

 J(LEAKAGE)=0.288770D-01 A/cm^2  N=0.241654D+19 1/cm^3

 J(LEAKAGE)=0.295579D-01 A/cm^2  N=0.243634D+19 1/cm^3

 J(LEAKAGE)=0.302516D-01 A/cm^2  N=0.245614D+19 1/cm^3

 J(LEAKAGE)=0.309583D-01 A/cm^2  N=0.247594D+19 1/cm^3

 J(LEAKAGE)=0.316783D-01 A/cm^2  N=0.249574D+19 1/cm^3

 J(LEAKAGE)=0.324116D-01 A/cm^2  N=0.251554D+19 1/cm^3

……….

J(LEAKAGE)=0.377958D+01 A/cm^2  N=0.786140D+19 1/cm^3

 J(LEAKAGE)=0.384091D+01 A/cm^2  N=0.788120D+19 1/cm^3

 J(LEAKAGE)=0.390322D+01 A/cm^2  N=0.790100D+19 1/cm^3

 J(LEAKAGE)=0.396654D+01 A/cm^2  N=0.792080D+19 1/cm^3

 J(LEAKAGE)=0.403088D+01 A/cm^2  N=0.794060D+19 1/cm^3

 J(LEAKAGE)=0.409626D+01 A/cm^2  N=0.796040D+19 1/cm^3

 J(LEAKAGE)=0.416269D+01 A/cm^2  N=0.798020D+19 1/cm^3

 J(LEAKAGE)=0.423019D+01 A/cm^2  N=0.800000D+19 1/cm^3

**************************************************

  G(J) PARAMETERS FROM SINGLE WELL

  Go=0.195832D+04 1/cm  Jo=0.338688D+03 A/cm^2

 

  G(N) PARAMETERS FROM SINGLE WELL

  NGo=0.200442D+04 1/cm  XNo=0.162456D+19 1/cm^3

 

  Jtr=0.124596D+03 A/cm^2  NTR=0.597643D+18 1/cm^3

 

 

  THE OPTIMUM NUMBER OF QUANTUM WELL FOLLOWS THE ARTICLE

  BY McIlory et al. IEEE JQE-21 1985.

 

  THE OPTIMUM NUMBER OF QUANTUM WELL Nopt =           1

  INPUT Nopt(CAN BE DIFFERENT FROM ABOVE CALCULATION)=?

1

  NUMBER OF QUANTUM WELL(MAY OR MAY NOT BE Nopt)=?

1

 

**************************************************

 **************************************************

 1ST CHECK USE SINGLE WELL TIMES # OF WELLS

 **************************************************

 **************************************************

 2ND CHECK FOLLOWS FORMULA BY McIlory IN IEEE

 JOURNAL OF QUANTUM ELECTRONIC QE-21 1985.

 **************************************************

 Gth=   3.0542 1/cm Nth=0.456391D+18 1/cm^3 IY=   19

  1ST CHECK Jth=    93.18144132 A/cm^2

  2ND CHECK Jth=   376.31987 A/cm^2

 

  1ST CHECK Ith=0.118806D+01 mA NUMBER OF WELLS=  1

  2ND CHECK Ith=0.479808D+01 mA

 

 **************************************************

CALCULATE THE P-I RELATION

 

NDATA=         382

 **************************************************

 CALCULATE THE SLOPE: mW/mA Y=A+BX

 CONSTANT A=  -0.0238953   SLOPE B=   0.0201129

 

 **************************************************

  INPUT POWER PO FOR THE LINEWIDTH, PO=0 FOR STOP

  INPUT PO=    mW

0

 INPUT 1 FOR THE DYNAMIC CALCULATION. 2 FOR SKIP

 INPUT =

2

   K-FACTOR= 1.46476 nS  MAXIUM FREQ.=  6.0663 GHz

 

  **************************************************

  INPUT 1 FOR CALCULATE THE GAIN(E) RELATION.

 

  INPUT 2 FOR CALCULATE THE LINEWIDTH ENHENCEMENT

  FACTOR AND PHOTON ENERGY RELATION

 

  INPUT 3 FOR EXIT THE PROGRAM

 

 THE INPUT # IS

1

 INPUT FERMILEVELS IN C-BAND, V-BAND, AND CARRIER DENSITY

0.240516079684E+00 0.192582838033E-02 0.301052631579E+19

 CALCULATE THE CONVOLUTION GAIN(E) COEFFICIENT

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(LAMBDA)

ol1.txt

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(LAMBDA)

ml1.txt

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(E)

oe1.txt

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(E)

me1.txt

  **************************************************

 INPUT 1 FOR REPEAT THE G(E) CALCULATION

 INPUT 2 FOR REPEAT THE ALPHA(E) CALCULATION

 INPUT 3 FOR EXIT

1

  **************************************************

  INPUT 1 FOR CALCULATE THE GAIN(E) RELATION.

 

  INPUT 2 FOR CALCULATE THE LINEWIDTH ENHENCEMENT

  FACTOR AND PHOTON ENERGY RELATION

 

  INPUT 3 FOR EXIT THE PROGRAM

 

 THE INPUT # IS

1

 INPUT FERMILEVELS IN C-BAND, V-BAND, AND CARRIER DENSITY

0.292773620684 -0.223794117473E-01 0.301052631579E+19

 CALCULATE THE CONVOLUTION GAIN(E) COEFFICIENT

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(LAMBDA)

ol2.txt

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(LAMBDA)

ml2.txt

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(E)

oe2.txt

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(E)

me2.txt

  **************************************************

 INPUT 1 FOR REPEAT THE G(E) CALCULATION

 INPUT 2 FOR REPEAT THE ALPHA(E) CALCULATION

 INPUT 3 FOR EXIT

3

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

7

 

c) The Output characteristics of designed laser from step 5 are summarized in Table C.8.7.

 

Table C.8.7 Characteristics of the designed laser

Optimized number of QWs (Nopt)

1

Number of QWs

1

Slope efficiency (%)

2.01

Jth (A/cm^2)

93.18- 1st check, for matching threshold conditions

376.32 – 2nd check, using McIlory method

Ith (mA)

1.188mA - 1st check, for matching threshold conditions

4.798 mA - 2nd check, using McIlory method

Peak l at operating temperature (um)

0.84699um for carrier density of 1.0E18 /cm3

0.8512um for carrier density of 3.0E18 /cm3

Peak material gain (1/cm)

1481/cm for carrier density of 2.0E18 /cm3

3518/cm for carrier density of 3.0E18 /cm3

 

 

Fig. C.8.5. L-I curve of the laser

Fig. C.8.6. Optical gain-l curve of the laser

 

Fig. C.8.7. Mode gain as a function of current density (J)



C.9. Material system # 9: InGaAs/AlGaInAs/AlGaInAs  (substrate InP)

 

This is a simulation of a five-layer laser structure that contains a single quantum well (QW), two separated confinement heterostructure (SCH) layers, and two cladding layers as shown in Fig. C.9.1.

 

Figure C.9.8. Energy band diagram for the single quantum well structure

 

C.9.1. Calculation of material compositions and energy band edges.

 

The first step of the GAIN program is to calculate the material compositions and energy band edges of each layer. The user is asked to enter the photoluminescence wavelength, thickness, and strain of the QW, SCH, and cladding layers. After these parameters are input, the GAIN program generates two output files: cbandeg.dat and vbandeg.dat, containing the material compositions, and the conduction band edges and valence band edges respectively. The detailed explanation is provided in Chapter 2 of this manual.

 

a) The input parameters to the GAIN program in this step is listed in Table. C.9.1. The substrate is InP.

 

Table C.9.1. Input parameters to the GAIN program in this step.

Layer

l (um)

Strain

Thickness (Ǻ)

QW (InxGa1-xAs)

1.51

5.1231E-003

150

SCH (AlxGayIn1-x-yAs)

1.28

-

1500

Cladding (AlxGayIn1-x-yAs)

0.83

-

380

 

b) The steps in using the GAIN program to calculate the material compositions and energy band edges are listed in Table C.9.2

 

Table C.9.2. steps to run the GAIN program for necessary parameters.

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

1

 

 ENTER 1 FOR AlGaAs/AlGaAs

       2 FOR InGaAsP/InGaAsP/InP

       3 FOR InGaAs/InGaAsP/InP

       4 FOR InGaAlAs/InGaAlAs/InP

       5 FOR GaInP/(AlGa)0.5In0.5P/AlInP

       6 FOR InGaAs/AlGaAs/AlGaAs

       7 FOR InGaAs/InGaAsP/Ga0.51In0.49P(MATCHED GaAs)

       8 FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

       9 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/InP

      10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(matched InP)

      11 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/AlAsxSb1-x

      12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs (dilute N)

      13 FOR In(1-x)Ga(x)As(y)P(1-y)/GaAs

      14 FOR EXIT, BACK TO MAIN PAGE!

9

 INPUT THE LAYER # FOR GRIN STRUCTURE(STEP)

 STEP N=

2

  INPUT THE WELL WAVELENGTH (um)

1.51

  INPUT THE BARRIER WAVELENGTH (um)

1.28

  INPUT THE CLADDING WAVELENGTH (um)

0.83

BANDGAP ENERGY OF QUANTUM WELL=   0.821192052980132       eV

  INPUT CLADDING, BARRIER,QUANTUM WELL WIDTH (A)

380 1500 150

 THE In(z)Ga(1-z)As/Al(y)Ga(x)In(1-x-y)As/InP MATERIAL

 CALCULATE THE In(z)Ga(1-z)As QUANTUM WELL--Z

 

  FOR BARRIER IS LATTICE MATCHED SELECT ==>1

  FOR BARRIER IS STRAIN COMPENSATED SELECT ==> 2

 

  SELECTION IS ===> ?

1

  X is Ga=   0.293367442525692       Y is Al=   0.177652650765276

 CHECK STRAIN=  5.123144425669000E-003

 

  WRITE CONDUCTION BAND PARAMETERS INTO CBANDEG.DAT

 

  WRITE VALENCE BAND PARAMETERS INTO VBANDEG.DAT

  INPUT 1 FOR NEW CALCULATION

        2 FOR EXIT

  INPUT =?

2

 

 ENTER 1 FOR AlGaAs/AlGaAs

       2 FOR InGaAsP/InGaAsP/InP

       3 FOR InGaAs/InGaAsP/InP

       4 FOR InGaAlAs/InGaAlAs/InP

       5 FOR GaInP/(AlGa)0.5In0.5P/AlInP

       6 FOR InGaAs/AlGaAs/AlGaAs

       7 FOR InGaAs/InGaAsP/Ga0.51In0.49P(MATCHED GaAs)

       8 FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

       9 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/InP

      10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(matched InP)

      11 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/AlAsxSb1-x

      12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs (dilute N)

      13 FOR In(1-x)Ga(x)As(y)P(1-y)/GaAs

      14 FOR EXIT, BACK TO MAIN PAGE!

14

  THIS PROGRAM STOP HERE!, BACK TO MAIN PAGE

 

c) The output files, cbandeg.dat and vbandeg.dat are explained in Table C.9.3.

           

                Table C.9.3. Material compositions and band offsets:

 

a) cbandeg.dat for conduction band

************************************************************************

  QW strain    lattice constant

0.512314E-02  0.583873E-09

                                          material compositions (see Table C.4.1 for x and y)

  layer thickness,                 x                          y           conduction band edges

   0.38000000E+03   0.00000000E+00     0.4806046     0.4844044        cladding layer

   0.15000000E+04   0.29336744E+00     0.1776527     0.1062417        SCH layer

   0.15000000E+03   0.45774735E+00     0.0000000    -0.0283436        quantum well

   0.15000000E+04   0.29336744E+00     0.1776527     0.1062417        SCH layer

   0.38000000E+03   0.00000000E+00     0.4806046     0.4844044        cladding layer

************************************************************************

 

b) vbandeg.dat for valence band

**************************************************** ********************

  QW strain    lattice constant

 0.512314E-02  0.583873E-09

                                          material compositions (see Table C.4.1 for x and y)

  layer thickness,                x                          y            valence band edges

   0.38000000E+03   0.00000000E+00     0.4806046    -0.1883795       cladding layer

   0.15000000E+04   0.29336744E+00     0.1776527    -0.0413162       SCH layer

   0.15000000E+03   0.45774735E+00     0.0000000     0.0141718       quantum well

   0.15000000E+04   0.29336744E+00     0.1776527    -0.0413162       SCH layer

   0.38000000E+03   0.00000000E+00     0.4806046    -0.1883795       cladding layer

************************************************************************

 

C.9.2. Energy level calculations

 

After the calculation of the material compositions and energy band edges, the GAIN program calculates energy levels in the conduction band and valence bands. The detailed explanations are discussed in Chapter 3 of this manual.

