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Abstract—Key Performance Indicators (KPIs) are important
measures of the quality of service in cellular networks. There are
multiple efforts by cellular carriers and 5G standardization on
the use of crowdsourcing to minimize drive tests (MDT) and self-
organize the network while improving KPIs via a user feedback
loop. Since propagation highly depends upon the environment,
readily-available geographical data could be coupled with the
crowdsourced user data to infer performance. In this paper,
we build a framework to infer KPIs by establishing a rela-
tionship between geographical data and crowdsourced channel
measurements via neural networks. In particular, for a specific
user location, we leverage delay spread measurements in the
region to design a cone-shaped filter for the geographical and
user data extraction. Then, a location-specific received signal
power prediction is obtained via the neural network trained
using the extracted geographical and user data. We study the
impact of the angle chosen for the cone and various features
selected on location-specific KPI prediction. We then leverage the
location-specific inference by repeating the prediction over a set of
locations in a region to infer the path loss in a given environment.
In both types of KPI inference, we compare against state-of-
the-art solutions and show that significant improvement in KPI
prediction accuracy is achieved using the proposed strategy.
Furthermore, for network planners, we show that our framework
can use only geographical information to predict KPIs with a
negligible error in user locations that lack signal quality data.
By employing the proposed framework to predict location-specific
and regional KPIs, we achieve an accurate estimation of network
coverage and a 7-fold reduction in throughput estimation error
compared to a state-of-the-art solution.

Index Terms—Crowdsourced mobile network measurement,
Long-Term Evolution (LTE), received signal power prediction,
radio propagation model, neural network.

I. INTRODUCTION

Network planning in the deployment phase plays a criti-

cal role in improving coverage estimates and resulting user

performance. Models for predicting large-scale fading or path

loss have traditionally been classified into three different

categories: empirical, deterministic, and semi-deterministic.

Empirical or statistical models such as Hata [1], and COST-

231 Walfisch-Ikegami [2] are obtained by using in-field mea-

surements that correspond to a specific environment type.

Although an empirical model is easy to implement and its

computational complexity is low, the accuracy is often lacking.

In deterministic models such as with ray tracing, the received
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signal strength at a particular location is calculated using the

Geometrical Theory of Diffraction. In these models, direct,

reflected, and diffracted paths are considered to predict cover-

age. Hence, the computational complexity of these approaches

is high. Also, to obtain the propagation model of an area of

interest, detailed knowledge of the clutter is required, which

can be very costly. Semi-deterministic models straddle the line

between empirical and deterministic models, improving the ac-

curacy of empirical models while reducing the computational

complexity of deterministic models. An alternative approach

to predict the path loss of an environment is emerging via

the use of neural networks. Such a model can process a

large amount of data in a reasonable time with the ability

to learn the characteristics of a new environment. The results

show that the model can provide a close estimation for the

signal attenuation in an area. In [3], the proposed artificial

neural network (ANN) model uses the free geodata (light

detection and ranging or LiDAR) to infer the signal quality

of a region using proper geographical features as the model’s

input. Detailed information such as the vegetation type and

density have also been used to train the predictor [4] to infer

the path loss, and Sotiroudis et al. [5] implemented an ANN

model to predict the path loss using a minimized input to

increase its accuracy. ANN model has been used to predict

the indoor propagation as well [6].

A key question to consider in the case of each of these

models is how signal measurements can be obtained. Histori-

cally, drive testing has been widely used by carriers and third-

party entities to collect a sufficient density of Key Performance

Indicator (KPI) data to accurately characterize the network

performance. To track network performance, network opera-

tors use KPIs such as received signal power, received signal

quality, throughput, and delay. Despite providing detailed

information at certain locations, this approach is costly in

terms of manpower, time, and equipment. Even with the high

costs associated with drive testing, carriers do not have access

to some regions and often can not anticipate the breadth of user

devices, contexts, and functionalities with an in-field opera-

tion. Further complicating the problem, drive testing may have

to be repeated with changes to the physical environment, such

as the construction of new buildings or highways, seasonal

variations, or modifications to the spatial distribution of users

in the network [7].

Crowdsourcing has begun to be used as a less costly

mechanism by which KPIs may be captured, as outlined in

the Minimization of Drive Test (MDT) effort of Long-Term

Evolution (LTE) release 10 in 3GPP TS 37.320 [8]. MDT

allows carriers to monitor the in-situ network performance

Authorized licensed use limited to: SOUTHERN METHODIST UNIV. Downloaded on May 24,2021 at 15:56:18 UTC from IEEE Xplore.  Restrictions apply. 



0018-9545 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2021.3067880, IEEE
Transactions on Vehicular Technology

2

of end-users to detect variations of the provided quality of

service (QoS). Depending on the nature of the problem,

handover could be a solution for a single user, whereas

self-organization could address an issue with one or more

towers. Self-organization can alter antennae configuration in

terms of transmit power, tilt, or height, but more persistent

effects could necessitate smaller cell deployment in detected

network holes. To make efficient use of the crowdsourced data

(to preserve bandwidth and battery life of users), a natural

extension of MDT is to interpolate the region’s performance

from discrete user locations using propagation models [1], [9]

and coverage maps [10], [11]. Crowdsourced data have used

to measure network metrics in [12]–[16]. However, none of

these approaches directly consider the geographical features

of an environment to predict the propagation characteristics

and resulting KPIs.

In this paper, we build a framework to predict location

specific and regional KPIs based on the available geographical

data and crowdsourced channel measurements. Since location

specific received signal power information can be used to infer

many regional KPIs, e.g., path loss, coverage area probability,

we first aim to develop a framework that can predict the

location specific received signal power with high accuracy

by establishing a relationship between geographical data and

crowdsourced channel measurements via neural networks. To

do so, we use LiDAR data to represent the physical character-

istics of an environment and an Android-based crowdsourcing

infrastructure for in-field signal measurements. Then, a cone

shaped filter with the apex at the transmit location is applied

to extract the useful information from these two data sets

to obtain the receiver location specific KPI estimation using

Location-Specific Analysis to Infer Key Performance Indica-

tors (LAIK). The relationships are formed by the use of ANNs

consisting of a feed-forward, back-propagation model, which

employs multi-layer perceptrons. Using LAIK, we can iterate

the KPI prediction over a region to infer the path loss exponent

in that type of area, spanning single-family and multi-family

residential neighborhoods and downtown regions. We then

evaluate our framework with various filter shapes and features

selected as well as against state of the art Kriging Algorithm, a

method of interpolation applied to cellular coverage prediction

[10], [17], [18]. Our main contributions are:

• We introduce a neural-network based framework for map-

ping geographical information to crowdsourced signal

quality measurements to infer location-specific KPIs.

