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ABSTRACT
Ensuring cellular coverage is an important and costly concern for
carriers due to the expense of in-field experimentation (i.e., drive
testing). With the ubiquity of smartphones, apps, and social media,
there has been an explosion of crowdsourcing to understand a vast
array of trends and topics at a minimal cost to the organization.
While cellular carriers might seek to replace the expensive act of
drive testing with the nearly cost-free crowdsourcing, questions
remain as to: (i) the accuracy of crowdsourcing, considering the
lack of user control, (ii) the detection of when drive testing might
still be required, and (iii) the quantification of how many additional
in-field measurements to perform for a certain accuracy level. In
this work, we use geographical features of a region to reduce in-
field propagation experimentation by predicting the number of
measurements required to accurately characterize its path loss.
In particular, we study the path loss prediction accuracy of drive
testing and crowdsourcing by taking millions of measurements in
a suburban and downtown region. We then use statistical learning
to build a relationship between these geographical features and
the measurements required. In doing so, we find that the number
of measurements collected to achieve a certain path loss accuracy
over the entire region can be reduced by up to 58% in a high density
drive testing scenario.

1 INTRODUCTION
To address multi-fold increases in cellular demand, carrier cell sizes
are shifting downwards to maximize network capacity. In doing
so, the accurate and fine-grained coverage estimation of coverage
becomes a critical issue for spatial reuse, intercell interference, and
smooth handoffs between cells. Historically, in-field experimen-
tation (i.e., drive testing) has been used to estimate the cellular
propagation of a given region, which is costly for network opera-
tors due to the manpower and equipment required. The emergence
of smartphones and their apps have offered a far cheaper alter-
native, recording in-field network observations directly from the
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cellular users (i.e., crowdsourcing). Crowdsourcing can allow net-
work observations to be recorded in areas to which in-field testers
may not have access.

Despite the availability of crowdsourced measurements, network
providers continue to use extensive drive-testing to validate net-
work coverage and quality of service metrics. One of the main goals
in supplementing crowdsourced measurements with drive testing
measurements is to fill in the gaps of crowdsourcing. However, the
drive testing process can be costly and time consuming, creating
a market for network drive testing reports. Thus, collecting these
measurements in an efficient manner is a high priority. The most
direct approach would be to minimize the number of measurements
that needs to be collected to achieve the accuracy requirements set.
In this paper, we attempt to reduce the number of measurements
required for accurate path loss characterization throughout a given
region by understanding and exploiting the variation in geographi-
cal features. In order for this to happen, several questions need to
be answered:

(1) What are the relationships between geographical features
and signal strength measurement requirements?

(2) Can the number of measurements required to achieve a par-
ticular accuracy level be determined for a specific area?

(3) How can these spatial differences be exploited to reduce the
total number of measurements required to meet a particular
regional path loss characterization accuracy?

In this work, we use geographical features of a region to more
efficiently collect signal strength measurements, thereby reducing
the amount of time spent on in-field propagation experimentation.
To do this, we first introduce GeoRIPE, a statistical learning frame-
work to situationally predict the number of measurements required
to meet a specified path loss characterization precision. With this
framework, geographical feature distribution input is used to sug-
gest measurement collection requirements in a grid-like fashion
over the target region. Then, we developed and deployed an An-
droid application to gather signal strength measurements from real
users throughout the world. We use a specially modified version of
this application to collect high-density drive testing measurements
from two distinct region types in a major metropolitan area. By
using commercially available smartphones, measurements gath-
ered are comparable to those gathered using purely crowdsourcing.
Next, we explore the effect of land use on path loss characterization,
showing how geographical feature diversity plays a large role in de-
termining regional measurement requirements. We show especially
strong correlation between the number of measurements required
to accurately characterize the path loss in a region and the geo-
graphical feature ratio of small, medium, and large buildings, foliage
and free space in an area. Finally, we validate the framework by
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Figure 1: GeoRIPE Framework: using geographical features of a region (left) to infer the number of measurements required to
predict path loss with a given accuracy level. The middle figure shows minimum measurements required (light is high, dark
is low) of the same spatial distribution as the left-most figure. The right figure is a 3-D version of the middle figure.

comparing GeoRIPE to uniform measurement collection approach.
We show that when fixing the accuracy requirement in path loss
evaluation over the entire region, using the GeoRIPE framework
can significantly reduce the required number of measurements that
need to be taken to meet it.

2 GEORIPE FRAMEWORK
To illustrate the GeoRIPE1 framework of using geographical fea-
tures to reduce in-field propagation experimentation, we have de-
picted an aerial view of a region’s terrain in the left-most image in
Figure 1 with north on the top of the image. The terrain is classified
into the following geographical features: buildings, dense foliage,
and free space. Since in-field testing is expensive, our goal is to
predict the least number of propagation measurements required
to characterize the path loss in the region according to a specified
level of accuracy. For example, the path loss of a region which has
entirely free space (e.g., a desert) could be characterized with very
few measurements. However, a diverse metropolitan region would
require far more measurements to characterize.