 

a) The steps of how to calculate the energy levels are shown in Table C.9.4.

 

Table C.9.4. Steps to calculate the energy levels

 

i) Steps to calculate the conduction band energy levels

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

2

  INPUT THE NUMBER OF QUANTUM WELLS NUM=?

1

  INPUT TOTAL LAYERS FOR STRUCTURE--N ODD

  INPUT N=

5

  INPUT THE LOWEST POTENTIAL LAYER(1st Q-WELL) IC= ?

3

  INPUT THE SELECTED CENTER LAYER OF STRUCTURE ICR=

3

 *******************************************************

   INPUT I=1  FOR AlGaAs

         I=2  FOR InGaAsP

         I=3  FOR In1-xGaxAs/InGaAsP/InP

         I=4  FOR InGaAlAs/InGaAlAs

         I=5  FOR GaInP/(AlGa)0.5In0.5P/AlInP

         I=6  FOR InGaAs/AlGaAs/AlGaAs

         I=7  FOR InGaAs/InGaAsP/Ga0.51In0.49P(GaAs)

         I=8  FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

         I=9  FOR InzGa1-zAs/AlxGayIn1-x-yAs/InP

         I=10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(InP)

         I=11 FOR InzGa1-zAs/AlxGayIn1-x-yAs/AlAsxSb1-x

         I=12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs

         I=13 FOR InGaAs/In(1-y)Ga(x)As(y)P(1-y)/GaAs

   INPUT I= ?

 *******************************************************

9

  ENERGY EIGENVALUE===> -0.992710047952E-02 ERROR= .3115362E-14

  ENERGY EIGENVALUE===>  0.441920512738E-01 ERROR= .2426294E-14

  ENERGY EIGENVALUE===>  0.106443501424E+00 ERROR= .4979896E-14

                                         …………………………..

 

  FOR CHECKING THE Schrodinger WAVE FUNCTION INPUT I==> 1

  SKIP INPUT I==> 2

  I=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.992710047952E-02

  INPUT THE NAME OF OUTPUT FILE

cb1.txt

 CONFINEMENT FACTOR OF    1 th LAYER = 0.92691705E-62

 CONFINEMENT FACTOR OF    2 th LAYER = 0.19816721E-01

 CONFINEMENT FACTOR OF    3 th LAYER = 0.96036656E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.19816721E-01

 CONFINEMENT FACTOR OF    5 th LAYER = 0.92691705E-62

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

0.441920512738E-01

  INPUT THE NAME OF OUTPUT FILE

cb2.txt

 CONFINEMENT FACTOR OF    1 th LAYER = 0.23632038E-45

 CONFINEMENT FACTOR OF    2 th LAYER = 0.86213358E-01

 CONFINEMENT FACTOR OF    3 th LAYER = 0.82757328E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.86213358E-01

 CONFINEMENT FACTOR OF    5 th LAYER = 0.23632038E-45

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

2

 

ii) Steps to calculate the heavy hole energy levels

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

3

  INPUT THE NUMBER OF QUANTUM WELLS NUM=?

1

  INPUT TOTAL LAYERS FOR STRUCTURE--N ODD

  INPUT N=

5

  INPUT THE HIGHEST POTENTIAL(1st Q-WELL) LAYER IC= ?

3

  INPUT THE SELECTED CENTER OF THE STRUCTURE ICR=?

3

 *******************************************************

   INPUT I=1  FOR AlGaAs

         I=2  FOR InGaAsP

         I=3  FOR In(1-x)Ga(x)As/InGaAsP/InP

         I=4  FOR InGaAlAs/InGaAlAs

         I=5  FOR GaInP/(AlGa)0.5In0.5P/AlInP

         I=6  FOR InGaAs/AlGaAs/AlGaAs

         I=7  FOR InGaAs/InGaAsP/Ga0.51In0.49P(GaAs)

         I=8  FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

         I=9  FOR In(z)Ga(1-z)As/AlxGayIn1-x-yAs/InP

         I=10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(InP)

         I=11 FOR InzGa1-zAs/AlxGayIn1-x-yAs/AlAsxSb1-x

         I=12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs

         I=13 FOR InGaAs/In(1-x)Ga(x)As(y)P(1-y)/GaAs

   INPUT I= ?

 *******************************************************

9

 *******************************************************

 

  DOES THE STRUCTURE STRAIN OR STRAIN-COMPENSATED?

  IF STRAIN ONLY INPUT 1, STRAIN-COMPENSATED INPUT 2

  INPUT SELECT = ?

 

1

                                                     ……………………….

  ENERGY EIGENVALUE===> -0.321196505162E-01 ERROR= .2209942E-14

  ENERGY EIGENVALUE===> -0.168788071783E-01 ERROR= .2462727E-14

  ENERGY EIGENVALUE===> -0.689461835889E-02 ERROR= .1860138E-14

 

  FOR CHECKING THE Schrodinger WAVE FUNCTION INPUT I==> 1

  SKIP INPUT I==> 2

  I=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.689461835889E-02

  INPUT THE NAME OF OUTPUT FILE

hh1.txt

 CONFINEMENT FACTOR OF    1 th LAYER = 0.50739096E-73

 CONFINEMENT FACTOR OF    2 th LAYER = 0.91099066E-02

 CONFINEMENT FACTOR OF    3 th LAYER = 0.98178019E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.91099066E-02

 CONFINEMENT FACTOR OF    5 th LAYER = 0.50739096E-73

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.168788071783E-01

  INPUT THE NAME OF OUTPUT FILE

hh2.txt

 CONFINEMENT FACTOR OF    1 th LAYER = 0.19697388E-61

 CONFINEMENT FACTOR OF    2 th LAYER = 0.40620496E-01

 CONFINEMENT FACTOR OF    3 th LAYER = 0.91875901E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.40620496E-01

 CONFINEMENT FACTOR OF    5 th LAYER = 0.19697388E-61

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

2

 

iii) Steps to calculate the light hole energy levels

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

4

  INPUT THE NUMBER OF QUANTUM WELLS NUM=?

1

  INPUT TOTAL LAYERS FOR STRUCTURE--N ODD

  INPUT N=

5

  INPUT THE HIGHEST POTENTIAL(1st Q-WELL) LAYER IC= ?

3

  INPUT THE SELECTED CENTER OF THE STRUCTURE ICR=?

3

 *******************************************************

   INPUT I=1  FOR AlGaAs

         I=2  FOR InGaAsP

         I=3  FOR In(1-x)Ga(x)As/InGaAsP/InP

         I=4  FOR InGaAlAs/InGaAlAs

         I=5  FOR GaInP/(AlGa)0.5In0.5P/AlInP

         I=6  FOR InGaAs/AlGaAs/AlGaAs

         I=7  FOR InGaAs/InGaAsP/Ga0.51In0.49P(GaAs)

         I=8  FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

         I=9  FOR In(z)Ga(1-z)As/AlxGayIn1-x-yAs/InP

         I=10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(InP)

         I=11 FOR InzGa1-zAs/AlxGayIn1-x-yAs/AlAsxSb1-x

         I=12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs

         I=13 FOR InGaAs/In(1-x)Ga(x)As(y)P(1-y)/GaAs

   INPUT I= ?

 *******************************************************

9

 *******************************************************

 

  DOES THE STRUCTURE STRAIN OR STRAIN-COMPENSATED?

  IF STRAIN ONLY INPUT 1, STRAIN-COMPENSATED INPUT 2

  INPUT SELECT = ?

 

1

                                                  …………………………..

  ENERGY EIGENVALUE===> -0.416760055833E-01 ERROR= .2632360E-14

  ENERGY EIGENVALUE===> -0.293879437609E-01 ERROR= .2884725E-14

  ENERGY EIGENVALUE===>  0.143716677955E-01 ERROR= .2231081E-14

 

  FOR CHECKING THE Schrodinger WAVE FUNCTION INPUT I==> 1

  SKIP INPUT I==> 2

  I=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

0.143716677955E-01

  INPUT THE NAME OF OUTPUT FILE

lh1.txt

 CONFINEMENT FACTOR OF    1 th LAYER = 0.12528826E-34

 CONFINEMENT FACTOR OF    2 th LAYER = 0.41196175E-01

 CONFINEMENT FACTOR OF    3 th LAYER = 0.91760765E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.41196175E-01

 CONFINEMENT FACTOR OF    5 th LAYER = 0.12528826E-34

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.293879437609E-01

  INPUT THE NAME OF OUTPUT FILE

lh2.txt

 CONFINEMENT FACTOR OF    1 th LAYER = 0.65284158E-17

 CONFINEMENT FACTOR OF    2 th LAYER = 0.22295907E+00

 CONFINEMENT FACTOR OF    3 th LAYER = 0.55408185E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.22295907E+00

 CONFINEMENT FACTOR OF    5 th LAYER = 0.65284158E-17

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

2

 

b) The main output file from this part of GAIN program is energy.dat, containing all the energy levels as shown in Table C.9.5. After the energy eigen values are calculated, the GAIN program asks the users whether they would like to check the wave envelope function or not. We suggest that the user should check the wave envelope functions of the first and second energy levels for conduction and valence bands. The plots of the envelope functions are shown in Fig. C.9.2, Fig. C.9.3, Fig C.9.4. 

 

Table C.9.5. Output file energy.dat

  CONDUCTION BAND ENERGY===> -0.992710047952E-02 ERROR= .3115362E-14

  CONDUCTION BAND ENERGY===>  0.441920512738E-01 ERROR= .2426294E-14

                                                                ………………

                                                                ………………                                               

                                                                ………………

  HEAVY HOLE ENERGY===> -0.168788071783E-01 ERROR= .2462727E-14

  HEAVY HOLE ENERGY===> -0.689461835889E-02 ERROR= .1860138E-14

                                                                ………………

                                                                ………………

                                                                ………………                                                  

  LIGHT HOLE ENERGY===> -0.293879437609E-01 ERROR= .2884725E-14

  LIGHT HOLE ENERGY===>  0.143716677955E-01 ERROR= .2231081E-14

 

 

Fig. C.9.2. Wave envelope functions for energy levels in conduction band

 

 

Fig. C.9.3. Wave envelope functions for heavy hole energy levels

 

 

Fig. C.9.4. Wave envelope functions for light hole energy levels

 

 


 

C.9.3. Computation of Gain and Laser Characteristics

 

This is the last step of simulations using the GAIN program. With the previously calculated material composition, energy band edges, energy levels; and other parameters like material loss and Auger coefficient, the GAIN program can simulate the threshold current, threshold current density, slope efficiency, optical gain and modal gain as functions of wavelengths and photon energies, and also the L-I curve. The details are explained in Chapter 4 of the manual.

 

In this part of the GAIN program, the input file needs to be constructed with the results from the previous steps and according to the laser design. In this example, single quantum well structure is used to simulate a three-QW laser. For the three-quantum-well laser with a ridge length of 750 µm and ridge width of 5 µm, the input file is shown in Table C.9.6. The detailed steps of simulations are listed in Table C.9.7. The main output files: L-I curve, optical gain as a function of the wavelength, and mode gain vs. current density are plotted in Fig. C.9.5, Fig. C.9.6, and Fig. C.9.7.

