

Optimizing Product Transportation at Frito Lay

Fernando Sada Javier González

Marcelo Sada

Agenda

- Company Overview
- Current Situation
- Objective
- Model
- Results
- Recommendations

Company Overview: Frito Lay

- Division of PepsiCo that manufactures corn chips, potato chips and other snack foods.
- Brands: Doritos, Tostitos, Cheetos, Ruffles, Munchies, Grandma's

- ▶ Headquarters: Plano, TX
- ▶ Revenue: \$15 billion

Company Overview: Gamesa

- Company Overview

 Current Situation

 Objective

 Model
 - Results
- Recommendations

- Largest cookie company in Mexico
 - Division of PepsiCo.
- Brands: Emperador, Marias, Mamut, Chokis....
- Revenue: \$2 billion
- Headquarters: Monterrey, MX

Current Situation

- In order to satisfy the large Hispanic market in the US, Frito Lay imports Gamesa brands from Mexico.
- Several Frito Lay brands are also produced in Mexico and imported into the US as well.

Current Situation

Company Overview
Current Situation
Objective
Model
Results
Recommendations

- ▶ Plants in Monterrey, Vallejo, Celaya and Obregon.
- All pass through Obregon to be consolidated. Then, exported all across the U.S.

Current Situation - Products

Company Overview

Current Situation

Objective

Model

Results

Recommendations

- Our project was narrowed down to focus specifically on two products.
 - Munchies Mini Sandwich Crackers
 - Grandma's Mini Fudge Chocolate Chips

Current Situation

Company Overview
Current Situation
Objective
Model
Results
Recommendations

- All products are produced in Vallejo.
- Demand in 5 cities for each of the 4 products.
 - Cucamonga CA
 - Modesto CA
 - Dallas TX
 - Frankfort IN
 - Pulaski TN
- Only plants with consolidation capabilities are Dallas and Obregon.

Current Situation - Transportation

Company Overview

Current Situation

Objective

Model

Results

Objective

- Company Overview
 Current Situation
 Objective
 Model
 Results
 Recommendations
- Help Frito Lay reduce transportation costs by finding the optimal routes to export/import from Mexico into the different cities in the United States
- ▶ Things to consider:
 - Geography
 - Production Capabilities
 - Space to consolidate

Model – Multi-Commodity Fixed Charge Network Flow Problem


Company Overview

Current Situation

Objective

Model

Results

Model - Inputs

- Company Overview
 Current Situation
 Objective
 Model
 Results
 Recommendations
- Sources: All products manufactured in Vallejo
 - Infinite production capacity for current demands.
- Demands: All 5 cities
 - Couldn't create accurate forecast
 - ▶ Have only 8 months of past data.
 - Insufficient for seasonality analysis.
 - Used Average of the 8 months as the future demand.

Model - Inputs

- Arcs (Cost):
 - Got current quotes from Swift, Magellan, Schneider. (International transportation includes border fees).
 - Crossing fees:
 - ▶ Mty-Laredo: \$600, Obregon-Nogales: \$1200

Model - Algorithm

Company Overview

Current Situation

Objective

Model

Results

Code

```
param Demand (Destinations, Commodities), default 0.0;
param Cost {Arcs};
data e:FL_Data.txt;
var x {Arcs, Commodities} >= 0;
var bx {Arcs} binary;
display Nodes;
display Sources;
display Destinations;
display Commodities;
display Arcs;
display Demand;
display Cost;
minimize OBJ: sum{(i,j) in Arcs} Cost[i,j] * bx[i,j];
subject to C1{k in Sources, c in Commodities}:
         sum\{(k,j) \text{ in Arcs}\} \times [k,j,c] - sum\{(i,k) \text{ in Arcs}\} \times [i,k,c] \Leftarrow 9999999;
subject to C2{k in Destinations, c in Commodities}:
         sum\{(k,j) \text{ in Arcs}\} \times [k,j,c] - sum\{(i,k) \text{ in Arcs}\} \times [i,k,c] = Demand[k,c];
subject to C3{(i,j) in Arcs}: sum{c in Commodities} x[i,j,c] \Leftarrow 1000000000*bx[i,j];
solve:
# expand:
display x, bx:
```