The middle and right images of Figure 1 depict the end re-
sult of the GeoRIPE framework. The middle image depicts a two-
dimensional overlay of the measurement density required to char-
acterize the region shown in the left-most image. The southwest
portion of the region is the lightest color, which means that it re-
quires the greatest number of measurements to characterize due
to the high concentration of buildings. In contrast, the northwest
portion of the region is the darkest, which means that it requires
the least number of measurements to characterize due to sparse
building placement and less foliage. A three-dimensional version
of the same figure can be seen in the right-most image to show the
quantity of measurements required in each portion of the region.

A similar analysis could be done for a given region by an exces-
sive amount of in-field testing and finding when each portion of
the terrain converged to a particular level of path loss prediction
accuracy. However, such an approach, by definition precludes any
in-field testing reduction. While we take a very large number of
measurements in certain regions in our work, we do so to train a
statistical learning decision structure to infer the number of in-field
measurements required. As a result, for any mix of such terrain
1As a mnemonic for this work, consider that fruit should be in the field the appropriate
amount of time before harvested (i.e., to be ripe). Similarly, we seek to find theminimum
amount of time necessary for in-field experimentation to accurately predict the path
loss of a region.

features, we can avoid the two in-field testing extremes of: (i) too
few measurements, resulting in an inaccurate path loss estimate, or
(ii) too many measurements, resulting in excessive experimentation
costs. We can then evaluate the viability of using crowdsourcing to
lower the drive testing cost.

The GeoRIPE framework’s measurement distribution prediction
is made with path loss accuracy in mind. So, before we evaluate the
framework itself, we first need to give some background on path
loss models in general as well as what model we use for our analysis.
Path loss models attempt to predict the electromagnetic propaga-
tion as a function of distance. Many of these models rely on a priori
information, using environmental details, a theoretical foundation,
empirical findings, or some combination of the three for their pre-
diction [6, 11, 21]. Other techniques operate under the assumption
that a priori information is insufficient. These models supplement
an existing model with a correction factor or factors based on mea-
surements collected throughout a region to be modeled and tend
to be more accurate than their a priori counterparts [17]. These
active measurement models consist of two fundamental compo-
nents: (i) how the measurements are gathered, and (ii) how they
are incorporated into the model.

2.1 Path Loss Measurement and Supplemented
Models

W. C. Lee studied the initial theoretical methodology of gathering
active measurements for modeling path loss [13]. Lee proposed
arced measurements at incremental distances from the transmitter
while averaging measurements that fall within 20 to 40 wavelengths
of each other, a claim corroborated by Shin using IEEE 802.11b
measurements some years later [20]. In practice, it is often difficult
to collect measurements strictly following the theoretically ideal
guidelines due to environmental inaccessibility. This can be due
to permission limitations, such as access restricted buildings or
construction sites, or infrastructure limitations, where equipment
setups are subject to the same mobility freedoms as the vehicles in
which they operate.With a crowdsourced approach, a greater access
diversity can be achieved with the limitations of a lack of control
over data validity and input distribution. Due to these practical
considerations, our work considers geographical complexity and
its role in characterizing a region, both with vehicle-based drive
testing and app-enabled crowdsourcing.



One of the more recent path loss models utilizing collected mea-
surements is one proposed by Robinson et al. [18]. Using the Tech-
nology For All (TFA) network in Houston, TX, they utilized a mod-
ified Flexible Path Loss Exponent model with a terrain correction
factor derived iteratively from collected measurements. The model
is an extension of Friis’ fundamental study [6] and can be written
as:

Prx =Ptx + 10α log(d) − 20 log(f )

− 20 log
(

4π
c

) (1)

Here, Ptx and Prx are the transmitted and received signal powers,
respectively, α is the path loss exponent, f is the transmit frequency,
d is the distance from the transmitter, and c is the speed of light.
In their work, the authors use existing wireless mesh nodes and
detailed terrain information to determine sections that are likely to
share a similar path loss exponent. They then incrementally gather
measurements around the borders of these sections in a push-pull
algorithm to refine the coverage estimate of the mesh node.