 

a) The input file:

 

Table C.9.6. Input file for gain and threshold current calculation

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c     1. Input the compositions, width of well, effective index        c

c        and lasing wavelength.                                        c

c     Ex: xx,xz,qy,xy,lx,n,lam                                         c

c     for different materials the following are the forms of inputs.   c

c                                                                      c

c     w -- > well, b -- > barrier  cxz and cxy for cladding.           c

c                                                                      c

c     a.  AlxGa1-xAs : xx (Al w) xz (Al b) qy (0) xy (0)               c

c     b.  In1-xGaxAsyP1-y : xx (Ga w) xz (Ga b) qy (As w) xy (As b)    c

c     c.  In1-xGaxAs/InGaAsP : xx (Ga w) xz (Ga b) qy (0) xy (As b)    c

c     d.  AlxGayIn1-x-yAs/InP : xx (Ga w) xz (Ga b) qy (Al w) xy (Al b)c

c     e.                                                               c

c     f.  InxGa1-xAs/AlGaAs : xx (In w) xz (0) qy (0) xy (Al b)        c

c     g.                                                               c

c     h.  AlyInxGa1-x-yAs/AlGaAs : xx (Al w) xz (al b) qy (In w) xz (0)c

c     i.  InxGa1-xAs/AlGaInAs : xx (In w) xz (0) qy (Al b) xy (Ga b)   c

c     j.  In(y)Ga(1-y)As(x)N(1-x) :xx(As w),xz(As, b),qy(In w),xy(In b)c

c     k.  InGaAs/InGaAsP/GaAs: xx (In w), (0), xz(Ga w) xy (As b)

c     2. Input the energy gap,temperature, barrier band edges(both bands)

c     Ex: eg,temp,ec,ev                                                c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

0.45774735  0.0  0.1776527  0.29336744  15.0  3.273915  1.55

0.82119205  298  0.1062417  0.0413162

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c     3. Input the ist level sub-band energy levels.                   c

c     Ex: ec1,eh1,el1                                                  c

c                                                                      c

c     4. Input the material loss, reflectivities, number of quantum    c

c        wells and beta(for spontaneous emission).                     c

c     Ex: alpha,r1,r2,mm,beta.                                         c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

-0.99271E-02  0.689462E-02  -0.143717E-01  0.44192E-01  0.168788E-01  0.29388E-01

3.0d0  0.30   0.30   1  5.D-5

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c     5. Input the cavity length, ridge width, internal efficiency     c

c        Auger, strain(except AlGaAs,put 0) and confinement factor.    c

c     Ex: cl,cw,etha,ca,es,confine                                     c

c                                                                      c

c     6. Input the cladding composition and band edges.                c

c     Ex: cxz,cxy,ecc,evv                                              c

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

750.D-4    5D-4  0.96  1.00d-29   0.000  0.03050213

0.0  0.48  0.4844044   0.1883795

 

b) The steps for these calculations mentioned are listed in Table C.9.7

 

Table C.9.7. The steps for the gain and threshold current density calculations

 

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

5

  THE INPUT FILE NAME=

ms9in

  SELECT MATERIAL=?

  1--AlGaAs

  2--InGaAsP

  3--In1-zGazAs/InGaAsP/InP

  4-- InGaAlAs

  5--GaInP/AlzGawIn1-z-wP/Al0.5In0.5P

  6-- InxGa1-xAs/AlxGa1-xAs/AlGaAs

  7--In1-xGaxAs/InGaAsP/GaxIn1-xP(X=0.51) MATCHED TO GaAs

  8--AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

  9--InzGa1-zAs/AlxGayIn1-x-yAs/InP

  10-- InGaAlAs/InGaAlAs/AlAsSb

  11--InzGa1-zAs/AlxGayIn1-x-yAs/AlAsSb

  12--In(y)Ga(1-y)As(x)N(1-x)/GaAs

  13--InGaAs/In(1-x)Ga(x)As(y)P(1-y)/GaAs

  INPUT SELECTION

9

 INPUT MODE = ? FOR TE--> MODE =1, FOR TM--> MODE =2

  INPUT TE OR TM ?

2

 IF EL1 BELOW EH1 THEN SELECT 1, OTHERWISE SELECT 2

  SELECTION=?

2

  **************************************************

 CALCULATE THE EFFECTIVE MASS

  **************************************************

  FOR QUASI-FERMI LEVEL SELECT=1,

  FOR READ EXISTING QUASI-FERMI LEVEL SELECT=2

  SELECT=?

1

                                .................                              

  J(LEAKAGE)=0.421436D+04 A/cm^2  N=0.794060D+19 1/cm^3

  J(LEAKAGE)=0.428431D+04 A/cm^2  N=0.796040D+19 1/cm^3

  J(LEAKAGE)=0.435419D+04 A/cm^2  N=0.798020D+19 1/cm^3

  J(LEAKAGE)=0.442397D+04 A/cm^2  N=0.800000D+19 1/cm^3

  **************************************************

  G(J) PARAMETERS FROM SINGLE WELL

  Go=0.747571D+01 1/cm  Jo=0.117454D+03 A/cm^2

 

  G(N) PARAMETERS FROM SINGLE WELL

  NGo=0.245088D+03 1/cm  XNo=0.128797D+19 1/cm^3

 

  Jtr=0.432090D+02 A/cm^2  NTR=0.473818D+18 1/cm^3

 

  THE OPTIMUM NUMBER OF QUANTUM WELL FOLLOWS THE ARTICLE

  BY McIlory et al. IEEE JQE-21 1985.

 

  THE OPTIMUM NUMBER OF QUANTUM WELL Nopt =           3

  INPUT Nopt(CAN BE DIFFERENT FROM ABOVE CALCULATION)=?

3

  NUMBER OF QUANTUM WELL(MAY OR MAY NOT BE Nopt)=?

3

 

  **************************************************

  1ST CHECK USE SINGLE WELL TIMES # OF WELLS

  **************************************************

  2ND CHECK FOLLOWS FORMULA BY McIlory IN IEEE

  JOURNAL OF QUANTUM ELECTRONIC QE-21 1985.

  **************************************************

  Gth=  19.0530 1/cm Nth=0.396090D+19 1/cm^3 IY=  196

   1ST CHECK Jth=  1347.91345919 A/cm^2

   2ND CHECK Jth=   367.04422 A/cm^2

 

   1ST CHECK Ith=0.505468D+02 mA NUMBER OF WELLS=  3

   2ND CHECK Ith=0.137642D+02 mA

 

  **************************************************

 CALCULATE THE P-I RELATION

 

 NDATA=         205

  **************************************************

  CALCULATE THE SLOPE: mW/mA Y=A+BX

  CONSTANT A= -15.3972372   SLOPE B=   0.3046138

 

  **************************************************

  INPUT POWER PO FOR THE LINEWIDTH, PO=0 FOR STOP

  INPUT PO=    mW

0

 INPUT 1 FOR THE DYNAMIC CALCULATION. 2 FOR SKIP

 INPUT =

2

  K-FACTOR= 0.44360 nS  MAXIUM FREQ.= 20.0309 GHz

 

  **************************************************

  INPUT 1 FOR CALCULATE THE GAIN(E) RELATION.

 

  INPUT 2 FOR CALCULATE THE LINEWIDTH ENHENCEMENT

  FACTOR AND PHOTON ENERGY RELATION

 

  INPUT 3 FOR EXIT THE PROGRAM

 

 THE INPUT # IS

1

 INPUT FERMILEVELS IN C-BAND, V-BAND, AND CARRIER DENSITY

0.155952069365, 0.148892829364E-01, 2.0E+18

 CALCULATE THE CONVOLUTION GAIN(E) COEFFICIENT

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(LAMBDA)

ogl2.txt

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(LAMBDA)

mgl2.txt

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(E)

oge2.txt

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(E)

mge2.txt

  **************************************************

 INPUT 1 FOR REPEAT THE G(E) CALCULATION

 INPUT 2 FOR REPEAT THE ALPHA(E) CALCULATION

 INPUT 3 FOR EXIT

1

  **************************************************

  INPUT 1 FOR CALCULATE THE GAIN(E) RELATION.

 

  INPUT 2 FOR CALCULATE THE LINEWIDTH ENHENCEMENT

  FACTOR AND PHOTON ENERGY RELATION

 

  INPUT 3 FOR EXIT THE PROGRAM

 

 THE INPUT # IS

1

 INPUT FERMILEVELS IN C-BAND, V-BAND, AND CARRIER DENSITY

0.226279415596, 0.314766742996E-01, 3.0E+18

 CALCULATE THE CONVOLUTION GAIN(E) COEFFICIENT

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(LAMBDA)

ogl3.txt

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(LAMBDA)

mgl3.txt

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(E)

oge3.txt

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(E)

mge3.txt

  **************************************************

 INPUT 1 FOR REPEAT THE G(E) CALCULATION

 INPUT 2 FOR REPEAT THE ALPHA(E) CALCULATION

 INPUT 3 FOR EXIT

1

  **************************************************

  INPUT 1 FOR CALCULATE THE GAIN(E) RELATION.

 

  INPUT 2 FOR CALCULATE THE LINEWIDTH ENHENCEMENT

  FACTOR AND PHOTON ENERGY RELATION

 

  INPUT 3 FOR EXIT THE PROGRAM

 

 THE INPUT # IS

1

 INPUT FERMILEVELS IN C-BAND, V-BAND, AND CARRIER DENSITY

0.295069951213, 0.449714150578E-01, 4.0E+18

 CALCULATE THE CONVOLUTION GAIN(E) COEFFICIENT

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(LAMBDA)

ogl4.txt

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(LAMBDA)

mgl4.txt

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(E)

oge4.txt

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(E)

mge4.txt

  **************************************************

 INPUT 1 FOR REPEAT THE G(E) CALCULATION

 INPUT 2 FOR REPEAT THE ALPHA(E) CALCULATION

 INPUT 3 FOR EXIT

3

 

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

7

 

c) The Output characteristics of designed laser from step 5 are summarized in Table C.9.7.

 

Table C.9.7 Characteristics of the designed laser

Optimized number of QWs (Nopt)

3

Number of QWs

3

Slope efficiency (%)

30.46

Jth (A/cm2)

1347.91 – 1st check, for matching threshold conditions

367.04 – 2nd check, using McIlory method

Ith (mA)

50.54 A - 1st check, for matching threshold conditions

13.76 A - 2nd check, using McIlory method

Peak l at operating temperature (um)

1.5488 µm for carrier density of 2.0E18 /cm3

1.5538 µm for carrier density of 3.0E18 /cm3

1.5551 µm for carrier density of 4.0E18 /cm3

Peak material gain (1/cm)

1074 /cm for carrier density of 2.0E18 /cm3

1501 /cm for carrier density of 3.0E18 /cm3

1824 /cm for carrier density of 4.0E18 /cm3

 

 

Fig. C.9.5. L-I curve of the laser

 

 

Fig. C.9.6. Optical gain-l curve of the laser

 

 

Fig. C.9.7. Mode gain as a function of current density (J)

 


 

C.12. Material system #12: In(y)Ga(1-y)As(x)N(1-x)/GaAs (dilute N)

 

This is a simulation of a five-layer laser structure that contains a single quantum well (QW), two separated confinement heterostructure (SCH) layers, and two cladding layers as shown in Fig. C.12.1. The structure is based on a published SQW structure [1]. From this example, the users will know how to simulate an existing structure using the GAIN program. The simulations results Jth and peak wavelength agree well with the published experimental data [1]. 

 

Figure C.12.9. Energy band diagram for the single quantum well structure

 

C.12.1. Calculation of material compositions and energy band edges.

 

The first step of the GAIN program is to calculate the material compositions and energy band edges of the each layer. The user is asked to enter the photoluminescence wavelength, thickness, and strain of the QW, SCH, and cladding layers. After these parameters are input, the GAIN program generates two output files: cbandeg.dat and vbandeg.dat, containing the material compositions, and the conduction band edges and valence band edges respectively. The detailed explanation is provided in Chapter 2 of this manual.