Data

```
set Nodes := 1 2 3 4 5 6 7:
set Sources := 1 2 3;
set Destinations := 2 3 4 5 6 7;
set Commodities := q w e r;
set Arcs := (1,2) (1,3) (2,4) (2,5) (2,6) (2,7) (3,4) (3,5) (3,6) (3,7);
param Cost :=
1 2 2200
1 3 1838.59
2 4 2074.66
2 5 2728.75
2 6 1053.60
2 7 1262.96
3 4 2461
3 5 3212
3 6 4730
3 7 4511:
param Demand :=
# q is product 62700 (Chokis 85g)
# w is product 62800 (Chokis 35g)
# e is product 63200 (Munchies 35g)
# r is product 63300 (Munchies 85g)
2 q -25117.38
2 w -6957.48
2 e -10284.53
2 r -26633.75
4 q -10343.83
4 w -5142.49
4 e -5434.41
4 r -10973.75
```

Results – AMPL/CPLEX

Results

```
CPLEX 10.0.0: optimal integer solution; objective 9319.97
0 MIP simplex iterations
0 branch-and-bound nodes
\times [1,*,*]
                                            :=
  60742.3 89802.9 99600.5 48130.3
 [2,*,*]
                            \mathbf{r}
     5434.41 10343.8
                         10973.8
                                     5142.49
5
       0
               3685.02
                          5083.73
                                        0
   30438.6
              22828.2
                                    23848.1
                         24906.1
7 14584.8
              27828.5
                         32003.2
                                    12182.2
          r
                    :=
     1
24 1
25
26
     1
27
     1
35
37
```

Company Overview

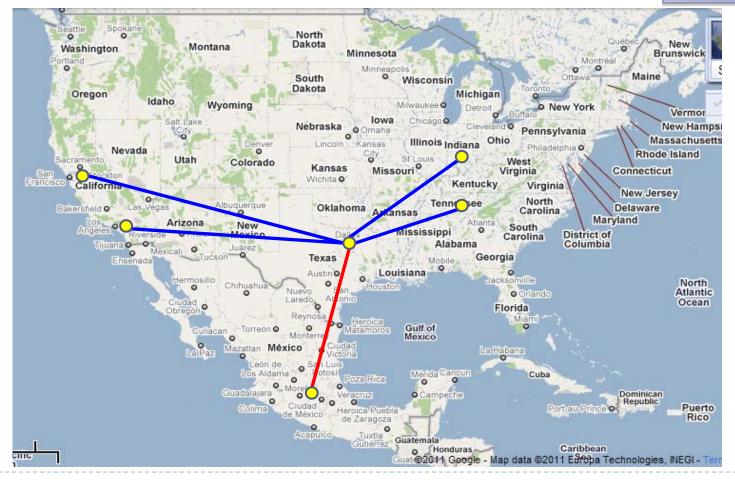
Current Situation

Objective

Model

Results

Results - Map


Company Overview

Current Situation

Objective

Model

Results

Results - Costs

Company Overview

Current Situation

Objective

Model

Results

	Presentation	
	85g	35g
	36 bags	64 bags
	36 bales	48 bales
	60 platforms	60 platforms
Total bags per truck	77,760.00	184,320.00
TOTAL		521,233.57
Total Trucks per Month	6.70	2.83
Transportation Cost (9319.97 per truck)	\$62,472.75	\$26,355.69
Total Cost	\$88,828.44	
TOTAL Real Cost (10 Trucks)	\$93,199.70	
Current Cost	\$167,125.90	
Savings per Month	\$73,926.20	
Savings per Year	\$887,114.40	

- Consolidate products in Dallas
 - Driving distance: 22 hours in total
 - Vallejo Laredo: 14
 - Laredo Dallas: 8
- Train employees in Vallejo to export (fill out paperwork).
- Teach new route to drivers.

CONTACTS

- Alberto Galvan– Frito Lay Marketing Director
- Greta Medina

 Gamesa/Quaker International Supply Chain Manager
- Heather Diamond

 Frito Lay National Supply Chain Integration Manager

QUESTIONS?

