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Abstract

We describe several methods for coding signals via the Karhunen-Loeve Transform (KLT) which do
not require the encoding and transmission of the KLT basis vectors.

1 Introduction

The Karhunen-Loeve Transform (KLT) is known to be the optimum transform for signal compression [1].
Unfortunately, the KLT basis functions, which are the eigenvectors of the data autocorrelation matrix, are
data dependent. Hence the basis functions must also be encoded and transmitted which reduces compression
and leads to increased data rates. For this reason, the KLT has found limited use in data compression
applications. Let

xn =
[

x(nN − 1) x(nN − 2) · · · x(N(n − 1))
]T (1)

be the N -dimensional signal frame to be encoded. We assume that xn has autocorrelation matrix R =
E

[
xnxT

n

]
having rank r ≤ N . This means that xn can be represented as a linear combination of the

eigenvectors of R given by q1, q2, . . . , qr, corresponding to eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λr > 0, respectively.
Let Q =

[
q1 q2 · · · qr

]
be an N × r matrix whose columns are the KLT basis vectors (eigenvectors of

R). The transform coefficients, given by yn = QT xn, can then be quantized as ŷn, encoded, and transmitted.
If the receiver has knowledge of the basis vectors Q, xn can be recovered as x̂n = Qŷn. If the signal x(n)
is statistically stationary then the eigenvectors need only be estimated and transmitted once, which would
not lead to much loss of compression, however in practice, the eigenstructure of most signals tends to vary
considerably over time. Hence the eigenvectors of R need to be constantly retransmitted which is why the
KLT is not often used. In this paper, we give a method of determining the basis vectors for the KLT directly
from the KLT coefficients given only very limited knowledge of x(n). This eliminates the need to retransmit
the KLT basis vectors.

2 Tracking KLT Basis Vectors

Blind estimation of the KLT basis vectors can be accomplished using ideas from the subspace tracking
literature. Let R̂n be an estimate of E

[
xnxT

n

]
that is updated using,

R̂n = γR̂n−1 + xnxT
n (2)

where 0 < γ < 1. Let
Q̂n =

[
q̂1
n q̂2

n · · · q̂r
n

]
(3)

and Λ̂n = diag(λ̂1
n, λ̂2

n, . . . , λ̂r
n) be estimates of the eigenvectors and eigenvalues, respectively, of R̂n. Then

R̂n ≈ γQ̂n−1Λ̂n−1Q̂T
n−1 + xnxT

n . The eigenvector estimates can be updated as follows:
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sender receiver

Q̂0 = IN (:, 1 : r) Q̂0 = IN (:, 1 : r)
for n = 1, 2, . . . for n = 1, 2, . . .

Qn =
[

Q̂n−1 vn

]
Qn =

[
Q̂n−1 vn

]
yn = Q̂T

n−1xn wait for yn

yn =
[

yT
n xT

n vn

]T
x̂n = Q̂n−1yn

transmit yn to receiver F = γQ
T

n Q̂n−1Λ̂n−1Q̂T
n−1Qn + ynyT

n

F = γQ
T

n Q̂n−1Λ̂n−1Q̂T
n−1Qn + ynyT

n G = Q
T

n Qn

G = Q
T

n Qn solve FWn = GWnΠn

solve FWn = GWnΠn Q̂n = QnWn(1 : r)
Q̂n = QnWn(1 : r) end

end

Table 1: Algorithm AKLT1 for blind estimation of KLT basis vectors. Both the sender and the receiver
must run the algorithms in unison. The search direction vector vn is assumed known to both the sender and
receiver for each n.

1. Solve the generalized eigenvalue problem

FWn = GWnΠn (4)

where F = Q
T

n

(
γQ̂n−1Λ̂n−1Q̂T

n−1 + xnxT
n

)
Qn, G = Q

T

n Qn, and Wn and the diagonal matrix Πn are

the respective generalized eigenvectors and eigenvalues. The matrix Qn =
[

Q̂n−1 vn

]
has dimension

N × (r + 1) and vn is a search direction vector.

2. Update the eigenvector estimates as
Q̂n = QnWn(1 : r) (5)

where Wn(1 : r) are the eigenvectors corresponding to the maximum r eigenvalues in Πn.