2.2 Obtaining a Path Loss Exponent
In our statistical learning approach, it is necessary to train a clas-
sifier with path loss exponent observations derived from existing
measurements to motivate predictions in areas that lack those same
measurements. We borrow the idea of a spatially-dependent path
loss exponent from Robinson et al. without the push-pull measure-
ment adjustment algorithm, a reference node, and detailed terrain
information (includingmaterial loss estimations). Instead, we use (1)
in a square-shaped moving window over the region, using linear re-
gression to obtain a path loss exponent for each window. Since the
measurements are obtained from many different towers distributed
over the area, each using potentially different transmit powers at
different heights, we rely on a larger quantity of data to average
out these inconsistencies. However, the accuracy (which we de-
fine as inversely proportional the standard deviation of obtained
path loss exponents over several calculations using orthogonal mea-
surements) is increased, which we rely on more heavily for our
statistical learning framework. To calculate the metric of standard
deviation on the path loss exponent, we divide the data consid-
ered into several independent sets, calculate path loss exponent for
each independent set, and compute the standard deviation of the
exponents derived. Again, this gives us a solid metric for path loss
precision, even if the exponents themselves are biased by the data
collection limitations.

3 IN-FIELDWIRELESS AND GEOGRAPHICAL
DATA

In this section, we present our Android-based measurement gather-
ing platform, which will be leveraged locally by us to gather a dense
measurement set of wireless signal strengths in both a downtown
region and suburban region. We also introduce the geographical
feature data set that we use from the drive tested regions to estab-
lish a relationship between geodata and the attenuation of wireless
signals. By using a smartphone based collection platform, we can
gather Received Signal Strength Indicator (RSSI) measurements

that relate more directly to user experience than measurements
collected with traditional network analyzing hardware.

3.1 Local Measurement Collection
Over the span of two weeks (over 30 in-car hours), we collected 6.7
million drive testing measurements by placing LG Nexus 4 smart-
phones in a vehicle and thoroughly driving throughout two regions
in a snake like pattern, covering all available roads in each region.
Since we are using the measurements for studying region-based
path loss characteristics, the specific cellular technology used is
less important. Therefore, the measurements were collected on
GSM networks as they are still the most prevalent. The measure-
ments were obtained at a relatively constant speed of 30 mph in
two different areas of the Dallas metropolitan area. The first area is
a suburban region several miles north of the city center with lush
greenery prevalent throughout and is predominantly residential.
The second area is in downtown, where there is far less vegetation,
and the buildings are far taller than the suburban structures with
non-uniform heights. Our goal is to use these two distinct regions
to examine how differences in feature distribution affect the num-
ber of required measurements to characterize path loss to a certain
degree of accuracy in each region.

3.2 Received Signal Strength in Android API
Each cellular measurement contains an RSSI field for each visible
cellular tower, a GPS location, an accuracy reading, and physical
speed of the device. While we now obtain RSSI readings in terms of
dBm, most of our measurements were taken when the API reported
RSSI in terms of Arbitrary Strength Units (ASU), an android specific
quantized signal strength metric, which quantizes obtained RSSI
values for GSM to 32 different levels shown in the equation below
from the Android API [9].

Prx (dBm) = 2 ∗ Prx (ASU ) − 113 (2)

Prx (ASU ) = [0, 31] (3)

We consider Prx (ASU ) = 0 and 31 unusable since they correspond
to SNR in an unlimited range; an ASU value of 31 includes any RSSI
value above −51 dBm. Not including these measurements, however,
clips the natural distribution of RSSI readings at locations with
measurements near the quantization limits. The lower and upper
bounds set by omitting measurements where Prx (ASU ) = 31 and
Prx (ASU ) = 0, respectively, move the average RSSI at certain dis-
tances from the tower. Distances closer to the tower that generally
have higher RSSI measurements near the upper bound may have a
lowered average RSSI. Conversely, distances farther from that tower
that generally have lower RSSI measurements near the lower bound
may have a heightened average RSSI. The bias in the movement
of average RSSI near the boundaries could end up changing (likely
reducing) the value of the obtained path loss exponent. While the
exact values of RSSI and path loss exponents are likely affected by
the quantization error, we are not evaluating absolute path loss
accuracy, only relative accuracy in our experiments, so the bias
does not affect our results.



3.3 Geographical Feature Data
In order to obtain geographical feature information, we utilized
an open-access online resource, Open Street Maps (OSM) [1], to
identify, outline, and label specific regional features and output
them to an easily accessible data structure for parsing. To this end,
we mapped hundreds of offices, parks, houses, and other features
in both the suburban and downtown regions and grouped them
into the feature category classes for our statistical learning sys-
tem. With statistical learning, the number of training observations
necessary for accurate divisions scales up proportionally with the
number of features used in the training. Due to this so-called curse
of dimensionality, as well as the limited number of possible features
to label in each region considered, it is necessary to divide all possi-
ble geographical features into relatively few feature categories for
processing. With this in mind, we selected five feature categories
under which all features were labeled: small buildings, medium
buildings, large buildings, high foliage, and open space. In this sys-
tem, we define small buildings consist of buildings that are under
5 stories tall (ground footprint is not considered for the category,
but is implicitly considered when calculating feature distributions
in a region). Similarly, we define the range of medium buildings as
being between 5 and 15 stories tall and large buildings as being over
15 stories tall. These building height tiers were chosen to give each
feature type non-trivial representation in the learning algorithm.
Finally, we consider high foliage areas in the regions are areas with
a large number of trees, and open space is the area defined by the
complement to the set of all other features combined and includes
structures such as roads, parking lots, etc. It is important to note
that the feature set we consider is far from ideal; with more de-
tailed geo-spatial feature data that is currently unavailable to us
(such as exact building and foliage canopy heights), the GeoRIPE
framework’s accuracy will only improve.
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Figure 2: Regional Feature Distributions