• We design a novel cone-shaped filter with the apex at

the transmitter location to extract the geographical data

corresponding to the crowdsourced signal data over a

region of interest. For this purpose, we investigate the

role that delay spread has on adjusting the cone shape

angle from the transmitter. We investigate KPI prediction

performance using cone shapes that correspond to the

minimum, maximum, and mean of the delay spread

across single-family, multi-family, and downtown areas.

Among the three delay spread values, we find that using

the mean delay spread to form the cone shape minimizes

the KPI prediction error.

• We consider the accuracy of predicting KPIs in areas

in which the LAIK framework lacks any signal quality

training, relying solely on the geographical features of

the area. This reliance on geographical features allows

our approach to have significant performance improve-

ments over state-of-the-art schemes in areas for which

measurement data is not available.

• In contrast to a square-tile approach that we previously

used [3], the proposed LAIK framework aims to establish

a relationship between geographical features over each

signal path and corresponding crowdsourced signal mea-

surement using cone shaped filter (tuned according to

delay spread values) and neural network to obtain location

specific KPI prediction. We use the LAIK ANN to predict

location-based performance at various locations in a given

area and then use linear regression to predict the path

loss in the area. We show that the proposed LAIK model

improves path loss prediction compared to the regional

analysis to infer KPIs (RAIK) model [3].

The remainder of the paper is organized as follows. Sec-

tion II reviews the related work. Section III presents the

proposed LAIK framework. In Section IV, we analyze the

impact of different angle sizes of the cone shape filter and

the features selection strategies on location-specific KPI pre-

diction. In Section V, we describe the procedure to obtain the

path loss prediction using LAIK, and compare our proposed

scheme against state-of-the-art methods in terms of accuracy

of location-specific received signal strength prediction and

path loss prediction. Finally, conclusions are drawn in Sec-

tion VI.

II. RELATED WORK

Many different propagation models have been used to

predict the coverage area of a network, such as Okumura-

Hata [1], [9] and the Longley-Rice irregular terrain model [19].

In these models, one must collect radio signal measurements

from a specific region to calibrate the model for that region

and find the appropriate constants.

Recently, machine learning algorithms have emerged as an

alternative approach to overcome the low accuracy of empiri-

cal models and the complexity of deterministic models while

predicting the path loss propagation of a given region. Sohrabi

et al. [20] used regression clustering and K-Nearest Neighbor

(KNN) algorithms to construct the reference signal’s received

power (RSRP) maps from a sparse set of MDT measurements.

This work assumed a fixed grid size. In [21], a reliable

mobile coverage map generation framework was proposed that

tolerated a reduced sample size. Based on the similarity and

differences in signal strength in different sub-areas of a region,

the region was divided into multiple clusters and non-uniform

sampling was employed to build coverage maps. Chou et al.

[22] proposed a crowdsourced data-driven indoor diagnostic

framework for fault detection in cellular-based IoT networks.

RSRP maps are constructed using machine learning algorithms

such as random forest, neural network, linear regression, and

decision tree for diagnosis purposes, and the performance of

these algorithms are compared. None of these works [20]–

[22] considered geographical features of the environment to
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construct the RSRP map or coverage map. In [23], satellite

two-dimensional (2-D) images were used to predict the path

loss distribution of a region using deep learning methods. In

this case, the height information of the objects was neglected.

However, the height of the objects in between the transmitter

and receiver can have an impact on the received signal strength

due to reflections of the received signal.

Several studies have addressed the prediction of urban,

suburban [4], [24], and indoor environments [6], [25] using

Neural Network algorithms. Wu et al. [26] considered just

the distance between the transmitter and the receiver as the

input features to predict the path loss. Alotaibi et al. [27]

proposed an adaptive neuro-fuzzy inference system to reduce

the radial basis function neural network. The author simplified

the input by considering the distance between the transmitter

and receiver because the percentages of the area covered

by buildings for the urban and suburban base stations were

fixed. Support vector machine (SVM) and ANN models were

compared in [28], considering the antenna-separation distance,

terrain elevation, horizontal angle, vertical angle, latitude,

longitude, horizontal, and vertical attenuation of the antenna as

the input features. Geodata was not considered in this model.

A multilayer perceptron (MLP) based ANN technique was

implemented to predict the path loss at 900 MHz [29]. A

2-D map was extracted from aerial photography to obtain

geographical data. A General Regression Neural Network to

predict the propagation path loss was used in [30]. Com-

pared to the empirical models, a high prediction accuracy

improvement was obtained due to considering the street width,

rooftop height, and building block spacing as input features to

the neural network. In [31], a neural network based pathloss

prediction scheme was proposed that achieved low prediction

error in multi-band scenarios.

All the above methods failed to consider the following es-

sential items to predict received signal quality: (i.) Foliage (ii.)

geographical features along the direct path between the base

station and the user equipment (UE) and along multiple paths

that are formed by reflectors or scatterers; (iii.) Geographical

features in the effective area surrounding the UE.

In [3], we proposed the RAIK framework to predict KPIs.

For this purpose, an MLP based neural network was imple-

mented which was trained using crowdsourced measurements

and geographical data. We showed that the accuracy of KPI

prediction in a region depends upon the size of square-shaped

tiles (effective area) for which to consider geographical data

and RSRP to train the neural network. In contrast to the

aforementioned works, to the best of the authors’ knowledge,

this is the first work that jointly considers the angle of

the direct path and multipath components between the base

station and the UE, and the effective area surrounding the UE

to extract the geographical data (e.g., building and foliage)

to train a neural network for location-specific and regional

inference of KPIs.