 

a) The input parameters to the GAIN program in this step are listed in Table. C.12.1.

 

Table C.12.1. Input parameters to the GAIN program in this step.

Layer

l (um)

Strain

Thickness (Ǻ)

QW (In(y)Ga(1-y)As(x)N(1-x))

1.333925998

-0.02

70

SCH (GaAs)

0.874283651

 

100

Cladding (AlGaAs)

0.644892865

 

100

 

b) The steps in using the GAIN program to calculate the material compositions and energy band edges are listed in Table C.12.2

 

Table C.12.2. steps to run the GAIN program for necessary parameters.

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

1

 

 ENTER 1 FOR AlGaAs/AlGaAs

       2 FOR InGaAsP/InGaAsP/InP

       3 FOR InGaAs/InGaAsP/InP

       4 FOR InGaAlAs/InGaAlAs/InP

       5 FOR GaInP/(AlGa)0.5In0.5P/AlInP

       6 FOR InGaAs/AlGaAs/AlGaAs

       7 FOR InGaAs/InGaAsP/Ga0.51In0.49P(MATCHED GaAs)

       8 FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

       9 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/InP

      10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(matched InP)

      11 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/AlAsxSb1-x

      12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs (dilute N)

      13 FOR In(1-x)Ga(x)As(y)P(1-y)/GaAs

      14 FOR EXIT, BACK TO MAIN PAGE!

12

 INPUT THE LAYER # FOR GRIN STRUCTURE(STEP)

 STEP N=

2

  INPUT THE WELL WAVELENGTH (um)

1.333925998

  INPUT THE BARRIER WAVELENGTH (um)

0.874283651

  INPUT THE CLADDING WAVELENGTH (um)

0.644892865

  BANDGAP ENERGY OF QUANTUM WELL=   0.929586800061753       eV

  INPUT CLADDING, BARRIER,QUANTUM WELL WIDTH (A)

100 100 70

 

  For dilute InGaAsN only (X>0.953, Y<0.289)

 

  In(y)Ga(1-y)As(x)N(1-x),output read In first then As

 

  IF ONE OF THE COMPONENTS IN ACTIVE REGION IS ZERO,

  YOU HAVE TO TRY ANOTHER INITIAL GUESS FOR

  BOTH WAVELENGTH AND STRAIN

 

  INPUT STRAIN=?

-0.02

 C[                                                                          ]*

 C[  STARTING VECTOR:      0.100D+01 0.713D-03                               ]*

 C[                                                                          ]*

 C[                                                                          ]*

 C[  STARTING VECTOR:      0.995D+00 0.292D+00                               ]*

 C[                                                                          ]*

  STRAIN= -2.000000000000016E-002  AZ2=   5.65329980850220

 

  WRITE CONDUCTION BAND PARAMETERS INTO CBANDEG.DAT

 

  WRITE VALENCE BAND PARAMETERS INTO VBANDEG.DAT

  INPUT 1 FOR NEW CALCULATION

        2 FOR EXIT

  INPUT =?

2

 

c) The output files, cbandeg.dat and vbandeg.dat are explained in Table C.12.3.

           

                Table C.12.3. Material compositions and band offsets:

 

a) cbandeg.dat for conduction band

QW strain    lattice constant 

-.200000E-01  0.576637E-09

                                          material compositions

  layer thickness,                Ga                      Al        conduction band edges

   0.10000000E+03   0.40000000E+00     0.0000000     0.6952492         cladding layer

   0.10000000E+03   0.99974922E+00     0.0007133     0.3421020         SCH layer

   0.70000000E+02   0.99522355E+00     0.2924459     0.1076710         quantum well

   0.10000000E+03   0.99974922E+00     0.0007133     0.3421020         SCH layer

   0.10000000E+03   0.40000000E+00     0.0000000     0.6952492         cladding layer

************************************************************************

 

b) vbandeg.dat for valence band

  QW strain    lattice constant

  -.200000E-01  0.576637E-09

                                          material compositions

  layer thickness,                Ga                      Al        valence band edges

   0.10000000E+03   0.40000000E+00     0.0000000    -0.2979640        cladding layer

   0.10000000E+03   0.99974922E+00     0.0007133    -0.1466152        SCH layer

   0.70000000E+02   0.99522355E+00     0.2924459    -0.0538355        quantum well

   0.10000000E+03   0.99974922E+00     0.0007133    -0.1466152        SCH layer

   0.10000000E+03   0.40000000E+00     0.0000000    -0.2979640        cladding layer

************************************************************************

 

C.12.2. Energy level calculations

 

After the calculation of the material compositions and energy band edges, the GAIN program calculates energy levels in the conduction band and valence bands. The detailed explanations are discussed in Chapter 3 of this manual.

 

a) The steps of how to calculate the energy levels are shown in Table C.12.4.

 

Table C.12.4. Steps to calculate the energy levels

 

i) Steps to calculate the conduction band energy levels

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

2

  INPUT THE NUMBER OF QUANTUM WELLS NUM=?

1

  INPUT TOTAL LAYERS FOR STRUCTURE--N ODD

  INPUT N=

5

  INPUT THE LOWEST POTENTIAL LAYER(1st Q-WELL) IC= ?

3

  INPUT THE SELECTED CENTER LAYER OF STRUCTURE ICR=

3

 *******************************************************

   INPUT I=1  FOR AlGaAs

         I=2  FOR InGaAsP

         I=3  FOR In1-xGaxAs/InGaAsP/InP

         I=4  FOR InGaAlAs/InGaAlAs

         I=5  FOR GaInP/(AlGa)0.5In0.5P/AlInP

         I=6  FOR InGaAs/AlGaAs/AlGaAs

         I=7  FOR InGaAs/InGaAsP/Ga0.51In0.49P(GaAs)

         I=8  FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

         I=9  FOR InzGa1-zAs/AlxGayIn1-x-yAs/InP

         I=10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(InP)

         I=11 FOR InzGa1-zAs/AlxGayIn1-x-yAs/AlAsxSb1-x

         I=12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs

         I=13 FOR InGaAs/In(1-y)Ga(x)As(y)P(1-y)/GaAs

   INPUT I= ?

 *******************************************************

12

  ENERGY EIGENVALUE===>  0.166825507851E+00 ERROR= .524871

  ENERGY EIGENVALUE===>  0.316718310711E+00 ERROR= .428128

  ENERGY EIGENVALUE===>  0.379784585626E+00 ERROR= .237362

  ENERGY EIGENVALUE===>  0.399968049847E+00 ERROR= .224208

  ENERGY EIGENVALUE===>  0.481341035928E+00 ERROR= .238450

  ENERGY EIGENVALUE===>  0.531507743261E+00 ERROR= .299977

  ENERGY EIGENVALUE===>  0.626588219321E+00 ERROR= .248585

 

  FOR CHECKING THE Schrodinger WAVE FUNCTION INPUT I==> 1

  SKIP INPUT I==> 2

  I=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

0.166825507851

  INPUT THE NAME OF OUTPUT FILE

cb1.txt

 CONFINEMENT FACTOR OF    1 th LAYER = 0.29553906E-06

 CONFINEMENT FACTOR OF    2 th LAYER = 0.47656595E-01

 CONFINEMENT FACTOR OF    3 th LAYER = 0.90468622E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.47656595E-01

 CONFINEMENT FACTOR OF    5 th LAYER = 0.29553906E-06

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

0.316718310711

  INPUT THE NAME OF OUTPUT FILE

cb2.txt

 CONFINEMENT FACTOR OF    1 th LAYER = 0.21750109E-03

 CONFINEMENT FACTOR OF    2 th LAYER = 0.25182782E+00

 CONFINEMENT FACTOR OF    3 th LAYER = 0.49590936E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.25182782E+00

 CONFINEMENT FACTOR OF    5 th LAYER = 0.21750109E-03

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

2

 

ii) Steps to calculate the heavy hole energy levels

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

3

  INPUT THE NUMBER OF QUANTUM WELLS NUM=?

1

  INPUT TOTAL LAYERS FOR STRUCTURE--N ODD

  INPUT N=

5

  INPUT THE HIGHEST POTENTIAL(1st Q-WELL) LAYER IC= ?

3

  INPUT THE SELECTED CENTER OF THE STRUCTURE ICR=?

3

 *******************************************************

   INPUT I=1  FOR AlGaAs

         I=2  FOR InGaAsP

         I=3  FOR In(1-x)Ga(x)As/InGaAsP/InP

         I=4  FOR InGaAlAs/InGaAlAs

         I=5  FOR GaInP/(AlGa)0.5In0.5P/AlInP

         I=6  FOR InGaAs/AlGaAs/AlGaAs

         I=7  FOR InGaAs/InGaAsP/Ga0.51In0.49P(GaAs)

         I=8  FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

         I=9  FOR In(z)Ga(1-z)As/AlxGayIn1-x-yAs/InP

         I=10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(InP)

         I=11 FOR InzGa1-zAs/AlxGayIn1-x-yAs/AlAsxSb1-x

         I=12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs

         I=13 FOR InGaAs/In(1-x)Ga(x)As(y)P(1-y)/GaAs

   INPUT I= ?

 *******************************************************

12

 *******************************************************

 

  DOES THE STRUCTURE STRAIN OR STRAIN-COMPENSATED?

  IF STRAIN ONLY INPUT 1, STRAIN-COMPENSATED INPUT 2

  INPUT SELECT = ?

 

1

  ENERGY EIGENVALUE===> -0.280844081259E+00 ERROR= .4292362E-14

  ENERGY EIGENVALUE===> -0.261654918264E+00 ERROR= .5060880E-14

  ENERGY EIGENVALUE===> -0.230050446372E+00 ERROR= .4085794E-14

  ENERGY EIGENVALUE===> -0.215971305480E+00 ERROR= .3569352E-14

  ENERGY EIGENVALUE===> -0.191389154282E+00 ERROR= .1495427E-13

  ENERGY EIGENVALUE===> -0.179058584723E+00 ERROR= .2864169E-14

  ENERGY EIGENVALUE===> -0.166390752259E+00 ERROR= .3290070E-14

  ENERGY EIGENVALUE===> -0.155038585857E+00 ERROR= .2022241E-14

  ENERGY EIGENVALUE===> -0.151912036949E+00 ERROR= .1853312E-14

  ENERGY EIGENVALUE===> -0.949214838256E-01 ERROR= .3591541E-14

  ENERGY EIGENVALUE===> -0.294250467453E-01 ERROR= .1947900E-14

  ENERGY EIGENVALUE===>  0.126045078739E-01 ERROR= .1384266E-14

 

  FOR CHECKING THE Schrodinger WAVE FUNCTION INPUT I==> 1

  SKIP INPUT I==> 2

  I=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

0.126045078739E-01

  INPUT THE NAME OF OUTPUT FILE

hh1.txt

 CONFINEMENT FACTOR OF    1 th LAYER = 0.49924329E-13

 CONFINEMENT FACTOR OF    2 th LAYER = 0.80920305E-02

 CONFINEMENT FACTOR OF    3 th LAYER = 0.98381594E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.80920305E-02

 CONFINEMENT FACTOR OF    5 th LAYER = 0.49924329E-13

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.294250467453E-01

  INPUT THE NAME OF OUTPUT FILE

hh2.txt

 CONFINEMENT FACTOR OF    1 th LAYER = 0.65742276E-11

 CONFINEMENT FACTOR OF    2 th LAYER = 0.35421992E-01

 CONFINEMENT FACTOR OF    3 th LAYER = 0.92915602E+00

 CONFINEMENT FACTOR OF    4 th LAYER = 0.35421992E-01

 CONFINEMENT FACTOR OF    5 th LAYER = 0.65742276E-11

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

2

 

iii) Steps to calculate the light hole energy levels

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

4

  INPUT THE NUMBER OF QUANTUM WELLS NUM=?

