
EDICS category SP 2-ADPT

Efficient, High Performance, Subspace
Tracking for Time-Domain Data

Carlos E. Davila

Electrical Engineering Department, Southern Methodist University
Dallas, Texas 75275

Phone: (214) 768-3197
Fax: (214) 768-3573

Email: cd@seas.smu.edu

Abstract

This paper describes two new algorithms for tracking the subspace spanned by
the principal eigenvectors of the correlation matrix associated with time-domain (i.e.
time series) data. The algorithms track the d principal N -dimensional eigenvectors
of the data covariance matrix with a complexity of O(Nd2), yet have performance
comparable to algorithms having O(N2d) complexity. The computation reduction
is achieved by exploiting the shift-invariance property of temporal data covariance
matrices. Experiments are used to compare our algorithms with other well-known
approaches of similar and/or lower complexity. Our new algorithms are shown to
outperform the subset of the general approaches having the same complexity. The new
algorithms are useful for applications such as subspace-based speech enhancement, and
low-rank adaptive filtering.

May 12, 2000



I. Background

The problem of subspace tracking can be formulated as follows, let

xn =
[
x(n) x(n− 1) · · · x(n−N + 1)

]T

be the vector whose covariance matrix is given by Rx = E
[
xnx

T
n

]
. In some applications, xn

can be modeled as xn = Aun + vn where the N × d matrix A is constant, the d× 1 vector un

is a random vector having the property E
[
unu

T
n

]
= P , and the N × 1 vector vn corresponds

to additive white noise having variance σv. It follows that Rx = APAT + σvIN , where IN is

the N ×N identity matrix. When zero noise is present, it can be seen that the rank of Rx

is d, and that knowledge of the column space of A, sometimes called the signal subspace,

can be used to derive useful information about the signal. Moreover, the signal subspace

is spanned by the eigenvectors of Rx corresponding to the d principal (largest) eigenvalues,

even for σv > 0. Most of the applications that have appeared in the literature are in the

context of array processing of spatial data, in which case knowledge of the signal subspace

can be used to determine the angles of arrival of multiple plane waves [1, 2, 3]. For temporal

(time series) data, the signal subspace can be used to determine the frequencies of a sum

of sinusoids [4]. Other applications for the temporal data case include signal enhancement.

Knowledge of the signal subspace can be used to increase the SNR of xn by projecting it onto

the signal subspace. This has been used for speech enhancement [5, 6]. In some adaptive

filtering applications, the signal to be filtered lies in a low-dimensional subspace and hence

conventional adaptive filtering algorithms like LMS can have very slow convergence as a

result of the large eigenvalue disparity present in the data covariance matrix [7]; in these

cases signal subspace adaptive filtering can be useful [8, 9, 10, 11, 12, 13, 14]. If the matrix

A, is changing with time, then one must reestimate the signal subspace repeatedly, to do

this, the covariance matrix is typically estimated using an exponential time window

Rn =
n∑

k=N

λn−kxkx
T
k (1)

1



where n corresponds to the current sampling instant. If the d principal eigenvectors of

Rn are computed at every sampling instant, the computational burden becomes excessive.

As a result, algorithms with reduced complexity have been developed which are capable of

computing less than exact eigenvector estimates (or an equivalent basis). Algorithms having

O(N2d) complexity have been described [15, 16, 17, 18, 19, 20] however these are generally

considered to have excessive computational requirements for online tracking applications.

Another class of O(Nd2) algorithms based on the idea of subspace averaging have been

described in [21, 22, 23, 24]. Karasolo’s algorithm appears to provide a good trade-off between

tracking performance and computational requirements and has been used as the benchmark

for comparing fast subspace tracking algorithms [17]. Subspace averaging involves modeling

the covariance matrix as

Rn ≈ QnΛnQ
T
n + σ̂vIN (2)

where QnΛnQ
T
n is an estimate of the eigendecomposition of APAT at time n and σ̂v is an

estimate of the additive noise power. The complexity can be reduced to O(Nd) by several

other methods. DeGroat assumes that all of the signal subspace eigenvalues are equal leading

to a spherical signal subspace as well as a spherical noise subspace, this leads to only having to

solve a 2-dimensional eigenvalue problem, unlike the Karasolo algorithm which by assuming

a spherical noise subspace, requires the solution of an r + 1 dimensional eigenvalue problem.