The overall ratio of features in the downtown and suburban
regions we examine are shown in Figures 2a and 2b, respectively.
These ratios represent the relative space occupied by each feature
according the following equations:

s = [f1, f2, ..., f5] (4)∑
i
si = 1 (5)

where s is a weighted vector for the normalized occupancy of each
of the 5 features in the full region in terms of total feature area.
From this figure, we can see that the suburban area lacks medium

and large buildings and has a higher percentage of open space than
the downtown region, as anticipated. Ideally, we will be able to
further differentiate and parse members of the open space set to
derive additional feature categories in the future.
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Figure 3: Regional Feature Distribution Deviation

Primarily, we want to examine how the features change over
each region. To do this, we calculated the ratio of features in a
moving window over each region. Treating the percentage of each
feature in the windows as a random variable, we then compute the
standard deviation, giving us a picture of the feature variability as
we move across each region. The standard deviation of features
can be seen for the downtown and suburban regions in Figures 3a
and 3b, respectively. From these figures, we can see that the variance
of features in the suburban region is, overall, significantly smaller
than in the downtown region. This is because, in the suburban
region, the grouping of features are polarized (ex: houses in half
the region, foliage in the other half), while the in the downtown
region, neighboring areas have a higher diversity in their feature
composition.

4 DENSITY-DEPENDENT TILING OF IN-SITU
DATA

While we have examined the differences in geographical feature
distribution of the two areas, we have yet to explore the impact of
changing the size of the subregion, or tile, used to group measure-
ments spatially. In this section, we explore the differences in path
loss exponent changes between these regions, their relative sub-
regions, and the trade off between tile size, measurement density,
and measurement error in evaluating path loss.

4.1 Extreme 1: Highly-Sparse Crowdsourced
Data

The first scenario is one in which the data set has very few mea-
surements. In such a situation, we need all the measurements we
have to assign a single path loss exponent to characterize an entire
region, similar to the traditional approach. In other words, divid-
ing the region into smaller areas to have more path loss precision
cannot occur because there is a lack of a sufficient number of mea-
surements to compose a path loss exponent estimate. The result
here can be considered a rough average of path loss over the en-
tire region; however, accuracy at any given area depends on the
variability of the region itself. While a single exponent over an
entire region may create a simpler coverage calculation, it may
not be accurate, especially in more diverse region types such as



large cities. When enough measurements are available, we can di-
vide the region into independent tiles for characterization based on
measurement density and region type instead. Figure 4 shows the
suburban region is divided into 6 and 24 tiles for path loss evalua-
tion, demonstrating the disparity in derived path loss exponents
for the same area using different tile sizes. While some smaller tiles
match the their large tile counterparts, others are different, alluding
to diverse environmental characteristics.

(a) 6 Tiles (b) 24 Tiles

Figure 4: Suburban region path loss divided into a) 6 and b)
24 tiles.

4.2 Extreme 2: Highly-Dense Crowdsourced
Data

We now examine the other extreme, when a very large number of
measurements are available. In this case, the tile size is not limited
by measurement density or acceptable error. With highly-dense
measurements (e.g., as the number of measurements approach infin-
ity), tile size is virtually unbounded, and the standard deviation of
path loss approaches zero (orthogonal subsets measurements would
regress to the same exponent when evaluating as the subset size ap-
proaches infinity). Instead, the variability of the terrain determines
the effective lower bound on the terrain characterization resolu-
tion, preventing the tile size from going to zero. In other words,
decreasing the title size resolution after a certain point does not
provide any additional information about path loss in the region.

Region Tiles Diff. Mean Diff. Variance

Downtown 6 0.0668 0.0040
24 0.0944 0.0059

Suburban 6 0.0742 0.0029
24 0.0464 0.0014

Table 1: Mean and variance of differences between neighbor-
ing tiles’ path loss.