1

  INPUT TOTAL LAYERS FOR STRUCTURE--N ODD

  INPUT N=

5

  INPUT THE HIGHEST POTENTIAL(1st Q-WELL) LAYER IC= ?

3

  INPUT THE SELECTED CENTER OF THE STRUCTURE ICR=?

3

 *******************************************************

   INPUT I=1  FOR AlGaAs

         I=2  FOR InGaAsP

         I=3  FOR In(1-x)Ga(x)As/InGaAsP/InP

         I=4  FOR InGaAlAs/InGaAlAs

         I=5  FOR GaInP/(AlGa)0.5In0.5P/AlInP

         I=6  FOR InGaAs/AlGaAs/AlGaAs

         I=7  FOR InGaAs/InGaAsP/Ga0.51In0.49P(GaAs)

         I=8  FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

         I=9  FOR In(z)Ga(1-z)As/AlxGayIn1-x-yAs/InP

         I=10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(InP)

         I=11 FOR InzGa1-zAs/AlxGayIn1-x-yAs/AlAsxSb1-x

         I=12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs

         I=13 FOR InGaAs/In(1-x)Ga(x)As(y)P(1-y)/GaAs

   INPUT I= ?

 *******************************************************

12

 *******************************************************

 

  DOES THE STRUCTURE STRAIN OR STRAIN-COMPENSATED?

  IF STRAIN ONLY INPUT 1, STRAIN-COMPENSATED INPUT 2

  INPUT SELECT = ?

 

1

  ENERGY EIGENVALUE===> -0.295278683327E+00 ERROR= .2131495E-14

  ENERGY EIGENVALUE===> -0.256122699275E+00 ERROR= .2338818E-14

  ENERGY EIGENVALUE===> -0.217375554875E+00 ERROR= .5742157E-14

  ENERGY EIGENVALUE===> -0.183928037223E+00 ERROR= .3316695E-14

  ENERGY EIGENVALUE===> -0.164785601442E+00 ERROR= .3822678E-14

  ENERGY EIGENVALUE===> -0.145241224988E+00 ERROR= .1407070E-14

 

  FOR CHECKING THE Schrodinger WAVE FUNCTION INPUT I==> 1

  SKIP INPUT I==> 2

  I=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

0.145241224988

  INPUT THE NAME OF OUTPUT FILE

lh1.txt

 CONFINEMENT FACTOR OF    1 th LAYER = 0.37276532E-07

 CONFINEMENT FACTOR OF    2 th LAYER = 0.99872870E+00

 CONFINEMENT FACTOR OF    3 th LAYER = 0.12712252E-02

 CONFINEMENT FACTOR OF    4 th LAYER = 0.35599162E-07

 CONFINEMENT FACTOR OF    5 th LAYER = 0.13287025E-14

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.164785601442

  INPUT THE NAME OF OUTPUT FILE

lh2.txt

 CONFINEMENT FACTOR OF    1 th LAYER = 0.73199745E-02

 CONFINEMENT FACTOR OF    2 th LAYER = 0.45864444E+00

 CONFINEMENT FACTOR OF    3 th LAYER = 0.68071179E-01

 CONFINEMENT FACTOR OF    4 th LAYER = 0.45864444E+00

 CONFINEMENT FACTOR OF    5 th LAYER = 0.73199745E-02

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

2

 

b) The main output file from this part of GAIN program is energy.dat, containing all the energy levels as shown in Table C.12.5. After the energy eigen values are calculated, the GAIN program asks the user whether he would like to check the wave envelope function or not. We suggest that the user check the wave envelope functions of the first and second energy levels for conduction and valence bands. The plots of the envelope functions are shown in Fig. C.12.2, Fig. C.12.3, Fig C.12.4. 

 

Table C.12.5. output file energy.dat

  CONDUCTION BAND ENERGY===>  0.166825507851E+00 ERROR= .5248710E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.316718310711E+00 ERROR= .4281281E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.379784585626E+00 ERROR= .2373624E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.399968049847E+00 ERROR= .2242087E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.481341035928E+00 ERROR= .2384506E-14

                                                   

  CONDUCTION BAND ENERGY===>  0.531507743261E+00 ERROR= .2999773E-14

                                                    

  CONDUCTION BAND ENERGY===>  0.626588219321E+00 ERROR= .2485859E-14

                                                   

  HEAVY HOLE ENERGY===> -0.280844081259E+00 ERROR= .4292362E-14

                                                    

  HEAVY HOLE ENERGY===> -0.261654918264E+00 ERROR= .5060880E-14

                                                   

  HEAVY HOLE ENERGY===> -0.230050446372E+00 ERROR= .4085794E-14

                                                    

  HEAVY HOLE ENERGY===> -0.215971305480E+00 ERROR= .3569352E-14

                                                   

  HEAVY HOLE ENERGY===> -0.191389154282E+00 ERROR= .1495427E-13

                                                   

  HEAVY HOLE ENERGY===> -0.179058584723E+00 ERROR= .2864169E-14

                                                   

  HEAVY HOLE ENERGY===> -0.166390752259E+00 ERROR= .3290070E-14

                                                   

  HEAVY HOLE ENERGY===> -0.155038585857E+00 ERROR= .2022241E-14

                                                   

  HEAVY HOLE ENERGY===> -0.151912036949E+00 ERROR= .1853312E-14

                                                   

  HEAVY HOLE ENERGY===> -0.949214838256E-01 ERROR= .3591541E-14

                                                   

  HEAVY HOLE ENERGY===> -0.294250467453E-01 ERROR= .1947900E-14

                                                   

  HEAVY HOLE ENERGY===>  0.126045078739E-01 ERROR= .1384266E-14

                                                    

  LIGHT HOLE ENERGY===> -0.295278683327E+00 ERROR= .2131495E-14

                                                   

  LIGHT HOLE ENERGY===> -0.256122699275E+00 ERROR= .2338818E-14

                                                    

  LIGHT HOLE ENERGY===> -0.217375554875E+00 ERROR= .5742157E-14

                                                   

  LIGHT HOLE ENERGY===> -0.183928037223E+00 ERROR= .3316695E-14

                                                   

  LIGHT HOLE ENERGY===> -0.164785601442E+00 ERROR= .3822678E-14

                                                   

  LIGHT HOLE ENERGY===> -0.145241224988E+00 ERROR= .1407070E-14

                                                   

 

Fig. C.12.2. Wave envelope functions for energy levels in conduction band

Fig. C.12.3. Wave envelope functions for heavy hole energy levels

Fig. C.12.4. Wave envelope functions for light hole energy levels

 

C.12.3. Computation of Gain and Laser Characteristics

 

This is the last step of simulations using the GAIN program. With the previous calculated material composition, energy band edges, energy levels, and other parameters like material loss and Auger coefficient, the GAIN program can simulate the threshold current, threshold current density, slope efficiency, optical gain and mode gain as functions of wavelengths and photon energies, and L-I curve. The details are explained in Chapter 4 of the manual.

 

In this part of GAIN program, the input file needs to be constructed with the results of the previous steps and according to the laser design. In this example, single quantum well structure is used to simulate a three-QW laser. For the three-quantum-well laser with a ridge length of 750 µm and ridge width of 3 µm, the input file is shown in Table C.12.6. The detailed steps of simulations are listed in Table C.12.7. The main output files: L-I curve, optical gain as a function of the wavelength, and mode gain vs. current density are plotted in Fig. C.12.5, Fig. C.12.6, and Fig. C.12.7.

 

a) The input file:

 

Table C.12.6. Input file for gain and threshold current calculation

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c     1. Input the compositions, width of well, effective index        c

c        and lasing wavelength.                                        c

c     Ex: xx,xz,qy,xy,lx,n,lam                                         c

c     for different materials the following are the forms of inputs.   c

c                                                                      c

c     w -- > well, b -- > barrier  cxz and cxy for cladding.           c

c                                                                      c

c     a.  AlxGa1-xAs : xx (Al w) xz (Al b) qy (0) xy (0)               c

c     b.  In1-xGaxAsyP1-y : xx (Ga w) xz (Ga b) qy (As w) xy (As b)    c

c     c.  In1-xGaxAs/InGaAsP : xx (Ga w) xz (Ga b) qy (0) xy (As b)    c

c     d.  AlxGayIn1-x-yAs/InP : xx (Ga w) xz (Ga b) qy (Al w) xy (Al b)c

c     e.                                                               c

c     f.  InxGa1-xAs/AlGaAs : xx (In w) xz (0) qy (0) xy (Al b)        c

c     g.                                                               c

c     h.  AlyInxGa1-x-yAs/AlGaAs : xx (Al w) xz (al b) qy (In w) xz (0)c

c     i.  In1-xGaxAs/AlGaInAs : xx (In w) xz (0) qy (Al b) xy (Ga b)   c

c     12. In(y)Ga(1-y)As(x)N(1-x) :xx(As w),xz(As, b),qy(In w),xy(In b)c

c                                                                      c

c     2. Input the energy gap,temperature, barrier band edges(both bands)

c     Ex: eg,temp,ec,ev                                                c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

0.996 1.0 0.3 0.0000  7.0 3.353749 1.31

0.93 298  0.3421020 0.1466152 

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c     3. Input the ist level sub-band energy levels.                   c

c     Ex: ec1,eh1,el1                                                  c

c                                                                      c

c     4. Input the material loss, reflectivities, number of quantum    c

c        wells and beta(for spontaneous emission).                     c

c     Ex: alpha,r1,r2,mm,beta.                                         c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

0.166825507851  -0.126045078739E-01  0.145241224988 0.316718310711  0.294250467453E-01  0.164785601442

6.0d0  0.3000   0.300   1  5.D-5

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c     5. Input the cavity length, ridge width, internal efficiency     c

c        Auger, strain(except AlGaAs,put 0) and confinement factor.    c

c     Ex: cl,cw,etha,ca,es,confine                                     c

c                                                                      c

c     6. Input the cladding composition and band edges.                c

c     Ex: cxz,cxy,ecc,evv                                              c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

1000.D-4  20D-4  0.96  1.00d-28   0.000  0.01

0.40000  0.00  0.6952492  0.2979640

 

b) The steps for these calculations mentioned are listed in Table C.12.7

 

Table C.12.7. The steps for the gain and threshold current density calculations

  ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

5

  THE INPUT FILE NAME=

in12.txt

  SELECT MATERIAL=?

  1--AlGaAs

  2--InGaAsP

  3--In1-zGazAs/InGaAsP/InP

  4-- InGaAlAs

  5--GaInP/AlzGawIn1-z-wP/Al0.5In0.5P

  6-- InxGa1-xAs/AlxGa1-xAs/AlGaAs

  7--In1-xGaxAs/InGaAsP/GaxIn1-xP(X=0.51) MATCHED TO GaAs

  8--AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

  9--InzGa1-zAs/AlxGayIn1-x-yAs/InP

  10-- InGaAlAs/InGaAlAs/AlAsSb

  11--InzGa1-zAs/AlxGayIn1-x-yAs/AlAsSb

  12--In(y)Ga(1-y)As(x)N(1-x)/GaAs

  13--InGaAs/In(1-x)Ga(x)As(y)P(1-y)/GaAs

  INPUT SELECTION

12

 INPUT MODE = ? FOR TE--> MODE =1, FOR TM--> MODE =2

  INPUT TE OR TM ?

1

 IF EL1 BELOW EH1 THEN SELECT 1, OTHERWISE SELECT 2

  SELECTION=?

1

  **************************************************

 CALCULATE THE EFFECTIVE MASS

  **************************************************

  FOR QUASI-FERMI LEVEL SELECT=1,

  FOR READ EXISTING QUASI-FERMI LEVEL SELECT=2

  SELECT=?

1

  J(LEAKAGE)=0.124580D+02 A/cm^2  N=0.782180D+19 1/cm^3

  J(LEAKAGE)=0.124580D+02 A/cm^2  N=0.782180D+19 1/cm^3

  J(LEAKAGE)=0.127429D+02 A/cm^2  N=0.784160D+19 1/cm^3

…………..