The other method to predict propagation coverage over

an area is utilizing geostatistical modeling techniques, where

the measurements are collected strategically and different

interpolation techniques are applied to predict the propaga-

tion model of the uncovered locations. For example, geo-

Fig. 1: Location-Specific Analysis to Infer KPIs LAIK Frame-

work.

statistical modeling and interpolation technique is utilized to

construct a radio environment map of 2.5 GHz worldwide

interoperability for microwave access (WiMax) in [10]. The

geostatistical modeling and interpolation technique is termed

‘Kriging’ in the geostatistical literature. The Kriging method

has high computational complexity. Therefore, several works

investigated low complexity implementation of the Kriging

algorithm [11], [18]. Liu et al. [32] proposed a radio map

construction method in which a triangulation scheme is applied

to divide the region of interest into triangular sub-regions with

measurements available at the vertex locations of the triangular

sub-regions and then linear interpolation is applied to construct

the radio map for each subregion. The triangulation method is

adaptive to the base station location to reduce the measurement

cost. In contrast to the radio map construction methods based

on geostatistical modeling and interpolation techniques, we

specifically target a relationship between the signal quality of

a network at a given location and the geographical features in

that area to predict the KPIs of that region and regions that

lack accessibility or crowdsourced measurements.

III. FRAMEWORK TO INFER KPIS

In this section, we describe the LAIK framework, various

data sources that are used in our approach, and the MLP

components used.

A. Inferring KPIs at a Specific Location and over a Region

To predict KPIs for a specific location and ultimately for a

specific region, we build a framework depicted in Fig. 1.

1) Phase 1: Building Android-based Crowdsourcing and

LiDAR Data Sets

a. We first build an android-based crowdsourcing

infrastructure, which allows the widespread collec-

tion of in-field signal quality data coupled with the

location of that user at the time of the measure-

ment.

b. Since the received signal attenuation is affected

by foliage and buildings surrounding the UE, we
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consider 3-dimensional geographical data from the

region of interest. For this purpose, we use LiDAR

data, which includes detailed information of build-

ings and foliage such as height and surface area

(see Section III-B for more details). Also, the pro-

cedure to extract geographical features is presented

in Fig. 2. In particular, a LiDAR point cloud from

United States Geological Survey (USGS) is pro-

cessed to consider terrain, buildings, and vegetation

in three dimensions.

2) Phase 2: We build a cone-shaped filter to extract ge-

ographical data corresponding to crowdsourced signal

data over the relevant region. Given a particular en-

vironment, we decide the angle of the cone based on

minimum, maximum, or average delay spread in the

region. For this purpose, the performance of the LAIK is

obtained using cone angles corresponding to three delay

spread metrics in phase four, and this information is fed

back to tune the cone angle such that the geographical

data is extracted efficiently.

3) Phase 3: We extract information about all the objects

that lie within the cone-shaped filter, to capture their

impact on the signal propagation from the transmitter

to the UE. Also, we extract all the geographical objects

that lie in the circle created by the cone-shaped filter

around the UE.

4) Phase 4: Location-specific KPI Prediction and Tuning

the Cone-Shaped Filter According to a Specific Region

a. Location-specific RSRP in the given region is

predicted by feeding the extracted geographical

features and corresponding signal strength infor-

mation to the LAIK ANN model.

b. Then, the predicted KPI is refined by setting

the cone-shaped filter angle (and therefore the

extracted geographical features) according to the

maximum prediction accuracy of LAIK among

the angles corresponding to three different delay

spread metrics.

5) Phase 5: Path-Loss Prediction in a Region. Once the

cone angle is decided, the LAIK model can be applied to

predict the received signal strength at different locations

in the region in which it is trained or in other regions in

the same environment type. After predicting the received

signal strength in different locations of the region, the

path loss estimate is obtained.

B. Android-Based Crowdsourcing and LiDAR Data Sets

In this section, we describe the procedure for building

the data sets in Phase 1. The two data sets on which our

LAIK model is based are: (a.) Received signal quality data

collected by Android phones; (b.) LiDAR, which describes

the geographical features in the area. We consider these two

data sets because the geographical features directly impact the

received signal quality in a given region.

Android-Based Crowdsourced Data. We have a crowd-

sourced data set, which is built from voluntary participants

Fig. 2: Extracting Geographical Features from LiDAR Data.

who installed our publicly-available Android application (Wi-

Eye) to collect global radio measurements [33]. To limit the

power and bandwidth consumed by our app, signal levels from

all visible cellular and WiFi base stations are recorded 10

times per day. We have a development version of our app

that captures measurements at a frequency of 1 Hz, which we

have used to emulate a more concentrated user base in relevant

geographical regions in this paper. We specifically record re-

ceived signal strength across all available technologies, Global

Positioning System (GPS) coordinates, Mobile Country and

Network Codes, base station identification (CellId, Location

Area Code), device identification, and velocity of the receiver

(when locally collecting data).

Fig. 3: LTE measurements collected from WiEye.

We have acquired hundreds of millions of crowdsourced

signal strength data points using an Android-based application

called WiEye.1 Locally, we collected an additional 10 million

measurements with greater densities in three representative

geographical regions in Dallas: downtown, single-family, and

multi-family residential areas. Due to propagation differences

that arise across carrier frequencies, we extract the signal

measurements for 2.1 GHz.

Generally, the density of the foliage in the single-family

area is higher than the other two regions, the downtown area

is mainly covered by tall buildings, and the multi-family area

has a mixture of vegetation and moderately-sized buildings

(e.g., 2-3 stories). Fig. 4 depicts the collected RSRP in three

representative geographical regions: downtown, single-family

residential, and multi-family residential. In each region, RSRP

values are based on signals received from a single base

station. It can be observed that the variation of received signal

1WiEye collects signal measurements from different technologies such
as WiFi, GSM, UMTS, and LTE. It offers users a free WiFi scanner and
each user can contribute to our measurement campaign according to their
choice (protected by an Institutional Review Board (IRB). Users’ data will
be submitted to a central database server at SMU. Fig. 3 shows the spatial
distribution of WiEye measurements.
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(a) Downtown Region. (b) Single-Family Residential Region. (c) Multi-Family Residential Region.

Fig. 4: RSRP from Downtown (left), single-family residential (middle), and multi-family residential (right) regions.

strength is different in each region due to the diversity of the

geographical features across region types. The variation of the

received signal strength in the downtown area is substantial

from street to street. In particular, we observe very strong

signals adjacent to dead zones with respect to the RSRP.

In Section IV, we have investigated the optimal angle size

of the cone shape filter that can characterize the multipath

propagation environment of a wireless signal for each region.