Depending on the nature of the region being analyzed, the mean
and variance of the difference between neighboring tiles changes
with the tile size. Table 1 shows the mean and the variance in path
loss exponent calculation differences between neighboring tiles for
both the downtown and suburban regions of different tile sizes. As
the tile size decreases, we observe different behavior from the two
region types. In the downtown region, the differential mean and
variance increase with a smaller tile size, while in the suburban re-
gion, the opposite is true. For more diverse regions like downtown,

using smaller tile sizes has a larger benefit in characterizing the spa-
tial diversity of path loss. In less diverse regions like homogeneous
neighborhoods, the differential path loss throughout the region
does not require as high of a resolution; the path loss variability
seen from smaller tile sizes is below the noise floor in generating
the path loss exponents. Thus, the measurement density available
along with the region type’s path loss variability must be jointly
considered in determining a minimum tile size for characterization.

4.3 General Case: In-Situ Tile Size Adaptation
In most cellular networks, it is likely that the set of available mea-
surements is neither highly sparse nor infinitely dense. Instead, the
system is generally in a state between these two extremes. Hence,
choosing the tile size of the region becomes a critical issue since
it is not initially clear if the measurement density or the terrain
heterogeneity will drive the tile size.
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Figure 5: Examining tile size versus measurement density
over different land uses for a given acceptable error.

Given a set of measurements with a specific measurement den-
sity, a minimum tile size exists that remains below the reliability
threshold. In Figures 5a and 5bwe set a standard deviation threshold
of 0.0125 for our path loss evaluation and examined the minimum
tile size for different measurement densities available. In these fig-
ures the lighter points are below the threshold and darker, red dots
are above the threshold. For both land use types, we see that as the
measurement density increases, the minimum tile size achievable
under the threshold decreases, enabling a finer grain resolution
while maintaining the reliability we desired. However, the subur-
ban region consistently requires a lower measurement density to
be below the error threshold than the downtown region because
the suburban region has a lower terrain variability. From these fig-
ures, we can see that to achieve a tile size of 1 km2 under the error
threshold, the suburban region requires a measurement density of
500 measurements per km2 while the downtown region requires
800. This relationship between the different land uses holds for
each other tile size as well. The measurement density required for
a certain resolution of path loss increases with the heterogeneity
of the region.

5 EXPERIMENTALLY EVALUATING
MAP-BASED MODELING

Despite that fact that there have been several works that suggest
measurement distribution and geographical features play an enor-
mous role in the resulting path loss characterization of a region,



there has not been a study showing how these metrics can be used
to quantify the number of measurements required to characterize
an area. In this section, we take a critical look at the impact of
measurement distribution and geographical feature components
on path loss precision. More specifically, we compare measurement
distributions obtained from crowdsourcing versus drive testing
measurements, examine geographical feature components of our
two metropolitan region types, and correlate these feature distri-
butions with both path loss exponents as well as the number of
measurements required to obtain a certain precision in characteri-
zation. Our goal is to use regional geographical features to learn
how to properly collect measurements, ensuring a predetermined
precision in path loss characterization.

5.1 Path Loss Metric and Geographical Feature
Correlation

Using geographical features as a region specific identifier, we want
to understand how specific geographical features can be used to
characterize path loss throughout a region. We now explore four
different path loss related metrics to determine which had the clos-
est relationship, and therefore the highest suitability, to be used as
the target for our geographical feature based statistical learning
approach. The four metrics we examine are path loss exponent
(PLE), differential path loss exponent (DPLE), number of measure-
ments required (MR) for path loss convergence, and the differential
number of measurements required (DMR) for convergence. The
MR and PLE metrics are calculated for a given region using Al-
gorithm 1, which is initialized with parameters listed in Table 2.
Algorithm 1 can be visualized as a sliding window filter moving
across the region as illustrated in Figure 6. In this algorithm, the
first two loops control the moving window as it shifts vertically
and horizontally, respectively. For a given window at position v,h,
we compute the path loss exponent directly with all available data,
giving the PLE metric. Following that, we divide the data into G
separate groups, calculate the path loss exponent in each group,
and take the standard deviation over all exponents. We increase
the number of measurements in each of these groups by S until
the standard deviation is under a certain threshold (chosen to be
whatever accuracy is acceptable, we chose 0.03 because that was
about the point that an a linear increase in the number of measure-
ments started to have diminishing returns). Additionally, When
the standard deviation falls under this threshold, we record the
measurements in each group as the MR metric.

Figure 6: Visualization of Algorithm 1.

We use this algorithm to determine a map of the measurements
required and path loss exponent metrics over a region. With our
feature data for the region, we can derive a similar map of feature
distributions using the same windowing method. The differential

Parameter Setting Description
W 1km2 Moving window area
V 20 Number of vertical shifts
H 40 Number of horizontal shifts
σ 0.03 Desired std. dev.
S 20 Measurement step size
G 30 Number of orthogonal groups

Table 2: Spatial feature and path loss metric algorithm pa-
rameters.