 

  J(LEAKAGE)=0.149281D+02 A/cm^2  N=0.798020D+19 1/cm^3

  J(LEAKAGE)=0.152694D+02 A/cm^2  N=0.800000D+19 1/cm^3

  **************************************************

  G(J) PARAMETERS FROM SINGLE WELL

  Go=0.888745D+01 1/cm  Jo=0.172961D+03 A/cm^2

 

  G(N) PARAMETERS FROM SINGLE WELL

  NGo=0.888745D+03 1/cm  XNo=0.128797D+19 1/cm^3

 

  Jtr=0.636289D+02 A/cm^2  NTR=0.473818D+18 1/cm^3

 

 

  THE OPTIMUM NUMBER OF QUANTUM WELL FOLLOWS THE ARTICLE

  BY McIlory et al. IEEE JQE-21 1985.

 

  THE OPTIMUM NUMBER OF QUANTUM WELL Nopt =           3

  INPUT Nopt(CAN BE DIFFERENT FROM ABOVE CALCULATION)=?

3

  NUMBER OF QUANTUM WELL(MAY OR MAY NOT BE Nopt)=?

1

 

  **************************************************

  **************************************************

  1ST CHECK USE SINGLE WELL TIMES # OF WELLS

  **************************************************

  **************************************************

  2ND CHECK FOLLOWS FORMULA BY McIlory IN IEEE

  JOURNAL OF QUANTUM ELECTRONIC QE-21 1985.

  **************************************************

  Gth=  18.0397 1/cm Nth=0.245614D+19 1/cm^3 IY=  120

   1ST CHECK Jth=  1410.15179344 A/cm^2

   2ND CHECK Jth=  1331.27210 A/cm^2

 

   1ST CHECK Ith=0.282030D+03 mA NUMBER OF WELLS=  3

   2ND CHECK Ith=0.266254D+03 mA

 

  **************************************************

 CALCULATE THE P-I RELATION

 

 NDATA=         281

  **************************************************

  CALCULATE THE SLOPE: mW/mA Y=A+BX

  CONSTANT A= -95.8802667   SLOPE B=   0.3399643

 

  **************************************************

  INPUT POWER PO FOR THE LINEWIDTH, PO=0 FOR STOP

  INPUT PO=    mW

0

 INPUT 1 FOR THE DYNAMIC CALCULATION. 2 FOR SKIP

 INPUT =

2

  K-FACTOR= 0.24875 nS  MAXIUM FREQ.= 35.7219 GHz

 

  **************************************************

  INPUT 1 FOR CALCULATE THE GAIN(E) RELATION.

 

  INPUT 2 FOR CALCULATE THE LINEWIDTH ENHENCEMENT

  FACTOR AND PHOTON ENERGY RELATION

 

  INPUT 3 FOR EXIT THE PROGRAM

 

 THE INPUT # IS

1

INPUT FERMILEVELS IN C-BAND, V-BAND, AND CARRIER DENSITY

0.277843825747 -0.188854176754E-01 0.200075187970E+19

CALCULATE THE CONVOLUTION GAIN(E) COEFFICIENT

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(LAMBDA)

ol1.txt

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(LAMBDA)

ml1.txt

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(E)

oe1.txt

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(E)

me1.txt

  **************************************************

 INPUT 1 FOR REPEAT THE G(E) CALCULATION

 INPUT 2 FOR REPEAT THE ALPHA(E) CALCULATION

 INPUT 3 FOR EXIT

1

  **************************************************

  INPUT 1 FOR CALCULATE THE GAIN(E) RELATION.

 

  INPUT 2 FOR CALCULATE THE LINEWIDTH ENHENCEMENT

  FACTOR AND PHOTON ENERGY RELATION

 

  INPUT 3 FOR EXIT THE PROGRAM

 

 THE INPUT # IS

0.321632806946 -0.503649146984E-02 0.301052631579E+19

 CALCULATE THE CONVOLUTION GAIN(E) COEFFICIENT

  **************************************************

INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(LAMBDA)

ol2.txt

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(LAMBDA)

ml2.txt

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(E)

oe2.txt

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(E)

me2.txt

  **************************************************

 INPUT 1 FOR REPEAT THE G(E) CALCULATION

 INPUT 2 FOR REPEAT THE ALPHA(E) CALCULATION

 INPUT 3 FOR EXIT

3

 

c) The Output characteristics of designed laser from step 5 are summarized in Table C.12.7.

 

Table C.12.7 Characteristics of the designed laser

Optimized number of QWs (Nopt)

3

Number of QWs

1

Slope efficiency (%)

33.99643

Jth (A/cm^2)

1410.15 - 1st check, for matching threshold conditions

1331.27– 2nd check, using McIlory method

Ith (mA)

282.03 - 1st check, for matching threshold conditions

266.25 - 2nd check, using McIlory method

Peak l at operating temperature (um)

1.126um for carrier density of 2.0E18 /cm3

1.145 um for carrier density of 3.0E18 /cm3

Peak material gain (1/cm)

2042.7/cm for carrier density of 2.0E18 /cm3

2843.4/cm for carrier density of 2.0E18 /cm3

 


 

Fig. C.12.5. L-I curve of the laser

Fig. C.12.6. Optical gain-l curve of the laser

 

Fig. C.12.7. Mode gain as a function of current density (J)

 

[1] Masahiko Kondow, Takeshi Kitatani, Shi’ichi Nakatsuka, “GaInNAs: A Novel Material for Long-Wavelength Semiconductor Lasers”, IEEE J. Quantum Electronics, vol. 3, no. 3, 1997.

 

 


C.13. Material system #13: In(1-x)Ga(x)As(y)P(1-y)/GaAs

 

This is a simulation of a five-layer laser structure that contains a single compressively strained quantum well (QW), two separated confinement heterostructure (SCH) layers, and two cladding layers as shown in Fig. C.13.1.

 

Figure C.13.10. Energy band diagram for the simple quantum well structure

 

C.13.1. Calculation of material compositions and energy band edges.

 

The first step of the GAIN program is to calculate the material compositions and energy band edges of the each layer. The user is asked to enter the photoluminescence wavelength, thickness, and strain of the QW, SCH, and cladding layers. After these parameters are input, the GAIN program generates two output files: cbandeg.dat and vbandeg.dat, containing the material compositions, and the conduction band edges and valence band edges respectively. The detailed explanation is provided in Chapter 2 of this manual.

 

a) The input parameters to the GAIN program in this step are listed in Table. C.13.1.

 

Table C.13.1. Input parameters to the GAIN program in this step.

Layer

l (um)

Strain

Thickness (Ǻ)

QW (InxGa1-xAs)

1.05

-.113737E-01

90

SCH (In1-x GaxAsyP1-y)

0.775

 

100

Cladding (In1-x GaxP)

0.65

 

100

 

b) The steps in using the GAIN program to calculate the material compositions and energy band edges are listed in Table C.13.2

 

Table C.13.2. steps to run the GAIN program for necessary parameters.

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

1

 

 ENTER 1 FOR AlGaAs/AlGaAs

       2 FOR InGaAsP/InGaAsP/InP

       3 FOR InGaAs/InGaAsP/InP

       4 FOR InGaAlAs/InGaAlAs/InP

       5 FOR GaInP/(AlGa)0.5In0.5P/AlInP

       6 FOR InGaAs/AlGaAs/AlGaAs

       7 FOR InGaAs/InGaAsP/Ga0.51In0.49P(MATCHED GaAs)

       8 FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

       9 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/InP

      10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(matched InP)

      11 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/AlAsxSb1-x

      12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs (dilute N)

      13 FOR In(1-x)Ga(x)As(y)P(1-y)/GaAs

      14 FOR EXIT, BACK TO MAIN PAGE!

13

 INPUT THE LAYER # FOR GRIN STRUCTURE(STEP)

 STEP N=

2

  INPUT THE WELL WAVELENGTH (um)

1.05

  INPUT THE BARRIER WAVELENGTH (um)

0.775

  INPUT THE CLADDING WAVELENGTH (um)

0.65

  BANDGAP ENERGY OF QUANTUM WELL=   0.683804000019804

  INPUT CLADDING, BARRIER, QUANTUM WELL WIDTH (A)

100 100 90

  FOR LATTICE MATCHED BARRIER SELLECT --> 1

  FOR STRAIN COMPENSATED SELECT -->2

 

  INPUT SELECTION ===> ?

1

 C[                                                              ]*

 C[       34 ITERATIONS                                          ]*

  ROOT (Y)=  0.457504996552668       ROOT (X)=  0.713274608740734

  ROOT(  2)IS COMPLEX!Real=       0.3293112 Imag=      -0.5242450

  ROOT(  3)IS COMPLEX!Real=       0.3293112 Imag=       0.5242450

  ROOT(  4) WITH REAL PART > 1 Real=       1.3495216

  Ga=  0.713274608740734       As=  0.457504996552668

 C[                                                              ]*

 C[       31 ITERATIONS                                          ]*

  ROOT (Y)=  1.607682884018472E-003  ROOT (X)=  0.481571950395300

  ROOT(  2)IS COMPLEX!Real=       0.4871066 Imag=      -0.7058294

  ROOT(  3)IS COMPLEX!Real=       0.4871066 Imag=       0.7058294

  ROOT(  4) WITH REAL PART > 1 Real=       1.4898280

  CLADDING Ga=  0.481571950395300       CLADDING As=  1.607682884018472E-003

  STRAIN FOR InGaAs/InGaAsP/GaAs IS  -1.137372501690129E-002

 

  WRITE CONDUCTION BAND PARAMETERS INTO CBANDEG.DAT

 

  WRITE VALENCE BAND PARAMETERS INTO VBANDEG.DAT

  INPUT 1 FOR NEW CALCULATION, 2 FOR EXIT

  I= ?

2

 

 ENTER 1 FOR AlGaAs/AlGaAs

       2 FOR InGaAsP/InGaAsP/InP

       3 FOR InGaAs/InGaAsP/InP

       4 FOR InGaAlAs/InGaAlAs/InP

       5 FOR GaInP/(AlGa)0.5In0.5P/AlInP

       6 FOR InGaAs/AlGaAs/AlGaAs

       7 FOR InGaAs/InGaAsP/Ga0.51In0.49P(MATCHED GaAs)

       8 FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

       9 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/InP

      10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(matched InP)

      11 FOR InzGa1-zAs/AlyGaxIn1-x-yAs/AlAsxSb1-x

      12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs (dilute N)

      13 FOR In(1-x)Ga(x)As(y)P(1-y)/GaAs

      14 FOR EXIT, BACK TO MAIN PAGE!

14

  THIS PROGRAM STOP HERE!, BACK TO MAIN PAGE

 

c) The output files, cbandeg.dat and vbandeg.dat are explained in Table C.13.3.

           

                Table C.13.3. Material compositions and band offsets:

 

a) cbandeg.dat for conduction band

************************************************************************

  QW strain    lattice constant

-.113737E-01  0.571760E-09

                                          material compositions(see Table C.13.1 for x and y)

  layer thickness,                  x                           y       conduction band edges

   0.10000000E+03   0.48157195E+00     0.0016077     0.2978522        cladding layer

   0.10000000E+03   0.71327461E+00     0.4575050     0.2304440        SCH layer

   0.90000000E+02   0.15876268E+00     0.0000000     0.0746203        quantum well

   0.10000000E+03   0.71327461E+00     0.4575050     0.2304440        SCH layer

   0.10000000E+03   0.48157195E+00     0.0016077     0.2978522        cladding layer

************************************************************************

 

b) vbandeg.dat for valence band

**************************************************** ********************

  QW strain    lattice constant

 -.113737E-01  0.571760E-09

                                          material compositions(see Table C.13.1 for x and y)

  layer thickness,                   x                          y         valence band edges

   0.10000000E+03   0.48157195E+00     0.0016077    -0.4467784      cladding layer

   0.10000000E+03   0.71327461E+00     0.4575050    -0.3456660       SCH layer

   0.90000000E+02   0.15876268E+00     0.0000000    -0.0373101       quantum well

   0.10000000E+03   0.71327461E+00     0.4575050    -0.3456660       SCH layer

   0.10000000E+03   0.48157195E+00     0.0016077    -0.4467784       cladding layer

************************************************************************

 

C.13.2. Energy level calculations

 

After the calculation of the material compositions and energy band edges, the GAIN program calculates energy levels in the conduction band and valence bands. The detailed explanations are discussed in Chapter 3 of this manual.