In building a crowdsourcing data set, we specifically tar-

get the RSRP since: (i.) Network providers seek to provide

coverage over an area to deliver sufficient quality of service

to customers; (ii.) A well-known relationship exists between

the received signal power and the throughput [34]; (iii.) UEs

regularly measure the received signal power to keep track of

visible base stations in case of handovers, even if the phone is

idle. Thus, the battery consumption to measure RSRP is low

and conducive to MDT efforts.

LiDAR-Based Geographical Features. To consider the

vertical and horizontal footprints of trees and buildings, we

use LiDAR data, which creates a 3-dimensional (3-D) point

cloud of the Earth’s surface. LiDAR employs a remote sensing

method from airplanes or helicopters that transmits pulses of

light to detect the distance from the earth. The laser sends these

pulses and measures the time delay between the transmitted

and the received pulse to calculate the elevation. LiDAR

systems are equipped with a laser scanner that measures

the angle of each transmitted pulse and the returned pulse

from the surface, high precision clocks which record the time

that the laser pulse leaves and returns to the scanner, an

Inertial Navigation Measurement Unit to measure the angular

orientation of the scanner relative to the ground (pitch, roll,

yaw), a data storage and management system, and a GPS

detector.

(a) Extracted Tree Data. (b) Extracted Building Data.

Fig. 5: 3-D map from same region using LiDAR.

The sampling rate of the LiDAR data that we use is

400×103 pulses per second, with an accuracy of about 15 cm

vertically and 40 cm horizontally. Hence, LiDAR systems

provide a high-resolution 3-D geometric model for the earth,

clutter, and foliage, with applicability across a broad range

of fields such as archeology, geology, and seismology [35].

Relevant to our work, we use LiDAR to represent a 3-D map

of building and tree data in the three Dallas regions under test.

The procedure to extract geographical features is presented

in Fig. 2. In particular, a LiDAR point cloud from USGS is

processed to consider terrain, buildings, and vegetation in three

dimensions. Outliers and noise are removed from each of these

geographical features, and the result is output to a shape or text

file. For wireless propagation characteristics, the crowdsourced

received signal data is extracted for the filtered region.

Each record that corresponds to a tree in our 3-D map

includes coordinates of the object, height, and area. We have

the same information for buildings. Fig. 5 shows the detected

trees and buildings in a suburban region in Dallas. The

background of each figure is from OpenStreetMaps to verify

the accuracy of the LiDAR information from the same area.

C. Multi-Layer Perceptron Components Used

Fig. 6: Feed-forward neural network.

Neural network algorithms have been widely applied to

predict the channel propagation in wireless networks [30],

[36]–[38]. In our study, we use an MLP based ANN introduced
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in [39] and [40]. MLP performs the Levenberg-Marquardt

(LM) algorithm as a supervised-learning technique for training

the network [41]. MLP consists of input, output, and hidden

layers. The output of the jth node of the ith layer in a neural

network can be expressed as:

Zi:j = S





Ni−1
∑

k=1

wi:j,kZi−1:k + βi,j



 . (1)

Here, Ni−1 denotes the number of nodes in layer i− 1, wi:j,k

is the weight of the connection between kth node in layer

i− 1 and jth node in layer i, βi,j is the bias term for the jth

node in layer i., and S(·) is the activation function. A typical

feed-forward neural network is shown in Fig. 6.

In the present study, the sigmoid function [42] is mainly

used as the activation function, which is easily differentiable

with respect to the network parameters. The sigmoid function

is expressed as:

S(x) =
1

1 + exp(−x)
. (2)

We have also investigated performance of the proposed LAIK

framework with another commonly used activation function in

Section IV-C.

In neural network algorithms, the goal is to find the best

weights and biases ({wi:j,k}
⋃

{βi,j}) such that the difference

between the predicted and target values is minimized.

The LM algorithm is adopted to update the weight vector

of the neural network since it can be implemented efficiently

and is considered to be one of the faster training meth-

ods with relatively good convergence performance [43]. The

algorithm uses the sum of squares error as the objective

function and uses the Jacobian matrix as an approximation of

the Hessian matrix with a Newton-based updating rule [44].

Let w = [w1, w2, .., wn] be the vector composed of all

weights and biases of the neural network, i.e., each element

wl ∈ ({wi:j,k}
⋃

{βi,j}), l ∈ {1, .., n}, and n is the total

number of weights and biases. Then, the updating rule in

iteration m is:

w(m+1) = w(m)−
(

J
T (m) · J(m) + µI

)

−1

·JT (m)e(w(m)).
(3)

Here, I is the identity matrix and

– e(w(m)) = 1

2

∑P
j=1

e2i with P being the total number of

training records, and ei being the difference between the

output of the MLP and the target for the ith record in the

training set, in the mth iteration.

– J(m) is the Jacobian matrix of e(w(m)). The Jacobian

of e(w(m)) can be computed using a back-propagation

approach [44]. The dimension of the matrix is P×n, and

each element in row i and column j can be expressed as

J [i, j] = ∂ei
∂wj

.

– µ > 0 is a damping factor that ensures that the matrix

inversion will always produce a result. If µ = 0, the up-

dating rule is equivalent to Newton’s method. If µ is high,

the algorithm behaves as gradient descent with a small

step size. At each iteration, µ is adjusted in the following

manner: after each successful step, µ is decreased, and if

a step results in increase in the performance function, µ
is increased.

IV. LOCATION-SPECIFIC KPI INFERENCE EVALUATION

In this section, we describe how we include all relevant

geographical features in the analysis by leveraging the delay

spread information to construct a cone-shaped filter from the

tower to the surrounding region of a specific location. To do so,

we evaluate the angle size of the cone shape and the features

selected in the training process to understand their respective

role in reducing KPI prediction error at a given location.

A. Calibration of the Cone-Shape Filter

We first aim to extract the data in a cone shaped geographi-

cal region with the apex at the transmit location that affects the

signal propagation from the transmitter to the receiver. In this

analysis, we consider two important factors: (i.) The obstacles

along the direct path from the base station to the UE that have

a significant effect on the propagation characteristics; (ii.) A

broader region of relevant geographical features in addition

to the direct path due to the existence of multiple paths from

the base station to UE. Along with the line of sight signal

reception through the direct path, multiple copies of the signal

are received at the receiver due to reflection and diffraction of

the transmitted signal in an environment with buildings and

foliage. The multipath propagation environment of a wireless

signal can be characterized with help of a cone-shaped filter

in which the transmitter is situated at the apex of the cone and

only the geographical features that lie within the cone-shaped

filter create multiple copies of the signal at the receiver. The

angle of the cone around the direct path might be larger or

smaller depending on the degree to which multipath delay

spread exists in the environment. We expect that if the delay

spread is large, the relevant angle along the direct path would

be larger, representing more distant structures that produce

significant reflections. In contrast, we expect that if the delay

spread is small, the relevant angle would likely be smaller.