The spherical subspace assumption allows one to rotate the basis vectors to ultimately reduce

the dimensionality of the problem [25]. Other O(Nd) methods are described in [26, 27, 8, 9,

24, 28, 29]. Several stochastic gradient algorithms having O(Nd2) complexity have also been

proposed [30, 31, 32]. This paper describes two new subspace tracking algorithms which

have O(Nd2) complexity. The algorithms are based on the idea of projecting the matrix

A onto the subspace spanned by the current eigenvector estimates and the current data

vector. This approach would normally require O(N2d) complexity; however, we exploit the

shift invariance property of Rn to reduce the computational complexity of O(Nd2) [33]. The

algorithms are derived in Sections II and III. Section IV gives a proof of convergence, while

Section V describes several experiments which compare the new algorithms with a number

2



of other algorithms having O(Nd2) and O(Nd) complexity. The new algorithms are seen to

perform better than the algorithms having similar complexity as well as those having less

complexity (which is not unexpected given the difference in complexity). Finally, Section VI

gives a summary of the results of this paper.

II. Subspace Projection

The proposed algorithms seek to obtain estimates of the signal subspace eigenvectors at time

n, based a linear combination of the estimates at time n− 1 and the data vector xn. Define

Q̃n =
[
Qn−1 xn

]
(3)

and assume that

Qn =
[
q1
n q2

n · · · qd
n

]
(4)

where qi
n is the N×1 eigenvector estimate associated with ith largest eigenvalue of Rn. Then

q1
n can be obtained by maximizing the Rayleigh quotient

µ
(
Rn, w

1
n

)
≡ w1T

n Q̃T
nRnQ̃nw

1
n

w1T
n Q̃T

n Q̃nw1
n

(5)

over w1
n, giving q1

n = Q̃nw
1
n. The vector w1

n can be found by solving the symmetric generalized

eigenvalue problem for the maximum eigenvalue and corresponding eigenvector,

Q̃T
nRnQ̃nw

1
n = λ1(n)Q̃T

n Q̃nw
1
n (6)

The other eigenvector estimates qi
n, i = 2, . . . , d can be obtained by solving

Q̃T
nRnQ̃nWn = ΛnQ̃

T
n Q̃nWn (7)

3



InitialV alues

QN =

[
Id

0N−d×d

]

RN = xNxT
N

for n = N + 1, N + 2, . . .
Rn = λRn−1 + xnx

T
n

Q̃n(:, 1 : d) = Qn−1

Q̃n(:, d + 1) = xn

Un = RnQ̃n

A = Q̃T
nUn

B = Q̃T
n Q̃n

solve (A− ΛnB)Wn = 0N×(d+1)

Qn = Q̃nWn(:, 1 : d)

Table I: O(N2d) complexity subspace projection algorithm (SP-1).

where Wn =
[
w1

n w2
n · · · wd+1

n

]
and Λn = diag (λ1(n), λ2(n), . . . , λd+1(n)). Since typi-

cally d � N , solving the (d+ 1)-dimensional generalized eigenvalue problem (7) is relatively

efficient (the well-known Karasolo algorithm also requires the solution of a d + 1 dimen-

sional eigenvalue problem [21]). It is interesting to note that the eigenvector estimates

Qn = Q̃nWn(:, 1 : d) will be mutually orthogonal. This can be seen by observing that for

the symmetric eigenvalue problem, Wn satisfies [34]

Wn(:, 1 : d)T Q̃T
n Q̃nWn(:, 1 : d) = Id (8)

So if Q1 has orthogonal columns, then all subsequent Qn will have orthogonal columns. Table

I lists the subspace projection (SP-1) algorithm.