Data: measurements (M)
Result: V by H PLE and MR matrices
Initialize Parameters;
for v ← 1 to V do

for h ← 1 to H do
PLE(v,h) ← ComputeExponent(∀M ∈W );
дroup(1..G) ← ∀M ∈W split into G sets;
Psize ← 0;
while σtemp ≥ σ do

σtemp ←∞;
Psize ← Psize + S ;
for д← 1 to G do

P ← Psize elements ∈ дroup(д);
exponent(д) ← ComputeExponent(P);

end
σtemp ← ComputeStdDev(exponent(1..G));

end
MR(v,h) ← Psize ;
W ←W horizontally shifted by 1;

end
W ←W vertically shifted by 1;

end
Algorithm 1: Algorithm for computing PLE and MR metrics.

metrics, differential path loss exponent and differential measure-
ments required, can be easily derived from column and row differen-
tiation of the PLE and MR matrices, respectively. A corresponding
differential feature distribution map can be derived in the same
manner. With matching metric and feature maps, we can corre-
late each metric with the corresponding feature map to obtain a
sample Pearson correlation coefficient (the standard equation for
correlating discreet groups) using Equation 6.

ri j =

∑n
k=1(xik − x̄i )(yjk − ȳj )√∑n

k=1(xik − x̄i )2
∑n
k=1(yjk − ȳj )2

(6)

In this equation, n is the number of samples, xik is sample k of
feature i , yjk is the sample k of path loss metric j , and x̄i and ȳj are
the average distribution of feature i and the average of path loss
metric j, respectively.

We want to select a path loss metric to use as a training class for
the statistical learning framework that has the highest correlation
coefficients with the feature set to provide clear decision boundaries.
The correlation coefficients for each of the path loss metrics in



the downtown and suburban regions are shown Tables 3 and 4,
respectively.

Metric S. Building M. Building L. Building Foliage Open Space
PLE -0.23 0.02 -0.05 0.17 0.18
DPLE -0.05 -0.03 0.02 -0.04 0.07
MR -0.32 0.34 0.49 -0.10 -0.23
DMR -0.06 0.05 0.03 0.01 -0.02

Table 3: Downtown metric-feature correlation coefficients.

Metric S. Building M. Building L. Building Foliage Open Space
PLE 0.36 NA NA 0.31 -0.38
DPLE -0.15 NA NA 0.05 0.05
MR -0.53 NA NA 0.44 -0.27
DMR -0.06 NA NA 0.01 0.04
Table 4: Suburban metric-feature correlation coefficients.

We can see that the MRmetric has the highest overall correlation
coefficient magnitude and is likely the best contender for a simple
decision tree based learning algorithm. Interestingly, we see that
for the suburban region in particular, the correlation coefficient for
the MR metric are negative with small buildings and positive with
foliage, while positive with both for the PLE metric. This suggests
that while increased buildings and foliage contribute to a larger
path loss exponent (as expected), the number of measurements re-
quired to drop below the 0.03 path loss exponent standard deviation
increases only with the percentage of foliage.
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Figure 7: Average feature distributions for different MR
tiers.

From this result, we can see that while the small buildings fea-
ture increases the path loss exponent, it decreases received power
variability, while the foliage feature increases received power vari-
ability. This trend is visualized for the downtown and suburban
areas in Figures 7a and 7b.

To understand how each terrain feature affects the measurement
requirements individually, we examined the trends of each feature
distribution as the number of required measurements increases in
Figure 8. From this figure, we can see that in the suburban region,
the individual feature impact is quite clear; increases in the percent-
age of foliage and decreases in the percentage of small buildings
increases the number of measurements required, while the open
space component doesn’t fluctuate much at all. Conversely, we
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Figure 8: Feature trends for increasing measurement re-
quirements.

cannot induce distinct trends from the downtown region. We see
in the suburban region, there are only two features driving the
increase in measurement requirements, thus trends can be easily
seen. In the downtown region, however, each feature apart from
open space has an effect on the measurements, thus trends from
individual factors cannot be so easily derived.

5.2 Classifier Training for MR Prediction
To validate the GeoRIPE framework, we divide the MR results for
the downtown and suburban regions into 6 same-sized class bins.
As seen in Figure 9, the class groupings are not homogeneous for
either of the regions. Unsurprisingly, the downtown region class
distribution has a higher mean number of required measurements
than the suburban region due to its higher geographical complexity.
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Figure 9: Regional MR Class Distributions

Under these class groupings, the input terrain feature distribu-
tions used each measurement class grouping are shown in Figure 7.
In reference to Figure 9, we see that the majority of the regional
features fall into groups centered around 940 and 540 measurements
for the downtown and suburban regions, respectively. Thus, these
bins will have a higher weight under the learning framework.

To train each the decision tree classifier, it is important to allow
equal training weights per class as much as possible to balance
the tree and not over-fit the data. For this, we randomly selected
an equal number of observations for resulting in each class to
balance the observations per bin. We further divided this set of
observations into two separate training and validation observation
sets, again being sure to have equal class representation in each
set. We then trained the decision tree classifier with the training
set and predicted MR classes with the validation set.