 

a) The steps of how to calculate the energy levels are shown in Table C.13.4.

 

Table C.13.4. Steps to calculate the energy levels

 

i) Steps to calculate the conduction band energy levels

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

2

  INPUT THE NUMBER OF QUANTUM WELLS NUM=?

1

  INPUT TOTAL LAYERS FOR STRUCTURE--N ODD

  INPUT N=

5

  INPUT THE LOWEST POTENTIAL LAYER(1st Q-WELL) IC= ?

3

  INPUT THE SELECTED CENTER LAYER OF STRUCTURE ICR=

3

 *******************************************************

   INPUT I=1  FOR AlGaAs

         I=2  FOR InGaAsP

         I=3  FOR In1-xGaxAs/InGaAsP/InP

         I=4  FOR InGaAlAs/InGaAlAs

         I=5  FOR GaInP/(AlGa)0.5In0.5P/AlInP

         I=6  FOR InGaAs/AlGaAs/AlGaAs

         I=7  FOR InGaAs/InGaAsP/Ga0.51In0.49P(GaAs)

         I=8  FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

         I=9  FOR InzGa1-zAs/AlxGayIn1-x-yAs/InP

         I=10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(InP)

         I=11 FOR InzGa1-zAs/AlxGayIn1-x-yAs/AlAsxSb1-x

         I=12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs

         I=13 FOR InGaAs/In(1-y)Ga(x)As(y)P(1-y)/GaAs

   INPUT I= ?

 *******************************************************

13

ENERGY EIGENVALUE===>  0.969908633581E-01 ERROR= .4024812E-1

ENERGY EIGENVALUE===>  0.159263664462E+00 ERROR= .3355458E-1

ENERGY EIGENVALUE===>  0.233016713571E+00 ERROR= .2446655E-1

ENERGY EIGENVALUE===>  0.251588768045E+00 ERROR= .2853046E-1

ENERGY EIGENVALUE===>  0.266059578219E+00 ERROR= .2658063E-1

ENERGY EIGENVALUE===>  0.297760175518E+00 ERROR= .1439724E-1

  FOR CHECKING THE Schrodinger WAVE FUNCTION INPUT I==> 1

  SKIP INPUT I==> 2

  I=?

1

  INPUT THE EIGENVALUE

0.969908633581E-01

  INPUT THE NAME OF OUTPUT FILE

cb1.txt

CONFINEMENT FACTOR OF    1 th LAYER = 0.63852474E-07

CONFINEMENT FACTOR OF    2 th LAYER = 0.17340584E-01

CONFINEMENT FACTOR OF    3 th LAYER = 0.96531870E+00

CONFINEMENT FACTOR OF    4 th LAYER = 0.17340584E-01

CONFINEMENT FACTOR OF    5 th LAYER = 0.63852474E-07

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

0.159263664462E+00

  INPUT THE NAME OF OUTPUT FILE

cb2.txt

CONFINEMENT FACTOR OF    1 th LAYER = 0.63347186E-05

CONFINEMENT FACTOR OF    2 th LAYER = 0.86169326E-01

CONFINEMENT FACTOR OF    3 th LAYER = 0.82764868E+00

CONFINEMENT FACTOR OF    4 th LAYER = 0.86169326E-01

CONFINEMENT FACTOR OF    5 th LAYER = 0.63347186E-05

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

2

 

ii) Steps to calculate the heavy hole energy levels

 ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

3

  INPUT THE NUMBER OF QUANTUM WELLS NUM=?

1

  INPUT TOTAL LAYERS FOR STRUCTURE--N ODD

  INPUT N=

5

  INPUT THE HIGHEST POTENTIAL(1st Q-WELL) LAYER IC= ?

3

  INPUT THE SELECTED CENTER OF THE STRUCTURE ICR=?

3

 *******************************************************

   INPUT I=1  FOR AlGaAs

         I=2  FOR InGaAsP

         I=3  FOR In(1-x)Ga(x)As/InGaAsP/InP

         I=4  FOR InGaAlAs/InGaAlAs

         I=5  FOR GaInP/(AlGa)0.5In0.5P/AlInP

         I=6  FOR InGaAs/AlGaAs/AlGaAs

         I=7  FOR InGaAs/InGaAsP/Ga0.51In0.49P(GaAs)

         I=8  FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

         I=9  FOR In(z)Ga(1-z)As/AlxGayIn1-x-yAs/InP

         I=10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(InP)

         I=11 FOR InzGa1-zAs/AlxGayIn1-x-yAs/AlAsxSb1-x

         I=12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs

         I=13 FOR InGaAs/In(1-x)Ga(x)As(y)P(1-y)/GaAs

   INPUT I= ?

 *******************************************************

13

 *******************************************************

 

  DOES THE STRUCTURE STRAIN OR STRAIN-COMPENSATED?

  IF STRAIN ONLY INPUT 1, STRAIN-COMPENSATED INPUT 2

  INPUT SELECT = ?

 

1

ENERGY EIGENVALUE===> -0.431144978171E+00 ERROR= .3048383E-14

ENERGY EIGENVALUE===> -0.416154706432E+00 ERROR= .4027410E-14

 

……..

 

ENERGY EIGENVALUE===> -0.360098024766E-01 ERROR= .1582591E-14

ENERGY EIGENVALUE===> -0.880918208839E-02 ERROR= .2485319E-14

  FOR CHECKING THE Schrodinger WAVE FUNCTION INPUT I==> 1

  SKIP INPUT I==> 2

  I=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.880918208839E-02

  INPUT THE NAME OF OUTPUT FILE

hh1.txt

CONFINEMENT FACTOR OF    1 th LAYER = 0.13106920E-18

CONFINEMENT FACTOR OF    2 th LAYER = 0.13394211E-02

CONFINEMENT FACTOR OF    3 th LAYER = 0.99734154E+00

CONFINEMENT FACTOR OF    4 th LAYER = 0.13190393E-02

CONFINEMENT FACTOR OF    5 th LAYER = 0.13146527E-18

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.360098024766E-01

  INPUT THE NAME OF OUTPUT FILE

hh2.txt

CONFINEMENT FACTOR OF    1 th LAYER = 0.24159076E-17

CONFINEMENT FACTOR OF    2 th LAYER = 0.54971662E-02

CONFINEMENT FACTOR OF    3 th LAYER = 0.98900594E+00

CONFINEMENT FACTOR OF    4 th LAYER = 0.54968902E-02

CONFINEMENT FACTOR OF    5 th LAYER = 0.24238529E-17

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

2

 

 

 

iii) Steps to calculate the light hole energy levels

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

4

  INPUT THE NUMBER OF QUANTUM WELLS NUM=?

1

  INPUT TOTAL LAYERS FOR STRUCTURE--N ODD

  INPUT N=

5

  INPUT THE HIGHEST POTENTIAL(1st Q-WELL) LAYER IC= ?

3

  INPUT THE SELECTED CENTER OF THE STRUCTURE ICR=?

3

 *******************************************************

   INPUT I=1  FOR AlGaAs

         I=2  FOR InGaAsP

         I=3  FOR In(1-x)Ga(x)As/InGaAsP/InP

         I=4  FOR InGaAlAs/InGaAlAs

         I=5  FOR GaInP/(AlGa)0.5In0.5P/AlInP

         I=6  FOR InGaAs/AlGaAs/AlGaAs

         I=7  FOR InGaAs/InGaAsP/Ga0.51In0.49P(GaAs)

         I=8  FOR AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

         I=9  FOR In(z)Ga(1-z)As/AlxGayIn1-x-yAs/InP

         I=10 FOR InGaAlAs/InGaAlAs/AlAsxSb1-x(InP)

         I=11 FOR InzGa1-zAs/AlxGayIn1-x-yAs/AlAsxSb1-x

         I=12 FOR In(y)Ga(1-y)As(x)N(1-x)/GaAs

         I=13 FOR InGaAs/In(1-x)Ga(x)As(y)P(1-y)/GaAs

   INPUT I= ?

 *******************************************************

13

 *******************************************************

 

  DOES THE STRUCTURE STRAIN OR STRAIN-COMPENSATED?

  IF STRAIN ONLY INPUT 1, STRAIN-COMPENSATED INPUT 2

  INPUT SELECT = ?

 

1

ENERGY EIGENVALUE===> -0.437001414290E+00 ERROR= .3575176E-14

ENERGY EIGENVALUE===> -0.417816439139E+00 ERROR= .9797945E-14

 

…….

 

ENERGY EIGENVALUE===> -0.155259330638E+00 ERROR= .3235995E-14

ENERGY EIGENVALUE===> -0.953949376087E-01 ERROR= .2429016E-14

 

  FOR CHECKING THE Schrodinger WAVE FUNCTION INPUT I==> 1

  SKIP INPUT I==> 2

  I=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.953949376087E-01

  INPUT THE NAME OF OUTPUT FILE

lh1.txt

CONFINEMENT FACTOR OF    1 th LAYER = 0.45515149E-10

CONFINEMENT FACTOR OF    2 th LAYER = 0.62110303E-02

CONFINEMENT FACTOR OF    3 th LAYER = 0.98757794E+00

CONFINEMENT FACTOR OF    4 th LAYER = 0.62110309E-02

CONFINEMENT FACTOR OF    5 th LAYER = 0.48346799E-10

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

1

  INPUT THE EIGENVALUE

  EIGEN VALUE=

-0.155259330638E+00

  INPUT THE NAME OF OUTPUT FILE

lh2.txt

CONFINEMENT FACTOR OF    1 th LAYER = 0.19585995E-08

CONFINEMENT FACTOR OF    2 th LAYER = 0.28328869E-01

CONFINEMENT FACTOR OF    3 th LAYER = 0.94334223E+00

CONFINEMENT FACTOR OF    4 th LAYER = 0.28328892E-01

CONFINEMENT FACTOR OF    5 th LAYER = 0.20998482E-08

  INPUT NEW EIGENVALUE--> 1, BACK TO MAIN PAGE--> 2

  SELECT=?

2

 

b) The main output file from this part of GAIN program is energy.dat, containing all the energy levels as shown in Table C.13.5. After the energy eigen values are calculated, the GAIN program asks the user whether he would like to check the wave envelope function or not. We suggest that the user check the wave envelope functions of the first and second energy levels for conduction, heavy-hole and light hole bands. The plots of the envelope functions are shown in Fig. C.13.2, Fig. C.13.3, Fig C.13.4. 

 

Table C.13.5. output file energy.dat

 CONDUCTION BAND ENERGY===>  0.969908633581E-01 ERROR= .4024812E-14

                                                    

  CONDUCTION BAND ENERGY===>  0.159263664462E+00 ERROR= .3355458E-14

                                                   

………

                                              

  HEAVY HOLE ENERGY===> -0.360098024766E-01 ERROR= .1582591E-14

                                                   

  HEAVY HOLE ENERGY===> -0.880918208839E-02 ERROR= .2485319E-14

                                                   

……….