The algorithm seeks the subspace of the column space of Q̃n which is closest to the signal

subspace, the column space of A, hence the name “subspace projection”. A second algorithm

results by setting

4



Qn =
[
Qn−1 xn Rn−1xn

]
(9)

and using Qn in place of Q̃n. This algorithm, referred to as SP-2, provides faster convergence

than SP-1, since the columns of Qn span a higher dimensional subspace than those of Q̃n. For

SP-2, the resulting symmetric generalized eigenvalue problem is d+ 2 dimensional compared

to d + 1 dimensional for SP-1.

III. Fast Subspace Projection

The SP-1 algorithm shown in Table I requires O(N2d) operations per update. To reduce

the complexity to O(Nd2) the matrix product Un = RnQ̃n is not explicitly computed but

rather, Un is recursively updated in time. First we note that

Un =
(
λRn−1 + xnx

T
n

)
Q̃n (10)

= λRn−1Q̃n + xnx
T
n Q̃n

Using (3) leads to

Un = λ
[
Rn−1Qn−1 Rn−1xn

]
+ xnx

T
n Q̃n (11)

The quantity Ũn ≡ RnQn can be updated in O(Nd2) operations by using the fact that

Un = RnQ̃n, and Qn = Q̃nWn(:, 1 : d), hence

Ũn = UnWn(:, 1 : d) (12)

Also by using the shift-invariance property of Rn, the quantity gn−1 ≡ Rn−1xn can be

computed in O(N) operations as seen in Appendix A. Therefore

Un = λ
[
Ũn−1 gn−1

]
+ xnx

T
n Q̃n (13)

5



Table II lists the fast version of algorithm SP-1 along with an operation count. The operations

are counted on the basis of multiplies and accumulates (MAC’s). Algorithms for computing

the symmetric (d + 1) and (d + 2)-dimensional generalized eigenvalue decomposition for

algorithms SP-1 and SP-2, respectively in O(d3) operations can be found in Section 8.7.2 of

[35].

As mentioned above, algorithm SP-2 utilizes an additional search direction, Rn−1xn to

increase convergence speed. Define the matrix product Vn = RnQn. Once again, we have

Vn =
(
λRn−1 + xnx

T
n

)
Qn (14)

= λRn−1Qn + xnx
T
nQn

Using (9) leads to

Un = λ
[
Rn−1Qn−1 Rn−1xn R2

n−1xn

]
+ xnx

T
nQn (15)

Let Ṽn ≡ RnQn, as was the case with Ũn, Ṽn can be updated in O(Nd2) operations as

Ṽn = VnWn(:, 1 : d) (16)

Using the shift-invariance property of Rn, the quantity hn−1 ≡ R2
n−1xn can be computed in

O(N) operations as seen in Appendix B. Therefore

Vn = λ
[
Ũn−1 gn−1 hn−1

]
+ xnx

T
nQn (17)

Table III lists the fast version of algorithm SP-2 along with an operation count. The fast

updates of gn and hn use the shift invariance property of Rn. This property is also used in

the derivation of fast Kalman filter adaptive filter algorithms [36]. However, unlike the fast

Kalman filter algorithms, the gn and hn updates do not involve any matrix inversions and

hence are very stable.

6



MAC count

Initial V alues :

QN =

[
Id

0(N−d)×d

]

ŨN = xNxT
NQN

gN = xNxT
NxN+1

For n = N + 1, N + 2, . . .

