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Abstract
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I. Background

There are a number of applications where signals are modeled as autoregressive (AR) random

processes. These include linear predictive coding (LPC) of speech [1], spectral estimation [2],

biomedical signal processing [3], and time series forecasting [4]. When the signal to be modeled

is observed in noise, the AR parameter estimates are biased and can produce misleading results.

In this section, the problem of estimating AR parameters from noisy observations is formulated

and some of the solutions that have been proposed are briey described. In Sections II and III, a

new method of estimating AR parameters is presented. This method is seen to be closely related

to signal/noise subspace approaches used to estimate sinusoidal signal parameters. In Section IV

the new method is compared with several well-known techniques and is seen to outperform them.

A summary of the method is found in Section V. The following notation will be used throught:

matrices are denoted by upper case letters (e.g., Ry; B), vectors are denoted by lower case letters

(e.g., a; v); scalar elements of a sequence are denoted by lower case indexed letters (e.g., ry(n)), all

other scalars are denoted by lower case greek letters (e.g., �).

The pth-order AR Random Process is de�ned by

x(n) = �a(1)x(n� 1)� a(2)x(n� 2)� � � � � a(p)x(n� p) + v(n) (1)

where v(n) is white noise having variance �2v and a(k); k = 1; : : : ; p are the AR parameters. Using

the fact that the autocorrelation function, rx(k) of the AR process also satis�es the autoregressive

property

rx(k) = �

pX
i=1

a(i)rx(k � i); k � 1 (2)

leads to the well-known Yule-Walker equations for the AR parameters
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Let

y(n) = x(n) + z(n) (4)
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be a noisy measurement of the AR process where z(n) is white noise having variance �2z . The

Yule-Walker equations become:
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where ry(k) is the autocorrelation function of y(n). It is assumed that �2z is unknown and is not

easily measured. Hence, the AR parameter estimates derived from (5) will be biased since,

ry(k) = rx(k) + �(k)�2z (6)

where �(k) is the Dirac delta function. It has been shown that the biased AR parameters produce

a \atter" AR spectrum since the poles of the AR process are biased toward the center of the unit

circle [5]. In practice, ry(k) must be estimated using the available measurements by incorporating

one of several autocorrelation function estimators.

A number of approaches to AR parameter estimation for the case of noisy measurements have

been developed. One approach is to treat the additive noise as a moving average component and

estimate the ARMA parameters [2]. It has been observed that these ARMA parameter estimates

may have an unacceptably high variance [6]. The noise compensation technique of Kay assumes �2z

is known or can be estimated. This method then modi�es the reection coe�cients for the e�ects

of the noise [5]. Another approach requiring a priori knowledge of the additive noise variance is

given in [7]. Measurement of the additive noise variance during no-signal intervals however can be

problematic, additional processing is required to detect signal loss, and if the noise is nonstationary,

incorrect variance estimates may result. Several authors have used the fact that for large values of

k, the relationship in (2) is lacking rx(0), leading to the so-called Extended Yule-Walker equations

[8, 9]. 2
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(7)

A problem with this method is that less data is available to compute higher autocorrelation lag

2



estimates. To compensate for errors in the estimated autocorrelation lags, the Overdetermined

Extended Yule-Walker equations have been proposed [10, 11],
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q > p (8)

This method also avoids ry(0) and compensates for errors in ry(k) by using more equations than

unknowns. The overdetermined system is then solved via a constrained least squares algorithm.

The Overdetermined Extended Yule-Walker equations also su�er from the need to compute a large

number of high-order autocorrelation lags. Higher-order cummulants have also been used [12, 13].

The cummulant method assumes that the additive noise z(n) has a non-skewed density function,

and that the driving noise v(n) is non-Gaussian. It then uses odd-order cummulants, to generate

a set of Yule-Walker-like equations. The motivation underlying this method is that since the

odd-order cummulants of the measurement noise are zero, the cummulant Yule-Walker equations

are independent of the measurement noise. The non-skewed density assumption on z(n) however

may not always hold. Moreover, some time series can be very close to Gaussian, for example the

electroencephalogram (EEG) has been shown to close to Gaussian over time intervals of two seconds

or less [14]. Several other methods are described in [2, 15].