Due to the linear relationship between theMRmetric and class, it
is important to look at not only the prediction accuracy in choosing
the correct class, but also the distribution of predicted class offsets
(how many classes away from the correct class) when the correct
class is not chosen. This is because a lower average offset between
the predicted and correct MR class is nearly as important as the
accuracy in choosing the correct class. For example, predicting the
adjacent class is not as detrimental to the measurement number
estimation as predicting multiple classes away.
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Figure 10: Regional Feature Versus Random Prediction Off-
sets

Figure 10 shows the class prediction offset magnitudes for using
feature prediction to choose a class and choosing a random class
(according to the frequency of occurrence). This result shows that
for both the downtown and suburban region, the average predicted
class offset is significantly lower using the feature prediction than
choosing a class at random, even if there may not be a very high
accuracy in actually predicting the correct class.

5.3 Uniform Drive Testing Comparison
Using our trained and validated decision tree classifier, we wanted
to compare GeoRIPE to uniform drive testing in two scenarios.
First is a dense uniform drive testing scenario, in which measure-
ments are gathered according to the requirements of the subregion
(window from Algorithm 1) with the highest geographical vari-
ability. More specifically, we experimentally found the number of
measurements required in the worst case subregion to meet the ac-
curacy threshold and uniformly take that number of measurements
over every subregion. The other is a sparse uniform drive testing
scenario, in which measurements are gathered according to the
measurement requirements of the subregion with the lowest geo-
graphical variability. In this experiment, the goal is to stay under a
predetermined path loss exponent standard deviation (correspond-
ing to an accuracy that a network provider would require) while
using the lowest amount of measurements. To do this, we divided
the regions into several uniformly sized tiles and gathered several
orthogonal sets of measurements from each tile according to the
sparse, dense, and GeoRipe predicted number of measurements.
For each orthogonal set in each scheme, we calculated the path
loss exponent and took the standard deviation over all exponents
for each of the three techniques. By doing this, we can compare
the path loss exponent accuracy and the number of measurements
required for each technique. For this experiment, we trained the
GeoRIPE classifier to predict the measurements required for the

standard deviation of 0.03 using half of the region, and predicted
the number of measurements required for the for the other half.
We repeated this experiment for both the downtown and suburban
regions, and the results can be seen in Table 5.

Technique Region Average σ Avg. Meas. per km2

GeoRIPE Downtown 0.0286 194
GeoRIPE Suburban 0.0284 186
Sparse Downtown 0.0631 40
Sparse Suburban 0.0440 80
Dense Downtown 0.0205 400
Dense Suburban 0.0188 440

Table 5: GeoRIPE Standard Deviation and Measurements
Compared to Sparse and Dense Uniform Drive Testing Sce-
narios

From this table, we can see that the sparse drive testing does not
meet the required standard deviation of below 0.03 that we set at
the start of the experiment. The dense drive testing does stay under
the standard deviation requirement, using the minimum number of
measurements to do so over all areas. Using GeoRIPE, the standard
deviation requirement is also met, but it requires 58% fewer mea-
surements than uniform dense drive testing to get all subregions
below the threshold. From the GeoRIPE results, the effect of geo-
graphical complexity can be clearly seen; a lower standard deviation
of path loss exponents is obtained using fewer measurements in the
suburban region than the geographically more complex downtown
region.

In addition to meeting the accuracy requirements using the least
number of measurements, we wanted to evaluate the benefits of
using the GeoRIPE framework over a uniform distribution that
uses the same number of total measurements. To do this, we used
measurements from the GeoRIPE distribution given by Equation 7.

px =
Mx∑X
x̂ Mx̂

(7)

Here, x is a single section in the set of all tiles X , px is the fraction
of measurements to be collected in section x , and Mx is the set
of predicted MR values of tile x . We collected several orthogonal
subsets of measurements in each tile for an increasing number of
total measurements in each region and compared the accuracy of
the two techniques. For each orthogonal subset in each tile, we cal-
culated a path loss exponent and computed the standard deviation
of the path loss exponents in each tile. The standard deviation for
all tiles was averaged at each number of total measurements and the
results were organized by standard deviation. For selected standard
deviation, each of the techniques required a different number of
measurements per km2, resulting in Table 6.