Q̃n(:, 1 : d) = Qn−1

Q̃n(:, d + 1) = xn

Un = λ
[
Ũn−1 gn−1

]
+ xnx

T
n Q̃n 3Nd + 3N

A = Q̃T
nUn Nd2

B = Q̃T
n Q̃n Nd2

solve (A− ΛnB)Wn = 0N×(d+1) O(d3)

Qn = Q̃nWn(:, 1 : d) Nd2

Ũn = UnWn(:, 1 : d) Nd2

update gn using yn = xn+1 9N + 4
4Nd2 + 3Nd + 12N + 4 + O(d3)

Table II: Fast implementation of algorithm SP-1 showing number of operations.

7



MAC count

Initial V alues :

QN =

[
Id

0(N−d)×d

]

ŨN = xNxT
NQN

Ṽn = xNxT
N ŨN

gN = xNxT
NxN+1

hN = xNxT
NgN

For n = N + 1, N + 2, . . .
Qn(:, 1 : d) = Qn−1

Qn(:, d + 1) = xn

Qn(:, d + 2) = gn−1

Vn = λ
[
Ṽn−1 gn−1 hn−1

]
+ xnx

T
nQn 3Nd + 6N

A = Q
T
nVn Nd2

B = Q
T
nQn Nd2

solve (A− ΛnB)Wn = 0N×(d+2) O(d3)

Qn = Q̃nWn(:, 1 : d) Nd2

Ṽn = VnWn(:, 1 : d) Nd2

update gn using yn = xn+1 9N + 4
update hn using yn = xn+1 32N + 30

4Nd2 + 3Nd + 47N + 34 + O(d3)

Table III: Fast implementation of algorithm SP-2 showing number of operations.

8



IV. Algorithm Convergence

Here, we will prove the convergence of algorithm SP-1. We can simplify the convergence

analysis by replacing the sample autocorrelation matrix Rn in algorithm SP-1 with Rx =

E
[
xnx

T
n

]
. Let1

qi
n = Q̃nWn(:, i), i = 1, . . . , d (18)

be the estimate of eigenvector qi generated by algorithm SP-1 under the assumption that

Rn = Rx.

Lemma 1: The sequence µ (Rx, q
i
n) , i = 1, . . . , d is monotonically increasing with n.

Proof: Assume that µ (Rx, q
i
n) < µ

(
Rx, q

i
n−1

)
, then Wn(:, i) was not chosen to maximize the

Rayleigh quotient since2 Wn(:, i) = ei would have given µ (Rx, q
i
n) = µ

(
Rx, q

i
n−1

)
. ✷

Lemma 2: The Rayleigh quotient gradient evaluated at the updated eigenvector estimate

∇µ
(
Rx, q

i
n

)
= Rxq

i
n − µ

(
Rx, q

i
n

)
qi
n (19)

is orthogonal to the columns of Q̃n.

Proof: Substituting (18) into (19), using (3) and premultiplying by Q̃T
n gives

Q̃T
n∇µ

(
Rx, q

i
n

)
= Q̃T

nRxQ̃nW (:, i) − µ
(
Rx, q

i
n

)
Q̃T

n Q̃nW (:, i) (20)

Clearly, the right hand side of (20) is zero since µ (Rx, q
i
n) is the generalized eigenvalue solving

(7). ✷

Theorem: Assume that Rx, has eigenvectors q1, q2, . . . , qN , and associated eigenvalues λ1 >

λ2 > · · · > λN . Also assume that ‖Q̃n‖2 > 0. Then qi
n → qi, i = 1, . . . , d.

Proof: Consider the convergence of q1
n. Since by Lemma 1, µ (Rx, q

1
n) is monotonically

increasing and since the Rayleigh quotient associated with q1
n is bounded by λ1, q1

n must

1Wn(:, i) corresponds to the ith column of Wn

2ei =
[
0 · · · 0 1 0 · · · 0

]T with the 1 in the ith position

9



converge to an accumulation point q∗. Hence we have,

‖Q̃T
n∇µ (Rx, q

∗) ‖2 = ‖
(
∇µ (Rx, q

∗) −∇µ
(
Rx, q

1
n

))T
Q̃n‖2 (21)

≤ ‖
(
∇µ (Rx, q

∗) −∇µ
(
Rx, q

1
n

))
‖‖Q̃n‖2

The second term in the right-hand side of the first line of (21) is zero by Lemma 2 while

the inequality is due to a well-known property of matrix norms [37]. There is no loss of

generality in taking ‖Q̃n‖ = 1 since the norm of Q̃n can always be absorbed into W (:, 1).