We study the shape of the cone in terms of the angle around

the direct path as a function of the: (i.) Delay spread in that

physical location; (ii.) Environment type; (iii.) Distance from

the base station to the receiver. By providing delay spread

information to our prediction model, we can adapt the cone

shape to understand the accuracy of location-specific KPI

prediction. Considering the above-mentioned cases, we aim

to design a cone-shaped filter that contains the objects along

the direct path from the base station to the UE with an angle

specific to the environment type.

Acquiring Delay Spread Information. As we mentioned

before, the delay spread of the received signals implicitly

shows the area which contains the objects that affect a signal

while it travels from the transmitter to the receiver. The

impulse response for the fading multipath channel can be

expressed as:

h(t) =

L−1
∑

i=0

aiδ(t− τi). (4)

Here, L is the number of paths, and ai and τi are the

attenuation and delay of the ith path, respectively. The delay
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between the paths depends on the height and relative spatial

locations of the geographical features in the environment. The

difference between the arrival time of the last path and the

first path is called delay spread, which can be obtained by:

τd =
∆x

C
. (5)

Here, ∆x is the difference in length between the last path and

the first path (in meters), and C is the speed of light (3× 108

m/sec.).

We use a TSMW channel scanner from Rohde & Schwarz,

to measure the delay spread in each of the regions where we

collect data, i.e., downtown, single-family, and multi-family

residential areas. The TSMW provides the average, minimum,

and maximum values of the delay spread of the received

signals at a particular measurement location which is depicted

in Table I. Also, each delay spread value in time is converted

into an equivalent distance using (5). As expected, the largest

and the smallest values correspond to the downtown and

single-family regions, respectively.

B. Impact of the Cone-Shaped Filter Angle Size

In this section, we determine an appropriate angle for the

cone-shaped filter that captures the impact of obstacles which

scatter, reflect, and diffract the transmitted signal before it

reaches the receiver. To do so, we perform the following steps:

Step 1. The first step is to find the angle of the cone-shape

filter as a function of the delay spread value. We consider an

isosceles triangle2 to obtain the angle between the reflected

beam and direct signal as shown in Fig. 7. The direct path

between the transmitter and the receiver has a distance of

b m. The two equal sides of the isosceles triangle create

the longest path, of length 2a m, corresponding to the delay

spread. Therefore, we have ∆x = 2a− b and τd = 2a−b
C

.

Let θ be the angle of the cone-shaped filter, and therefore,

θ/2 is the equal angle of the isosceles triangle. Therefore, the

angle, θ, of the cone-shaped filter can be computed as:

θ = 2cos−1

(

b

τdC + b

)

. (6)

Fig. 7: Filter’s Angle Sizes for Different Regions.

Step 2. The estimated angle would be different at each

location due to the variation of the observed delay spread.

Since users would not have the ability to measure delay spread

2We consider an isosceles triangle to build the cone-shaped filter since a
direct relationship between the cone angle and the delay spread can easily
be obtained, and LAIK can achieve high prediction accuracy based on
geographical feature extraction using such a cone-shaped filter. However, our
framework is flexible enough to use other triangle types.

Fig. 8: The reference area vs smaller and larger areas.

from the UE, we find the most appropriate angle for each

region type so that a carrier may then use crowdsourced signal

strength measurements for location-based KPI prediction. For

this purpose, we consider three different angles which corre-

spond to the minimum, average, and maximum delay spread

observed in that region.

The minimum, maximum, and average angles for the cone-

shaped filter in a region are calculated using the following

procedure. We find the maximum delay spread corresponding

to the farthest measurements and based on this value, we

calculate the maximum angle θM using (6). Similarly, we

find the minimum delay spread corresponding to the nearest

measurements and we calculate the minimum angle θm using

(6). Then, we find the average angle θA for the cone-shaped

filter as the mean of θm and θM . In Table II, we provide the

values of the angles θm, θM , and θA obtained based on this

approach in three different regions. It can be observed that the

filter angle sizes for the downtown area are larger than the

single-family and multi-family area due to the higher density

of the buildings in the downtown area as compared to the other

two areas.

The 3-D filter with an angle tuned according to θm, θA,

or θM creates a circular footprint around each target location.

The objects surrounding the receiver lie within this circular

footprint, as depicted in Fig. 8.

Step 3. Next, for each signal measurement in the given area,

we extract all the objects located within the range of the θm,

θA, and θM . Each surrounding object may or may not intersect

with the cone-shaped filter in the vertical plane, depending on

the object’s height. For example, in Fig. 9, the objects O2, O3,

and O4 intersect with the cone-shaped filter with angle size

θA in the vertical plane. Therefore, these objects are extracted

to train the model when the angle of the cone-shaped filter is

set according to the average delay spread of the region. Note

that we consider an error margin of 15 cm for each object’s

height to compensate for the vertical error of the LiDAR data

set. We repeat the process for all the signal measurements
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TABLE I: Delay Spread Ranges for Three Different Environment Types.

Area Type
Min Delay Spread Max Delay Spread Mean Delay Spread
in sec. in meter in sec. in meter in sec. in meter

Single Family 0.01 3 1.9 570 0.33 99

Multi Family 0.01 3 2.1 630 0.34 102

Downtown 0.2 60 3.1 930 0.8 240

TABLE II: Delay Spread Corresponds to Three Different

Environment Types.

Region Single Family Multi Family Downtown

θm 22 22 28

θM 74 84 110

θA 48 53 69

Fig. 9: Extracting the objects using cone-shape filter.

Fig. 10: Extracting geodata using cone-shaped filter.

by moving the cone-shaped filter across the collected signal

measurements in the area of interest as depicted in Fig. 10.

Here, S1, S2, and S3 are the signal measurement locations.