3. The eigenvalue estimates are updated as Λ̂n = Πn(1 : r, 1 : r).

If, in the above algorithm, the search direction is set to vn = xn, then the algorithm is a standard subspace
averaging algorithm used for subspace tracking [2]. Note that if we treat the columns of Q̂n−1 as the KLT
basis vectors, then the KLT coefficients are contained in the first r elements of Q

T

n xn, hence the algorithm
never explicitly uses xn. It can be shown that if vn is a white noise vector, independent of xn, then the
eigenvectors of R̂n can still be tracked. This implies that the above algorithm can be run by both the sender
and the receiver concurrently using the same initial conditions. If the search direction vectors are known
to both the sender and the receiver, then the receiver can also track the KLT basis vectors having only
knowledge of the KLT coefficients and the additional scalar coefficient, vT

n xn. In this context, the algorithm
is “blind” since the receiver requires no explicit knowledge of the signal x(n) to track the KLT basis vectors.
Table 1 lists the algorithm (AKLT1), IN is the N×N identity matrix. The algorithm’s convergence is proven
in [3], where it is shown that faster convergence results when the estimated signal subspace dimension, r, is
large. And when r = N − 1, the search space is the entire space which leads to an algorithm which exactly
computes the eigenvectors and eigenvalues of the sample autocorrelation matrix.

3 Increasing Convergence Speed

Algorithm AKLT1 assumes r, the dimension of the signal subspace, is known. Some signals of practical
interest have a signal subspace dimension which changes with time. Moreover, during sudden changes in
the statistics of the signal, the accuracy of the existing signal subspace estimates can be poor, leading to
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sender receiver

Q̂0 = IN Q̂0 = IN

for n = 1, 2, . . . for n = 1, 2, . . .
yn = Q̂T

n−1xn wait for ŷn, ropt, and side
ŷn = ∆(yn) information

ρ = 1, k = 1 x̂n = Q̂n−1ŷn

while ρ > MSEmax F = γΛ̂n−1 + ŷnŷT
n

x̂n = Q̂n−1(:, 1 : k)ŷn(1 : k); solve FQ̂n = Q̂nΛ̂n

ρ = ‖x̂n − xn‖2/‖xn‖2 end
k = k + 1;
if k = N + 1 AND ρ > MSEmax

Orthonormalize columns of Q̂n

k = 1
yn = Q̂T

n−1xn;
ŷn = ∆(yn)

end
end
ropt = k − 1
ŷn(ropt + 1 : N) = 0
transmit ŷn, ropt and side information to

receiver

F = γΛ̂n−1 + ŷnŷT
n

solve FQ̂n = Q̂nΛ̂n

end

Table 2: Algorithm AKLT2. This algorithm computes the entire set of eigenvectors and hence does not
require a search direction.

inaccurate estimates of the signal. It is therefore desirable to have a mechanism which adjusts the signal
subspace dimension to accommodate sudden changes in the signal subspace. By estimating the entire set of
eigenvectors, we eliminate the need for finding a good search direction since the search space is the entire
N -dimensional Euclidean vector space. To find the signal subspace dimension, the transmitter can measure
the mean-squared error-like quantity ρ ≡ ‖xn − x̂n‖2 (or a normalized version thereof). The signal subspace
dimension can then be increased until ρ is below a preset threshold, MSEmax. The transmitter then sends
the receiver the KLT coefficients as well as side information consisting of the number of KLT coefficients
being transmitted (ropt). The complete algorithm (AKLT2) is listed in Table 2. Algorithm AKLT2 can
be extended one step further. Rather than updating the reduced autocorrelation matrix F with the KLT
coefficients, we can simply update the sample autocorrelation matrix with the reconstructed signal frame, x̂n.
Moreover, instead of updating R̂n on a frame-by-frame basis, we can update it on a sample by sample basis
by concatenating x̂n−1 with x̂n. This enables a more accurate estimate of the sample autocorrelation matrix
since more signal vectors are used in its computation. The resulting algorithm, called AKLT3, is listed in
Table 3. Interestingly, if the noise present in x̂n is white, the eigenvectors of R̂n will not be affected since
the diagonal noise autocorrelation matrix does not alter the eigenvectors of the noise-free autocorrelation
matrix.

4 Experiments

The following signal was generated

x(n) =
{

cos(0.35πn) + cos(0.78πn + 0.35π), n = 1, . . . , 999
cos(0.6πn) + cos(0.8πn + 0.35π), n = 1000, . . . , 2, 000 (6)
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sender receiver

Q̂0 = IN Q̂0 = IN

for n = 1, 2, . . . for n = 1, 2, . . .
yn = Q̂T

n−1xn find bit allocation using Λ̂n−1

find bit allocation using Λ̂n−1 wait for ŷn, ropt, and b
ŷn = ∆(yn) if b 	= 0, use bit allocation P lan B