Since the Rayleigh quotient is continuous, there exists a constant ε > 0 and an integer no

such that for all n > no,

‖Q̃T
n∇µ (Rx, q

∗
n) ‖2 ≤ ‖µ (Rx, q

∗
n) − µ

(
Rx, q

1
n

)
‖2 < ε (22)

Since ε can be made arbitrarily small, and ‖Q̃n‖2 > 0 by assumption, q∗ must be a critical

point of the Rayleigh quotient. To show that q∗ = q1, we note that if q∗ �= q1, then from

the projection interpretation of SP-1, it follows that for all n, q1 ⊥ xn, otherwise, xn would

be able to drive q1
n in a direction closer to q1 compared to q1

n−1. But this would then imply

that q1 is not an eigenvector of Rx which is a contradiction. Finally, since q1
n → q1, it follows

that qi
n → qi, i = 2, . . . d in lieu of the orthogonality of the estimated eigenvectors (see the

comments associated with equation (8)). ✷

The above theorem proves that for stationary data, using a forgetting factor of λ = 1,

SP-1 will converge asymptotically since one could take as the starting point of SP-1, a large

value of n for which Rn ≈ Rx, in which case, the eigenvector estimates qi
n would converge to

quantities arbitrarily close to qi.

10



V. Tracking Experiments and Discussion

The following algorithms were implemented in Matlab

Algorithm Complexity Domain

SP-1 O(Nd2) time

SP-2 O(Nd2) time

KARA [21] O(Nd2) time and/or space

BISVD [24] O(Nd2) time and/or space

KFST [8] O(Nd) time and/or space

PAST [27] O(Nd) time and/or space

ROSA [25] O(Nd) time and/or space

PC [26] O(Nd) time and/or space

PROT [28] O(Nd) time and/or space

Algorithm KARA is the subspace averaging algorithm of Karasolo [21]. In most of the pre-

viously cited literature, this algorithm appears to be the standard by which fast subspace

algorithms are measured. KFST is a subspace tracker due to Rabideau that has performance

identical to the Karasolo algorithm [8]. ROSA is the subspace averaging algorithm of De-

Groat which uses both a noise and a signal spherical subspace leading to an efficient O(Nd)

algorithm [25]. BISVD is an algorithm due to Strobach which is based on bi-iteration [24].

PAST is an algorithm by Yang which recursively minimizes a quadratic performance mea-

sure [27]. And PC and PROT (Proteus-2) are algorithms developed by Champagne based

on perturbation theory [26, 28]. The stochastic gradient algorithms mentioned earlier were

not tested since these have been found to have inferior performance relative to the other

algorithms [17]. The first experiment involved tracking a step change in the frequencies of

two sinusoids in additive noise. The following signal was generated

x(n) =




cos(0.3πn) + cos(0.7πn + 0.35π) + v(n), n = 1, . . . , 999

cos(0.6πn) + cos(0.8πn + 0.35π) + v(n), n = 1000, . . . , 2000
(23)

11



where v(n) was Gaussian white noise giving an SNR of 10 dB (σv = 0.1). For each algorithm

tested, the error between the estimated eigenvectors and the actual eigenvectors of Rn was

measured as

ε(n) = ‖Qn

(
QT

nQn

)−1
QT

n −Qo
n

(
QoT

n Qo
n

)−1
QoT

n ‖F (24)

where ‖ ‖F is the Forbeneus norm, Qn is the matrix whose columns are the eigenvector

estimates and Qo
n is the matrix containing the actual eigenvectors of Rn as computed with