Step 4. Lastly, we train the LAIK framework with three

different data sets obtained from three different area types to

predict the received signal level as the output of the model. In

this experiment, we only consider the objects that intersect the

cone shaped filter to train the network and therefore, evaluate

the impact of the objects that intersect the direct path from

the transmitter to the receiver on received signal strength pre-

diction. The selected input features are: (i.) distance between

the transmitter and the receiver, (ii.) number of buildings and

trees in the direct path, (iii.) average height of the buildings

and trees in the direct path, and (iv.) standard deviation of the

heights of the buildings and trees in the direct path.

Table III depicts the performance of the ANN model with

different cone-shaped filter angles. Here, R is the correlation

coefficient between the predicted signal strength and the cor-

responding actual value. The correlation factor varies between

+1 and -1. It can be observed that the mean absolute error

(MAE) in dB and standard deviation of error reduces and the

correlation factor increases if the cone angle is increased to θM
or θA from θm for a given region. With the smaller angle size

(θm) of the filter, some of the objects that affect the transmitted

signal are ignored. The standard deviation of error and MAE is

minimized, and the correlation factor is maximized when the

angle of the cone-shaped filter is calibrated according to the

average delay spread of the channel. In this case, the filter with

cone angle θA more accurately extracts the objects that affect

the transmitted signal compared to a filter with a wider angle

θM or smaller angle θm. Furthermore, the improvement in the

correlation factor when the filter angle size increases from θm
to θA is higher in the downtown region as compared to the

single-family or multi-family residential areas. This effect is

due to the presence of more tall buildings in the downtown

area that affect the transmitted signal from greater distances.

C. Impact of the Feature Selection Strategies

In this section, we show the importance of the geographical

feature selection strategies on the performance of the pre-

diction model to estimate the signal strength in a particular

area. The angle size of the cone-shaped filter in each region

is calibrated according to the average delay spread since we

showed in the previous section that the performance of LAIK

is improved when the angle size of the filter is set in this

manner. To investigate the importance of various inputs on the

prediction performance, we consider multiple ANN, each with

a different subset of input features as follows: a) ANNa only

considers the distance between the transmitter and receiver. b)

ANNb uses the distance (between transmitter and receiver)

and the extracted objects along the direct path using the cone-

shaped filter. c) ANNc uses the distance and the obstacles

surrounding the UE. d) Finally, ANNd uses the distance, the

extracted objects along the direct path using the cone-shaped

filter, and the objects surrounding the UE.

Given an input features selection strategy ANNb, ANNc or

ANNd, the input features to the LAIK model are: (i.) distance

between the transmitter and the receiver, (ii.) percentage of

the area covered by buildings (i.e., footprint) [29], trees (i.e.,

canopy or crown), and free space (i.e., unoccupied by trees or

buildings), (iii.) number of buildings and trees, (iv.) average

height of the buildings and trees, and (v.) standard deviation

of the heights of the buildings and trees. The input parameters

for a feature selection strategy have been extracted from a 3-

D LiDAR database using the cone-shaped filter. The model’s
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TABLE III: The impact of the one-shape filter angle on the LAIK performance.

Area Type Single Family Multi Family Downtown

Filter Angle Size θm θA θM θm θA θM θm θA θM

Std 6.2 4.7 5.7 6.4 4.8 5.5 6.5 4.9 5.8

MAE 5.2 4.5 4.7 5.0 3.9 4.1 5.4 4.5 4.9

R 0.86 0.89 0.88 0.84 0.87 0.85 0.77 0.88 0.83

TABLE IV: The impact of the input features on the ANN performance.

Area Single Family Multi Family Downtown

Model ANNa ANNb ANNc ANNd ANNa ANNb ANNc ANNd ANNa ANNb ANNc ANNd

Std 7.2 4.3 3.8 2.1 9 4.4 4.6 2.5 9.8 4.4 5.5 3.1

MAE 5.5 3.6 3.3 2.9 6.7 3.3 4.3 3.0 6.9 4.1 4.8 3.2

R 0.76 0.91 0.92 0.94 0.73 0.89 0.83 0.93 0.72 0.87 0.8 0.9

output is the location-specific predicted received signal level

(i.e., RSRP). To increase the efficiency of the model, all

features are normalized to fall in a range of [0, 1].

Table IV shows a comparison between the performance

metrics of LAIK for four different feature selection strategies

across three different environments. The results show that

the training model that only considers the distance as the

input feature has inferior performance compared to the other

approaches. Therefore, geographical features play a critical

role in determining the received signal strength. In a single-

family environment, the surrounding objects affect the received

signal strength prediction accuracy more compared to the

obstacles along the direct path due to the density of trees

around the UE, which scatter the received signal. Therefore,

ANNc performs better than ANNb in this environment. The

results show that the standard deviation and the MAE of

the prediction model are minimized when we consider the

distance, the objects along the direct path, and the objects

surrounding the UE as the input to the model. Similarly, the

correlation factor is maximized when we consider all the

above-mentioned features to train the ANN model. In this

case, a significant improvement in the performance metrics

is achieved if, along with the distance between the transmitter

and receiver, the information on the extracted objects along

the direct path is also considered to train the neural network.

For example, when ANNb is employed instead of ANNa, the

reduction in MAE and the standard deviation are 34 − 51%

and 40 − 55%, respectively, across different environments.

An additional improvement is achieved by considering the

objects surrounding the UE along with the distance, and the

objects along the direct path as the input to the model. If

ANNd is employed instead of ANNb for location-specific

signal strength prediction in three different environments, the

reduction in MAE and standard deviation are 10 − 20% and

30− 51%, respectively, and the increase in correlation factor

is 3− 4%.

To show the impact of vegetation and building geographical

data on the ANN model’s performance, we train the model

without vegetation and building features. For this purpose,

we consider two extreme environments of vegetation and

building coverage when training the ANN model: downtown,

and single-family residential areas. In both these regions, the

ANN model is trained with three geographical data types:

(i.) only the presence of building data, i.e., no vegetation,

(ii.) only the presence of vegetation data, i.e., no buildings,

and (iii.) all data are included, which we refer as ANNd.

The accuracy of signal strength prediction using LAIK with

each of these geographical data types is evaluated in terms of

the standard deviation of error, MAE, and correlation factor,

and the results are shown in Table V. The results show

that the MAE performance of the single-family residential

area by eliminating the vegetation and building data drops

about 1.8 dB and 0.9 dB, respectively. Also, by ignoring the

vegetation and building data, the performance of the downtown

area in terms of the MAE decreases by 1.7 dB and 3.1 dB,

respectively. Additionally, it can be observed that the building

data has a greater impact in terms of accuracy of prediction

compared to vegetation data in the downtown area while the

effect of these two data types is reversed in the case of the

single-family residential area.