                                                   

  LIGHT HOLE ENERGY===> -0.155259330638E+00 ERROR= .3235995E-14

                                                   

  LIGHT HOLE ENERGY===> -0.953949376087E-01 ERROR= .2429016E-14

                                                   

 

 

Fig. C.13.2. Wave envelope functions for energy levels in conduction band

 

Fig. C.13.3. Wave envelope functions for heavy hole energy levels

 

 

Fig. C.13.4. Wave envelope functions for light hole energy levels


 

C.13.3. Computation of Gain and Laser Characteristics

 

This is the last step of simulations using the GAIN program. With the previous calculated material composition, energy band edges, energy levels, and other parameters like material loss and Auger coefficient, the GAIN program can simulate the threshold current, threshold current density, slope efficiency, optical gain and mode gain as functions of wavelengths and photon energies, and L-I curve. The details are explained in Chapter 4 of the manual.

 

In this part of GAIN program, the input file needs to be constructed with the results of the previous steps and according to the laser design. The input file of material system #13 is shown in Table C.13.6. The detailed steps of simulations are listed in Table C.13.7. The main output files: L-I curve, optical gain as a function of the wavelength, and mode gain vs. current density are plotted in Fig. C.13.5, Fig. C.13.6, and Fig. C.13.7.

 

a) The input file:

 

Table C.13.6. Input file (mat_13.txt) for gain and threshold current calculation

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c     1. Input the compositions, width of well, effective index                             c

c        and lasing wavelength.                                                                               c

c     Ex: xx,xz,qy,xy,lx,n,lam                                                                               c

c     for different materials the following are the forms of inputs.                       c

c                                                                                                                            c

c     w -- > well, b -- > barrier  cxz and cxy for cladding.                                    c

c                                                                                                                            c

c     a.  AlxGa1-xAs : xx (Al w) xz (Al b) qy (0) xy (0)                                      c

c     b.  In1-xGaxAsyP1-y : xx (Ga w) xz (Ga b) qy (As w) xy (As b)                c

c     c.  In1-xGaxAs/InGaAsP : xx (Ga w) xz (Ga b) qy (0) xy (As b)                c

c     d.  AlxGayIn1-x-yAs/InP : xx (Ga w) xz (Ga b) qy (Al w) xy (Al b)          c

c     e.                                                                                                                    c

c     f.  InxGa1-xAs/AlGaAs : xx (In w) xz (0) qy (0) xy (Al b)                          c

c     g.                                                                                                                    c

c     h.  AlyInxGa1-x-yAs/AlGaAs : xx (Al w) xz (al b) qy (In w) xz (0)           c

c     i.  In1-xGaxAs/AlGaInAs : xx (In w) xz (0) qy (Al b) xy (Ga b)                 c

c     j.  In(y)Ga(1-y)As(x)N(1-x) :xx(As w),xz(As, b),qy(In w),xy(In b)            c

c     k.  InGaAs/InGaAsP/GaAs: xx (In w), (0), xz(Ga w) xy (As b)

c     2. Input the energy gap,temperature, barrier band edges(both bands)

c     Ex: eg,temp,ec,ev                                                                                           c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

0.15876268E+00   0.0    0.71327461E+00    0.4575050    9.0    3.33    0.975

1.181   298    0.2304440    0.3456660

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c     3. Input the ist level sub-band energy levels.                                                 c

c     Ex: ec1,eh1,el1                                                                                               c

c                                                                                                                             c

c     4. Input the material loss, reflectivities, number of quantum                         c

c        wells and beta(for spontaneous emission).                                                  c

c     Ex: alpha,r1,r2,mm,beta.                                                                                 c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

0.09699086   0.00880918    0.0953949     0.15926366    0.0360098    0.1552593

2.0d0      0.3000        0.300        1          5.D-5

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c     5. Input the cavity length, ridge width, internal efficiency                             c

c        Auger, strain(except AlGaAs,put 0) and confinement factor.                     c

c     Ex: cl,cw,etha,ca,es,confine                                                                            c

c                                                                                                                              c

c     6. Input the cladding composition and band edges.                                        c

c     Ex: cxz,cxy,ecc,evv                                                                                         c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

1000.D-4       100.0D-4           0.86           1.00d-29            0.000            0.018

0.48        157195E+00       0.0016077        0.2978522            0.4467784

 

b) The steps for these calculations mentioned are listed in Table C.13.7

 

Table C.13.7. The steps for the gain and threshold current density calculations

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

5

  THE INPUT FILE NAME=

mat_13.tex

  SELECT MATERIAL=?

  1--AlGaAs

  2--InGaAsP

  3--In1-zGazAs/InGaAsP/InP

  4-- InGaAlAs

  5--GaInP/AlzGawIn1-z-wP/Al0.5In0.5P

  6-- InxGa1-xAs/AlxGa1-xAs/AlGaAs

  7--In1-xGaxAs/InGaAsP/GaxIn1-xP(X=0.51) MATCHED TO GaAs

  8--AlyInxGa1-x-yAs/AlzGa1-zAs/GaAs

  9--InzGa1-zAs/AlxGayIn1-x-yAs/InP

  10-- InGaAlAs/InGaAlAs/AlAsSb

  11--InzGa1-zAs/AlxGayIn1-x-yAs/AlAsSb

  12--In(y)Ga(1-y)As(x)N(1-x)/GaAs

  13--InGaAs/In(1-x)Ga(x)As(y)P(1-y)/GaAs

  INPUT SELECTION

13

 INPUT MODE = ? FOR TE--> MODE =1, FOR TM--> MODE =2

  INPUT TE OR TM ?

1

 IF EL1 BELOW EH1 THEN SELECT 1, OTHERWISE SELECT 2

  SELECTION=?

1

  **************************************************

 CALCULATE THE EFFECTIVE MASS

  **************************************************

  FOR QUASI-FERMI LEVEL SELECT=1,

  FOR READ EXISTING QUASI-FERMI LEVEL SELECT=2

  SELECT=?

1

 

……….

J(LEAKAGE)=0.737102D+05 A/cm^2  N=0.788120D+19 1/cm^3

 J(LEAKAGE)=0.745813D+05 A/cm^2  N=0.790100D+19 1/cm^3

 J(LEAKAGE)=0.754584D+05 A/cm^2  N=0.792080D+19 1/cm^3

 J(LEAKAGE)=0.763412D+05 A/cm^2  N=0.794060D+19 1/cm^3

 J(LEAKAGE)=0.772298D+05 A/cm^2  N=0.796040D+19 1/cm^3

 J(LEAKAGE)=0.781241D+05 A/cm^2  N=0.798020D+19 1/cm^3

 J(LEAKAGE)=0.790240D+05 A/cm^2  N=0.800000D+19 1/cm^3

 **************************************************

 G(J) PARAMETERS FROM SINGLE WELL

 Go=0.223602D+02 1/cm  Jo=0.330614D+03 A/cm^2

 

 G(N) PARAMETERS FROM SINGLE WELL

 NGo=0.124223D+04 1/cm  XNo=0.116917D+19 1/cm^3

 

 Jtr=0.121626D+03 A/cm^2  NTR=0.430115D+18 1/cm^3

 

 

 THE OPTIMUM NUMBER OF QUANTUM WELL FOLLOWS THE ARTICLE

 BY McIlory et al. IEEE JQE-21 1985.

 

 THE OPTIMUM NUMBER OF QUANTUM WELL Nopt =           1

 INPUT Nopt(CAN BE DIFFERENT FROM ABOVE CALCULATION)=?

1

  NUMBER OF QUANTUM WELL(MAY OR MAY NOT BE Nopt)=?

1

 

  **************************************************

  **************************************************

  1ST CHECK USE SINGLE WELL TIMES # OF WELLS

  **************************************************

  **************************************************

  2ND CHECK FOLLOWS FORMULA BY McIlory IN IEEE

  JOURNAL OF QUANTUM ELECTRONIC QE-21 1985.

  **************************************************

    Gth=  14.0397 1/cm Nth=0.872180D+18 1/cm^3 IY=   40

   1ST CHECK Jth=   234.12059582 A/cm^2

   2ND CHECK Jth=   384.43491 A/cm^2

 

   1ST CHECK Ith=0.234121D+03 mA NUMBER OF WELLS=  1

   2ND CHECK Ith=0.384435D+03 mA

 

  **************************************************

 CALCULATE THE P-I RELATION

 

 NDATA=         361

**************************************************

CALCULATE THE SLOPE: mW/mA Y=A+BX

 CONSTANT A=-108.9198070   SLOPE B=   0.4652295

 **************************************************

  INPUT POWER PO FOR THE LINEWIDTH, PO=0 FOR STOP

  INPUT PO=    mW

0

 INPUT 1 FOR THE DYNAMIC CALCULATION. 2 FOR SKIP

 INPUT =

2

  K-FACTOR= 0.32466 nS  MAXIUM FREQ.= 27.3693 GHz

  **************************************************

  INPUT 1 FOR CALCULATE THE GAIN(E) RELATION.

 

  INPUT 2 FOR CALCULATE THE LINEWIDTH ENHENCEMENT

  FACTOR AND PHOTON ENERGY RELATION

 

  INPUT 3 FOR EXIT THE PROGRAM

 

 THE INPUT # IS

1

INPUT FERMILEVELS IN C-BAND, V-BAND, AND CARRIER DENSITY

0.210195297051E+00  0.516850978058E-02 0.200075187970E+19

 CALCULATE THE CONVOLUTION GAIN(E) COEFFICIENT

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(LAMBDA)

ol1_mat_13

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(LAMBDA)

ml1_mat_13

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(E)

oe1_mat_13

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(E)

me1_mat_13

  **************************************************

 INPUT 1 FOR REPEAT THE G(E) CALCULATION

 INPUT 2 FOR REPEAT THE ALPHA(E) CALCULATION

 INPUT 3 FOR EXIT

1

  ************************************************** 

  INPUT 1 FOR CALCULATE THE GAIN(E) RELATION.

 

  INPUT 2 FOR CALCULATE THE LINEWIDTH ENHENCEMENT

  FACTOR AND PHOTON ENERGY RELATION

 

  INPUT 3 FOR EXIT THE PROGRAM

 

 THE INPUT # IS

1

INPUT FERMILEVELS IN C-BAND, V-BAND, AND CARRIER DENSITY

0.210195297051E+00 0.189627393147E-01 0.299072681704E+19

 CALCULATE THE CONVOLUTION GAIN(E) COEFFICIENT

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(LAMBDA)

ol2_mat_13

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(LAMBDA)

ml2_mat_13

 INPUT THE NAME FOR THE CONVOLUTION OPTICAL GAIN(E)

oe2_mat_13

  **************************************************

 INPUT THE NAME FOR THE CONVOLUTION MODE GAIN(E)

me2_mat_13

  **************************************************

 INPUT 1 FOR REPEAT THE G(E) CALCULATION

 INPUT 2 FOR REPEAT THE ALPHA(E) CALCULATION

 INPUT 3 FOR EXIT

3

 

ENTER 1 FOR THE NECESSARY PARAMETERS

       2 FOR THE ENERGY VALUES OF CONDUCTION BAND

       3 FOR THE ENERGY VALUES OF HEAVY HOLE BAND

       4 FOR THE ENERGY VALUES OF LIGHT HOLE BAND

       5 FOR THE LASER G-J AND G(LAMBDA)

       6 FOR RATE EQUATIONS(TWO SECTION MODEL INCLUDED)

       7 FOR EXIT

 

7

 

c) The Output characteristics of designed laser from step 5 are summarized in Table C.13.7.

 

Table C.13.7 Characteristics of the designed laser

Optimized number of QWs (Nopt)

1

Number of QWs

1

Slope efficiency (%)

47.43

Jth (A/cm^2)

234.12 - 1st check, for matching threshold conditions

384.43– 2nd check, using McIlory method

Peak l at operating temperature (um)

0.970 um for carrier density of 2.0E18 /cm3

0.973 um for carrier density of 3.0E18 /cm3

Peak material gain (1/cm)

2723/cm for carrier density of 2.0E18 /cm3

3451 /cm for carrier density of 3.0E18 /cm3

 


 

Fig. C.13.5. L-I curve of the laser

Fig. C.13.6. Optical gain-l curve of the laser

 

 

Fig. C.13.7. Mode gain as a function of current density (J)