Matlab routine “eig”. The error measure ε(n) represents the distance between two subspaces

[35]. The algorithm parameters were set to N = 50, d = 4, and λ = 0.99. Figures 1 - 3

show the resulting error measures comparing the new SP-1 and SP-2 algorithms with the

other algorithms. In each case algorithms SP-1 and SP-2 are seen to out-perform the other

algorithms. Algorithm SP-2, has a significantly lower noise floor and tracks the step change

in frequencies at n = 1000 much faster than the other algorithms. We note that SP-2

converges considerably faster than SP-1, though SP-1 still tracks the step change faster than

any of the other algorithms. As mentioned previously the improvement shown by SP-2 over

SP-1 results from the additional search direction used. Moreover, this added search direction

Rn−1xn is a “good” choice for a search direction since it will tend to point in the direction

of the eigenvector corresponding to the maximum eigenvalue of Rn. This can be seen by

viewing Rn−1xn as one iteration of the power method used to find the eigenvector associated

with the maximum eigenvalue [35]. Since there does not appear to be a consensus on which

error measure to use when comparing subspace tracking algorithms, the experiment was

repeated using the following error measure:

δ(n) = ‖Qn

(
QT

nQn

)−1
QT

n −Q†
n

(
Q†T

n Q†
n

)−1
Q†T

n ‖F (25)

where Q†
n is the theoretical signal subspace for the sinusoidal signal used in the experiment

[4]. Under this error measure, algorithms SP-1 and SP-2 behaved very similarly, while the

three algorithms KARA, KFST, and BISVD each had virtually identical performance, and

the algorithm pair PROT and PC had similar performance. This made it possible to reduce

12



the total number of error curves as seen in Figures 4-5. Algorithms SP-1 and SP-2 are again

seen to outperform the other algorithms.

We have been interested in applying subspace tracking to speech enhancement. The idea

behind this is that by projecting a noisy low-rank signal onto the signal subspace, the SNR

of the noisy signal can be improved [5, 6]. A drawback to subspace speech enhancement is

the extensive amount of computation required to compute the signal subspace basis. We

have observed that better quality speech results by computing the signal subspace at every

sampling instant rather than on a block by block basis. Hence, subspace tracking algorithms

which update the signal subspace at every sample number are useful. The signal subspace

was tracked for all nine algorithms for an actual speech segment. The speech utterance “nine

two one two” was sampled at 8 kHz, white Gaussian noise was added to give an SNR of

10 dB. The algorithm parameters used were N = 50, d = 6, and λ = 0.999. The two error

criteria ε(n) and δ(n) are plotted in Figure 6. Since the theoretical signal subspace of speech

is unknown, it was estimated by computing the eigendecomposition of the noise-free sample

covariance matrix. Again algorithms SP-2, and SP-1 have the best performance, while the

other algorithms appear to have relatively poor performance.

The reduced performance of KARA, KFST, ROSA, and BISVD can be explained by

noting that these algorithms are based on the idea of subspace averaging where the sample

covariance matrix is estimated as in (2), repeated here

Rn ≈ QnΛnQ
T
n + σ̂vIn (26)

Speech tends to have relatively high dimensional signal subspace, compared to say, sinusoids,

Fig. 7 shows a plot of the mean eigenvalues obtained from the speech signal used in the above

experiment. There appear to be at least 12 eigenvalues which clearly lie above the noise floor.

However in subspace-based speech enhancement, it is desirable to keep the signal subspace

dimension low while still attempting to span as much of the signal subspace as possible,

otherwise excess noise will project onto the signal subspace. We have found that a relatively

13



low number of eigenvectors (i.e. 6) tends to produce good quality enhanced speech. However

d = 6 will produce poor results with subspace averaging algorithms because the model in

(26) is violated. Algorithms SP-1 and SP-2 do not use subspace averaging and hence are not

subject to these modeling errors. Increasing the signal subspace dimension in the subspace

averaging algorithms did not improve their performance. Some of the algorithms against

which SP-1 and SP-2 were compared can be run in a rank-adaptive mode and this may

improve their performance whan tracking speech signal subspaces.