Next, we compare the performance of the proposed LAIK

ANNd with the Rectified Linear Unit (ReLU) function as

the activation instead of the sigmoid function. Both sigmoid

and ReLU functions are commonly used as activation func-

tions. The ReLU activation function can be expressed as

SReLU (x) = max(0, x). In Table VI, we show the perfor-

mance of LAIK ANNd when the ReLU function is selected as

the activation function of the neural network. We compare the

results with the performance of ANNd depicted in Table IV.

When ReLU is used as the activation function instead of the

sigmoid function, the correlation factor improves by 0.02 and

MAE reduces by 0.4 dB in the case of the downtown area.

Also, the correlation factor reduces by 0.01, and the MAE

increases by 0.2 dB for the single-family and multi-family

residential areas. Both the sigmoid and ReLU activation func-

tions can be used in the learning framework to demonstrate

the benefits of the proposed approach. Quantifying the cases

where the activation functions are optimal can be studied in

future work. We choose the sigmoid function as the activation

function of the neural network for the rest of the analysis in

this paper.
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TABLE V: The impact of the buildings and vegetation on the ANN performance in different environments.

Area Single Family Downtown

Model ANNd No Vegetation No Building ANNd No Vegetation No Building

Std 2.1 4.2 3.1 3.1 3.3 6.5

MAE 2.9 4.7 3.8 3.2 4.9 6.3

R 0.94 0.81 0.85 0.9 0.86 0.75

TABLE VI: Performance of LAIK ANNd with activation

function as ReLU function.

Area Single Family Multi Family Downtown

MAE 3.1 3.2 2.8

R 0.93 0.92 0.92

V. PERFORMANCE ANALYSIS OF LAIK VERSUS EXISTING

APPROACHES

In this section, we compare the LAIK framework with

two state-of-the-art approaches, Kriging and RAIK [3]. First,

we compare to Kriging in terms of location-specific received

signal strength prediction. Then, we describe the process

of iteratively using location-specific prediction for regional

prediction and compare the performance against RAIK for

path loss prediction in a given region.

A. Location-Specific Comparison: LAIK vs. Kriging

In this section, we evaluate performance of the LAIK when

it is used to predict the RSRP of an arbitrary location. To

evaluate LAIK in context of the most relevant related works in

coverage prediction, we compare it with the Kriging algorithm,

which is a common approach to address the spatial propagation

prediction [10], [18], [45]. To predict the lost data in a region,

Kriging employs regression of the surrounding values of that

region by assigning weights to these values to capture the

spatial correlation of field of interest. Many studies have used

Kriging to estimate the path loss [10], [46], [47]. For example,

an empirical Okumura-Hata model with Inverse Distance

Weighting (IDW) and Kriging has been evaluated in prior

work [47]. They have shown that the approach with Kriging

achieves an improved performance versus the Okumura-Hata

and IDW models.

To compare LAIK with the Kriging algorithm, we first apply

the two algorithms to predict the received signal level of a

certain coordinates, and then we compare the MAE of the

RSRP prediction. We select the largest group of measurements

corresponding to a base station in the downtown area and train

two models using all the signal measurements. Even though

the output of both methods is the predicted received signal

strength, the models’ inputs are different. The input of the

Kriging algorithm is the signal measurement coordinate and

the output is the received signal power. The input of LAIK

is decided based on the feature selection strategy ANNd.

Since the Kriging algorithm is vulnerable to large distances,

we design two special cases as follows to compare the LAIK

and Kriging performance:

a) The distribution of the collected crowdsourced signal

measurements usually does not follow a uniform pattern.

In real life, adjacent to a region for which a large set

of measurement data is available, a region with a lack of

information may exist. To model this scenario, we consider

a square area with 200-m sides and then intentionally remove

the measurements in the middle of our area of interest, as

shown in Fig. 11. Fig. 11a shows the area of interest with

all signal measurements. We provide a measurement hole,

emulating the lack of crowdsourced measurements, as shown

in Fig. 11b. The dots show the available measurements, and

the lack of dots denotes the lack of signal measurements.

Fig. 12a shows the estimated received signal level by the

Kriging algorithm when all signal measurements are used.

Fig. 12b shows the results of Kriging prediction in the absence

of the selected signal quality measurements, from which we

find the MAE to be 4.1. We conduct the same analysis on

this region with LAIK and find the MAE to be 2.1. Therefore,

the use of geographical data to predict the received signal

level can reduce the error two-fold. However, note that this

is a relatively small region (a subspace of a 200-m square

region). In reality, the distances that a carrier might wish

to infer location-specific propagation could be multiple km

away from existing measurements. Correspondingly, in the

next experiment, we show the LAIK and Kriging performance

when the available adjacent measurements are far from the

area that we want to predict the corresponding RSRP.

b) We now select a measurement route in the downtown

region, which covers a distance of about 1000 m from a

specific transmitter. We temporarily remove the measurements

of the selected route from the data set for testing purposes. The

signal measurements that are captured in a distance less than

400 m from the transmitter are considered as the training data

set. Then we train the Kriging and LAIK models using the

same training data set, and we evaluate the performance of

both models using the same test data set.

In Table VII, we take a look at various distances away from

an existing deployment to an area that we assume there is

no measurements in an adjacent region, and we are trying

to predict the performance of that area. The MAE of the

predicted signal strength by the Kriging algorithm increases

when the distance between the training points and the testing

points increases. We observe that the largest MAE (the largest

RSRP prediction error) occurs at distances of 800 to 1000 m.

To interpret RSRP prediction error in terms of operational

network performance, we depict the role of this prediction

error on the channel throughput (bits/Hz) estimation. To do so,

we use throughput in terms of the Signal-to-Noise Ratio (SNR)

for various modulation and coding as measured in a previous

work [48]. Since SNR is the ratio of transmit power to the

noise power and a linear relationship exists between SNR and

RSRP, we can use RSRP in the throughput prediction.
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TABLE VII: Comparing LAIK and Kriging Performance in terms of Received Signal Strength Prediction.