II. Noise-Compensated Yule-Walker Equations

The Noise-Compensated Yule-Walker (NCYW) equations are de�ned as

�
Ry � �Ip

�
a = ~g1 (9)

g1a = ry(p+ 1)

...

gqa = ry(p+ q) (10)
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where a =

�
�a(1) � � � �a(p)

�T
, Ip is the p� p identity matrix,

gi =

�
ry(p+ i� 1) � � � ry(i)

�
; i = 1; : : : ; q (11)

~g1 is an element-reversed version of gT1 ,

Ry =

2
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ry(0) � � � ry(�(p� 1))
...
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(12)

and � is an estimate of the noise power, �2z . The unknowns in (9)-(10) are a and �. Since the

NCYW equations are nonlinear in the AR parameters and �, it is useful to know the minimum

value of q, the number of auxiliary linear equations, which will guarantee a unique solution for

the p + 1 unknowns. Clearly, q = p is su�cient to guarantee a unique solution since this gives p

linear equations in a. In fact, the Extended Yule-Walker equations use these same p equations,

ignoring the �rst p nonlinear equations. However these nonlinear equations are based on relatively

low autocorrelation lag estimates which tend to be more accurate than the autocorrelation lag

estimates used in the Extended Yule-Walker equations. Hence if a method can be found to solve

the combined p + q nonlinear and linear equations, one might anticipate improved performance

relative to the Extended Yule-Walker equations. The following section describes such a method.

III. Subspace Method

The Noise-Compensated Yule-Walker equations can be written as

�
Ry � �B

�
v = 0p+q (13)
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where

Ry =

2
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(15)

0p+q is a column vector having p + q zeros, and q � p; so that a unique solution is assured. The

dimensions of Ry ; B, and v are p+ q � p+ 1; p+ q� p+ 1, and p+ 1� 1, respectively. Multiplying

both sides of (13) by
�
Ry � �B

�T
leads to the quadratic eigenvalue problem:

�
A0 + �A1 + �2A2

�
v = 0p+1 (16)

where

A0 = R
T

y Ry; A1 = �
�
RT
yB1 + BT

1 Ry

�
; A2 = BT

1 B1 (17)

Each of the matrices in (17) has dimension p + 1 � p + 1. There are several ways to solve the

quadratic eigenvalue problem [16]. One method is to de�ne

P =

2
64 A0 0

0 I

3
75 ; Q =

2
64 �A1 �A2

I 0

3
75 (18)
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It is readily veri�ed that solving (16) is equivalent to solving the 2p+2-dimensional linear eigenvalue

problem

(P � �Q) v = 0 (19)

Let vk; k = 1; : : : ; 2p + 2 be eigenvectors solving (19), these along with their corresponding

eigenvalues appear in complex conjugate pairs [16]. Only one of the vk will correspond to the correct

solution to (9)-(10). Recalling that the eigenvalues solving the quadratic eigenvalue problem (16)

are estimates of the additive noise power �2z , it is clear that for the noiseless case, only two complex

conjugate eigenvalues will be zero since there is only one real solution to equations (9)-(10), all the

other eigenvalues will be complex. It follows that for the noisy case, all of the eigenvalues associated

with the noiseless case will be increased by an amount equal to the noise power. Hence, for the

noisy case, the correct solution is the eigenvector corresponding to the only real eigenvalue solving

the quadratic eigenvalue problem (16). In practice, errors in estimating the autocorrelation matrix

due to �nite data lengths tend to introduce small imaginary components in the eigenvalues solving

(16). Hence, a more suitable criterion is to select the eigenvalue with the smallest imaginary part.

Unfortunately, for high noise levels, this can lead to the selection of an eigenvalue with a small

imaginary part but with a large real part which does not correspond to �2z . A selection criterion

which appears to be very robust is to select the eigenvalue having the smallest modulus. This

criterion has the e�ect of eliminating eigenvalues with large real components which may have small

imagingary components. The selection criterion could be expanded, for example, one could look

at the error associated with the last q linear equations in (10). However, choosing the eigenvalue

having minimum modulus seems to work well, and no other criteria were used in the simulations

below. Note the similarity between the proposed method and noise subspace methods used to

estimate the frequencies of sinusoids observed in white noise [2]. The method described here is

analogous to the Pisarenko harmonic retrieval method, wherein a basis for the one-dimensional

noise subspace is found as the eigenvector associated with the minimum eigenvalue of the data

autocorrelation matrix [2, 17]. The dimension of the noise subspace for the proposed method can

be increased beyond one by increasing the dimension of Ry . For higher-order noise subspaces,

the AR model order and parameters can be estimated from common zeros of the noise subspace

eigenvectors. Higher-order noise subspaces will not be considered here. The proposed Subspace
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Method can be summarized as follows:

1. Form estimates of the autocorrelation matrix Ry de�ned in (14).

2. Form the matrices A0, A1, and A2, de�ned in (17).

3. Form the matrices P and Q, de�ned in (18).

4. Solve the generalized eigenvalue problem

Pv = �Qv (20)

5. The AR parameter vectors are the elements of the generalized eigenvector vmin associated

with the generalized eigenvalue having minimum modulus. The AR parameters are given by

â(i) =
[vmin]i
[vmin]1

; i = 2; : : : ; p+ 1 (21)

where [vmin]i denotes the i
th entry of vmin.

6. The estimate of the noise power �2z , is the modulus of the generalized eigenvalue in (20)

having minimum modulus.

IV. Experimental Results

Experiment 1: A 10,000-point sequence was synthesized by applying uniformly distributed white

noise to the all-pole system having poles at 0:75e�j0:2�; 0:8e�j0:4�; and 0:85e�j0:7� giving p = 6. In

order to allow initial transients to die out, the �rst 9,500 samples of the sequence were discarded and

the last 500 samples were selected as an exemplar of a stationary AR process. After normalizing

this segment to have zero mean and unit variance, additive, zero mean white Gaussian noise having

a variance of 0.316 was added so as to produce an SNR of approximately 5 dB. The N = 500-sample

noisy AR data, y(n), was then submitted for AR parameter estimation via the following methods:

� Subspace Method (SS)

� Yule-Walker Equations (YW)
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� Overdetermined Extended Yule-Walker Equations (OD)

For all methods tested, the autocorrelation function was estimated using the autocorrelation method

[2]

r̂y(k) =
1

N

N�kX
n=1

y(n)y(n+ k) (22)

For the SS method, q = p = 6 linear auxiliary equations equations (10) in addition to the 6 nonlinear

equations (9). For the OD method, a total of 113 equations was found to give the best results.

The equations in the OD method were exponentially downweighted with a weighting parameter

of 0.98 as described in [2]. In all, 20 independent trials were run. Fig. 1 shows the location of

the estimated model poles with respect to the unit circle and the corresponding AR spectra for

each of these experiments. It can be seen that the proposed SS method provides a more compact

clustering of the estimated poles about the true poles than the other methods tested. The YW

method produces poles which are severely biased toward the origin as expected.

Experiment 2: The experiment was then repeated with the actual poles positioned closer to the

unit circle at 0:85e�j0:2�; 0:9e�j0:4�; and 0:95e�j0:7� Again, the SS method out-performs the other

methods as seen in Fig. 2.

Experiment 3: Next 10 runs using the AR model poles in Experiment 1 were performed. The

measurement noise variance �2z was varied over the 10 runs from 0.05 to 0.5 in steps of 0.05. For

each run, 50 independent trials were performed from which the mean and standard deviation of

the estimated measurement noise variance, �̂2z was computed. One trial consisted of AR parameter

estimation with the SS method from N=500 data points as described in Experiment 1. The same

experiment was then repeated with the AR model poles used in Experiment 2. These results are

shown in Fig 3. The estimated noise variance is seen to have a mean that is very close to the actual

measurement noise variance.

V. Summary

A method for estimating the parameters of an autoregressive process from a �nite number of noisy

measurements was described. Estimates of the AR parameters and measurement noise variance

result by solving a quadratic eigenvalue problem. The new method was demonstrated to outperform

several popular methods.
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Figure 1: Experiment 1 results: (a) actual poles, (b) actual AR spectrum, (c) SS poles, (d) SS
spectra, (e) YW poles, (f) YW spectra, (g) OD poles, (h) OD spectra.
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Figure 2: Experiment 2 results: (a) actual poles, (b) actual AR spectrum, (c) SS poles, (d) SS
spectra, (e) YW poles, (f) YW spectra, (g) OD poles, (h) OD spectra.
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Figure 3: Mean and standard deviation of measurement noise variance estimates for (a)Experiment
1 poles and (b) Experiment 2 poles. The dashed line corresponds to �̂2z = �2z .
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