VI. Summary

Two new algorithms for tracking the signal subspace of low-rank temporal signals were

described. The algorithms are based on estimating the signal subspace based on linear

combinations of the current eigenvector estimates and the current data vector, hence, the

algorithms are called subspace projection algorithms. The computational complexity of the

algorithms is reduced to O(Nd2) by exploiting the shift-invariance property of temporal data

covariance matrices. A proof of convergence was given, and in experiments, the algorithms

were shown to converge more rapidly and provide more accurate tracking then 7 other

previously published algorithms. The new algorithms were also found to outperform the

other algorithms in tracking the signal subspace associated with a speech signal. Of these

7 other algorithms, 2 had similar (O(Nd2)) complexity while the remainder had O(Nd)

complexity, hence one would expect the new algorithms to have faster convergence than the

lower complexity algorithms. Also, the other algorithms which were tested have more general

applicability since they do not require that the data have the shift invariance property. The

new algorithms have applications in low-rank adaptive filtering, which require temporal

signal subspace tracking [9, 12, 11, 13, 14] and speech enhancement [5, 6].

14



A Appendix: O(N) computation of gn = Rnyn

For prewindowed data, an algorithm for carrying out this matrix vector product in O(N)

operations was described in [38]. Here, we present a version for covariance-type windowing,

which has been found to be more appropriate for subspace tracking involving large N . We

note that the data begins at n = 1; also we assume that

xn =
[
x(n) xT

n−1

]T

(27)

=
[
xT

n x(n−N)

]T

yn =
[
y(n) yT

n−1

]T

(28)

=
[
yT

n y(n−N)

]T

with

xn =
[
x(n) x(n− 1) · · · x(n−N + 1)

]T

and

yn =
[
y(n) y(n− 1) · · · y(n−N + 1)

]T

We begin by defining the (N + 1) × 1 vector

gn ≡ Rnyn

where

Rn ≡
n∑

k=N+1

λn−kxkx
T
k , n ≥ N + 1 (29)

It is straight-forward to verify that

Rn =


 R1

n rn

rT
n r(n−N)


 =


 r(n) r̃n

r̃T
n Rn−1


 (30)

15



where

Rn =
n∑

k=N

λn−kxkx
T
k , n ≥ N (31)

R1
n =

n∑
k=N+1

λn−kxkx
T
k , n ≥ N + 1 (32)

rn =
n∑

k=N+1

λn−kxkx(k −N) (33)

r̃n =
n∑

k=N+1

λn−kxk−1x(k) (34)

r(n) =
n∑

k=N+1

λn−kx(k)2 (35)

Using (29), (27), (28), and (30) we have

gn =


 g1

n + rny(n−N)

rT
n yn + r(n−N)y(n−N)


 (36)

=


 r(n)y(n) + r̃T

n yn−1

r̃ny(n) + gn−1


 (37)

where g1
n ≡ R1

nyn and gn ≡ Rnyn. Observe that (37) can be used to compute gn. Using (36)

gives

g1
n = [gn]1,N − rny(n−N) (38)

and

gn = g1
n + λn−NxNxT

Nyn, n ≥ N + 1 (39)

The only other quantities that need updating are the vectors in (30) which can be efficiently

updated as

rn = λrn−1 + x(n−N)xn, n ≥ N + 1 (40)

r̃n = λr̃n−1 + x(n)xn−1, n ≥ N + 1 (41)