Scheme 0-100m 100-200m 200-300m 300-400m 400-500m 500-600m 600-700m 700-800m 800-900m 900-1000m

MAELAIK 2.7 2.9 4.2 3.6 4 3.20 3.4 3.1 3.2 3.9

MAEKriging 2.2 2.5 4.5 4.7 4.8 5 10 10 15 15

-96.802 -96.8 -96.798 -96.796 -96.794

Longitude

32.776

32.777

32.778

32.779

32.78

32.781

L
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(a) Collected signal in downtown region.

-96.802 -96.8 -96.798 -96.796 -96.794

Longitude

32.776

32.777

32.778

32.779

32.78

32.781

L
a
ti
tu

d
e

(b) Removing a group of data.

Fig. 11: Non-uniform data selection.

In Table VII, we observe that the error is approximately

constant over various distances in case of LAIK, while in

case of the Kriging scheme, it grows very rapidly. In fact,

at the largest distance, the difference between the LAIK and

Kriging algorithms is about 12 dB (3.9 vs. 15). Considering

[48, Fig. 19], if we revisit the impact of the user performance

based upon the error in RSRP prediction, we observe that

the estimated throughput that would relate to the ground

truth of real measurements is 4 bits/Hz whereas LAIK would

estimate 3.5 bits/Hz for that user. However, Kriging would

estimate a throughput performance of 0.5 bits/Hz. As we

can observe, by applying the LAIK model, the error ratio

is decreased 7-fold. Note that this could lead to incorrect

estimation of link quality at the carrier in two ways. Firstly, an

error could exist in the form of overestimating the throughput

performance of a user in a certain area where the carrier thinks

(a) Kriging interpolation on all signal measurements.

(b) Kriging interpolation on selected signal measure-
ments.

Fig. 12: The impact of the clustered data on Kriging prediction

performance.

that the throughput performance at the user is satisfactory,

while actually there is a problem and the carrier doesn’t

know about it. Secondly, an error could exist in the form of

underestimating the performance where the carrier thinks there

is a problem that needs fixing, but the throughput performance

at the user is satisfactory. The overall conclusion that can be

obtained from Table VII is that the dependence on distance

from existing measurements is vastly reduced in LAIK by

relying on the underlying geographical features to form this

prediction. To this point, the trained model using Kriging can

not be generalized for any other region. The LAIK framework

uses every measurement to train and improve the prediction

model and a generalized LAIK model can be applied to any

similar area to which the model has been trained.

B. Regional Comparison: LAIK vs. RAIK

In this section, we evaluate the performance of LAIK in

terms of regional KPI inference. To do so, we compare the

LAIK performance with our previous model [3]. Using the

RAIK framework [3], we map between geographical features

in a region of interest and the corresponding path loss exponent

using square-shaped tiles around the receiver. However, since

the output of LAIK is the location-specific received signal

power (RSRP), we need to add one more step to calculate the

path loss exponent of certain area using the predicted RSRPs

by LAIK. To do so, we iteratively use various locations and
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the resulting predicted RSRP in a particular region to calculate

the path loss exponent of that region using a linear regression

algorithm.

In this experiment, we train both models with the extracted

information from the tiles with more than 700 signal mea-

surements and a tile size of 200 m square. More detailed

information regarding the selected tile size and the number of

measurements can be found in [3]. To increase the size of the

training data, the tile is shifted with a step of 50 m. The results

show that LAIK improves the path loss exponent prediction

on average about 0.2 compared to the RAIK model because

it considers more detailed geographical data (of the full path

with consideration to multipath components) that affect the

received signal strength to train the model.

To interpret the reduction in MAE with LAIK compared

to RAIK in terms of operational network performance, we

analyze the performance of these strategies in terms of cov-

erage area probability [49]. The impact of the error in path

loss exponent prediction in case of overestimation and under-

estimation on the probability of cell area coverage estimation

is shown in [49, Fig. 15(a)]. We consider the case where the

actual average path loss exponent in the multi-family area is

3.3. Considering the case in which the predicted path loss

exponent using RAIK is greater than actual, the coverage area

probability drops from 47% to 29%, in case the predicted path

loss exponent is 3.6. In other words, the estimated error in

predicting γ is +0.3. Considering LAIK, the path loss exponent

prediction error is +0.2, which results in a drop in the coverage

area probability from 47% to 41%. Therefore with a fixed

transmission power, the coverage area prediction accuracy is

improved by 12% when the LAIK framework is employed for

path-loss prediction versus the RAIK framework.

VI. CONCLUSION

In this paper, we have proposed a framework to infer

location specific KPIs and regional KPI by establishing a rela-

tionship between geographical data and crowdsource channel

measurement using neural networks. For this purpose, we built

an Android based crowdsourcing infrastructure and performed

in-field measurements to create a high density of signal

strength measurements in three representative region types:

downtown, single-family, and multi-family residential. Then,

delay spread measurements corresponding to a region were

used to build a cone-shaped filter, and the geographical and

user data corresponding to each signal measurement location

were extracted using the filter to build a neural network based

KPI prediction model. We have shown that the cone-shaped

filter angle should be set according to the mean delay spread of

the region. We have also shown that for the best performance,

the input features to the ANN are the distance between the

transmitter and UE, the objects along the direct path and

multipath components, and the objects surrounding the UE.

Using LAIK, we iterate the KPI prediction over a region to

predict the path loss exponent in that type of area, spanning

the aforementioned three region types. It has been shown that

compared to the state-of-the-art Kriging algorithm and RAIK,

significant improvement in KPI prediction accuracy can be

achieved using the proposed LAIK framework. Furthermore,

we have shown that LAIK can predict the KPIs with high

accuracy in areas in which it lacks any signal quality train-

ing, relying solely on the geographical features of the area.

Lastly, we have developed an intuition for the importance

of crowdsourcing-based propagation prediction by evaluating

the effect on coverage estimation when deploying operational

networks. For example, we have shown that the RSRP pre-

diction error would affect the channel throughput, and a 7-

fold improvement in throughput estimation can be achieved

using LAIK. Also, we have shown that LAIK can improve

the coverage area prediction accuracy by 12% compared to the

RAIK. We believe that this work will serve as a fundamental

step in extending the reach of MDT measurements taken

by carriers and thereby reduce the load on users and their

devices. The overall analysis was carried out at a particular

carrier frequency. However, the methodology described in this

paper is general and can be applied for other lower or higher

frequencies, and the effect of various attributes in those cases

can be quantified.
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