ρ = 1, k = 1, b = 0 x̂n = Q̂n−1ŷn

while ρ > MSEmax AND b < 2 wn =
[

x̂T
n−1 x̂T

n

]T

x̂n = Q̂n−1(:, 1 : k)ŷn(1 : k); R̂n−1,0 = R̂n−1

ρ = ‖x̂n − xn‖2 for m = 1 : N,
k = k + 1; v = wn(m + 1 : m + N)
if k = N + 1 AND ρ > MSEmax R̂n−1,m = γR̂n−1,m−1 + vvT

use bit allocation plan B end

b = b + 1 R̂n = R̂n−1,N

k = 1 solve R̂nQ̂n = Q̂nΛ̂n

yn = Q̂T
n−1xn; end

ŷn = ∆(yn)
end

end
if b 	= 2, then ropt = k − 1
if b = 2, then ropt = N
ŷn(ropt + 1 : N) = 0
transmit ŷn, ropt and b to receiver

wn =
[

x̂T
n−1 x̂T

n

]T

R̂n−1,0 = R̂n−1

for m = 1 : N,
v = wn(m + 1 : m + N)
R̂n−1,m = γR̂n−1,m−1 + vvT

end

R̂n = R̂n−1,N

solve R̂nQ̂n = Q̂nΛ̂n

end

Table 3: Algorithm AKLT3. This algorithm uses the reconstructed signal frame to compute the sample
autocorrelation matrix from which the KLT basis functions are extracted. A typical frame consists of b (1
bit) ropt (log2N bits), and the ropt KLT coefficients (the number of bits required for each KLT coefficient is
variable, and depends on the bit allocation method). If the bit allocation for each coefficient is computed
from the sample autocorrelation matrix eigenvalues, then it needn’t be transmitted since the receiver can
either compute it (b = 0) or use a pre-determined allocation (Plan B, b = 1).
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Algorithm AKLT1 was applied to this signal with r = 4 and γ = 0.8. The search direction vn was set to a
zero-mean Gaussian white noise vector. To measure the algorithm’s performance the a priori mean squared
error between the original and reconstructed data frame was estimated as εo(n) = ‖xn − Q̂n−1Q̂T

n−1xn‖2

where ‖ ‖ is the standard vector 2-norm. We note that this is a more valid measure than a posteriori error
since in a compression scenario, the quantity being transmitted is Q̂T

n−1xn. Figure 1 shows εo(n) for different
values of N . As predicted, the convergence speed increases with decreasing N . The experiment was then
repeated using algorithm AKLT2, using MSEmax = 10−5. Since algorithm AKLT2 tracks the eigenvectors
of R̂n exactly, and since the mean squared error between x̂n and xn is always minimized by adjusting the
signal subspace dimension, we chose as a measure of performance the lowest signal subspace dimension, ropt

for which the normalized mean squared error ρ for any given signal frame did not exceed MSEmax. The
resulting plots for N = 16, 32, and 64 are shown in Fig. 1. It can be seen that since the signal consists of
two sinusoids, the signal subspace dimension is 4, consequently, the algorithm has converged when ropt = 4,
no quantization was done in this experiment. Next we applied algorithm AKLT3 using quantization. A
different quantizer was used for each KLT coefficient. The bit allocation rule we used was the standard rule
for minimizing mean-squared error

bk = B + 0.5log2
[Λ̂n−1]k∏ropt

j=1 [Λ̂n−1]k
, k = 1, . . . , ropt (7)

where bk is the number of bits allocated to the kth KLT coefficient, B is a constant, and [Λ̂n−1]k is the kth

eigenvalue [1]. The maximum allowable input for each quantizer was set to 4[Λ̂n−1]
1/2
k . Bit allocation for

Plan B involved setting all bk = 8, this was required if the initial MSEmax threshold wasn’t met. If, after
going to Plan B, the threshold still wasn’t met, the reconstructed signal was accepted as is. By adjusting
MSEmax, one can obtain different bit rates. In this experiment, we used the utterance “the pipe began
to rust while new” as the original signal. Setting MSEmax to 0.01 led to an average bit rate of about 22
kilobits per second (kb/s); the reconstructed signal sounded virtually identical to the original. Increasing
MSEmax to 0.03 produced a bit rate of 17 kb/s, and led to a small amount of degradation. Figure 2 shows
spectrograms of the original, and the 22 kb/s and 17 kb/s reconstructed signals; clicking on the spectrograms
will play the corresponding audio file.

5 Summary

Several algorithms for blindly tracking the KLT basis vectors using only the KLT coefficients and a minimal
amount of side information were described. The first algorithm is a random search method which blindly
tracks a low-dimensional signal subspace. The second algorithm updates the KLT basis functions based
on the reconstructed signal vectors, which, if close to the original signal, yield accurate eigenvectors. The
algorithms were demonstrated on a sinusoidal signal and on a speech signal. Good speech reproduction was
obtained at bit rates in the broadband range.
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Figure 1: Algorithm AKLT1 mean squared error for sinusoid reconstruction for different frame lengths N
using a white noise search direction (left) and signal subspace dimension required to reduce the mean squared
error below MSEmax for algorithm AKLT2 (right).
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Figure 2: Spectrogram of original signal (top), 22 kb/s reconstructed signal (center), and 17 kb/s recon-
structed signal (bottom) using algorithm AKLT3. Click on each spectrogram to listen to audio.
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