From this table, we see that as the threshold for standard devia-
tion is lowered, measurements required increases approximately
10% ’faster’ using uniform drive testing. So, while the true value in
using the GeoRIPE framework is predicting the number of measure-
ments required over a region to meet a certain path loss exponent
accuracy, the normalized GeoRIPE distribution also achieves the
desired path loss accuracy with proportionally fewer measurements



σ GeoRIPE # Meas. Uniform # Meas.
0.050 64 64
0.045 80 84
0.040 96 108
0.035 128 138
0.030 178 196
0.025 252 276
0.020 400 436

Table 6: GeoRIPE versus Uniform Drive Testing Measure-
ments to Achieve a Fixed σ

than the uniform counterpart. This result, however, only analyzes
the average path loss over the entire region. Using a similar win-
dowing method previously described, we wanted to see how many
measurements it took to bring the standard deviation of the path
loss exponent in all the windows to fall below these thresholds. We
found that while the number of measurements for the GeoRIPE
framework to accomplish this is similar to the numbers in Table 6,
uniform drive testing required an average of 20% more measure-
ments than the listed numbers. The biggest difference in this ex-
periment is alluded to in Table 5, wherein GeoRIPE requires 58%
fewer measurements to go below the standard deviation threshold
than uniform drive testing.

6 RELATEDWORK
Measurement Collection Approaches. Due to the low cost of
crowdsourcing from smartphones, the technique has been used by
many other groups to collect data about wireless networks. In a
study by Huang et al. [12], LTE performance data was collected by
creating an Android application named 4GTest. This application
gained 3,000 users during 2 months of data collection and collected
data that focused on media streaming by mobile clients. With this
data, [12] was able to show that with the download speed increase
seen with LTE networks, the traffic bottleneck shifted from the
network to the processing power of the mobile devices. In [5], an
Android application was again used to capture network speed data.
This study focused on comparing the speeds of 802.11 networks to
the speeds of LTE networks in major cities around the globe. Neid-
hardt et al. used a crowdsourced infrastructure to provide an open
source and more accurate base station location and coverage esti-
mation system [15]. While they had promising results on the base
station localization aspect, they concede that cellular coverage esti-
mation was lacking with their purely crowdsourced measurements,
especially in urban environments with diverse terrain features. Our
work focuses on the minimum measurement requirements accord-
ing to different geographical features of a given region.

Measurement-DrivenPathLoss Evaluation.There have been
several measurement studies that strive to more accurately char-
acterize path loss in specific region types. Hata et al. [11] and
Okumura et al. [16] specifically focus on accurate characterization
in urban regions. Using measurements gathered by [16] in Tokyo,
Japan, Hata et al. empirically derived a path loss prediction formula
with correction factors for various region types such as large-city
urban, small-city urban, suburban, and open areas. Additionally,

the Hata model considers base station transmitter height. Similar to
the path loss prediction curves found by [16] in Japan, Allsebrook
et al. [3] evaluated path loss prediction curves for three British
cities: Birmingham, Bath, and Bradford. Akimoto et al. [2] derived a
model based on gathered measurements in a rural area using the 2
and 5 GHz bands. Similarly, [8] studied measurements collected in a
suburban neighborhood at 5.7 GHz as did [10] with measurements
taken in Istanbul in the GSM-900 band. More recently, Robinson et
al. sought to minimize the number of measurements necessary to
accurately characterize mesh node coverage in the TFA network in
Houston [18]. Their work uses an online push-pull measurement
gathering approach, taking very few active measurements on an
existing deployment based on terrain features in the area. Addi-
tionally, Sayrac et al. [19] and several others [4, 7, 14] try to reduce
the number of drive testing measurements required for coverage
evaluation via Baysian kriging, showing how their techniques can
be used to detect coverage holes. However, their analysis replies on
the spatial correlation between the measurements themselves to
detect coverage holes from existing transmission infrastructure. In
contrast, our approach aims to analyze geographical features of a
region and predict the number of measurements required to obtain
an accurate estimate of path loss throughout, including from trans-
mission sources that do not yet exist, by tying the measurement
requirements to the terrain itself.

7 CONCLUSION
In this paper, we built the GeoRIPE framework which predicts the
minimum number of in-field measurements required to accurately
characterize the path loss of a region according to that region’s geo-
graphical features. To find if such measurements would be sufficient
for a given area, we gathered millions of signal strength measure-
ments along with geographical feature ratios in both a downtown
and suburban region. Using this data, we correlated several distinct
geographical features with different metrics for path loss evaluation
complexity. We found that, together, these features are correlated
with the number of measurements required to achieve a fixed path
loss accuracy. We also evaluated the merit of using area bounded
path loss metrics. By abstracting propagation loss parameters away
from specific paths and binding them to a specific area, we are able
to evaluate path loss for arbitrary paths through the area. We found
that the size of the individual path loss evaluation areas should be
selected based on the complexity of the terrain features residing in
each area. In general, the more complex the area, the smaller the
evaluation area should be. Finally, to validate our work, we com-
pared drive testing using our GeoRIPE framework to uniform drive
testing in each region. We found that our technique, as opposed to
spatially uniform drive testing, required fewer measurements to
achieve a similar path loss characterization accuracy.
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