16



MAC count

Initial V alues :
gN = xN(xT

Nyn)
rN = 0N×1

r̃N = 0N×1

r(N) = 0

For n = N + 1, N + 2, . . .
rn = λrn−1 + x(n−N)xn 2N
r̃n = λr̃n−1 + x(n)xn−1 2N
r(n) = λr(n− 1) + x(n)2 2
[gb]1 = r(n)y(n) + r̃T

n yn−1 N + 1
[gb]2,N+1 = r̃ny(n) + gn−1 N

g1
n = [gb]1,N − rny(n−N) N

gn = g1
n + λn−NxNxT

Nyn 2N + 1
9N + 4

Table IV: Algorithm for updating gn = Rnyn showing number of operations.

r(n) = λr(n− 1) + x(n)2, n ≥ N + 1 (42)

The complete algorithm listing is found in Table IV.

B Appendix: O(N) computation of hn ≡ (Rn)
2 yn

Derivation of the algorithm for computing hn follows along the same lines as that of gn, but

is a bit more tedious due to the extra terms resulting from the squaring of Rn. The notation

(C)2 ≡ CC will be used to denote the square of a matrix. We note that


 R1

n rn

rT
n r(n−N)





 R1

n rn

rT
n r(n−N)


 =


 (R1

n)
2

+ rnr
T
n R1

nrn + rnr(n−N)

rT
nR

1
n + r(n−N)rT

n rT
n rn + r(n−N)2



(43)

17



Hence, letting hn ≡
(
Rn

)2
yn and using (43) and (28) gives

hn =


 h1

n + rnr
T
n yn + e1

ny(n−N) + rnr(n−N)y(n−N)

rT
n g

1
n + r(n−N)rT

n yn + rT
n rny(n−N) + r(n−N)2y(n−N)


 (44)

where

h1
n =

(
R1

n

)2
yn (45)

e1
n = R1

nrn (46)

We can also write


 r(n) r̃T

n

r̃n Rn−1





 r(n) r̃T

n

r̃n Rn−1


 =


 r(n)2 + r̃T

n r̃n r(n)r̃T
n + r̃T

nRn−1

r̃nr(n) + Rn−1r̃n r̃nr̃
T
n + (Rn−1)

2


 (47)

Using (28) we get

hn =


 r(n)2y(n) + r̃T

n r̃ny(n) + r(n)r̃T
n yn−1 + r̃T

n gn−1

r̃nr(n)y(n) + ẽny(n) + r̃nr̃
T
n yn−1 + hn−1


 (48)

where

ẽn = Rn−1r̃n (49)

and

en ≡ Rnr̃n = λẽn + xnx
T
n r̃n (50)

Now the quantities en and e1
n can be updated as

en =
(
λRn−1 + xnx

T
n

)
(λr̃n−1 + x(n)xn−1) (51)

= λ2en−1 + λxnx
T
n r̃n−1 + λg̃n−1x(n) + xn

(
xT

nxn−1

)
x(n)

18



and

e1
n =

(
λR1

n−1 + xnx
T
n

)
(λrn−1 + x(n−N)xn) (52)

= λ2e1
n−1 + λxnx

T
nrn−1 + λg1

n−1x(n−N) + xn

(
xT

nxn

)
x(n−N) (53)

where g̃n ≡ Rnxn. Equation (48) can be used to compute hn, then from (44) we have

h1
n =

[
hn

]
1,N

− rnr
T
n yn − e1

ny(n−N) − rnr(n−N)y(n−N) (54)

Since R2
n =

(
R1

n + λn−NxNxT
N

)2
, it follows that

hn = h1
n + λn−NxNxT

Ng1
n + λn−Nfnx

T
Nyn + λ2(n−N)xN

(
xT

NxN

)
xT

Nyn (55)

The quantity fn ≡ R1
nxN can be efficiently updated as

fn = λfn−1 + xn

(
xT

nxN

)
, n ≥ N + 1 (56)

Table V lists the complete algorithm for updating hn.

19



MAC count

Initial V alues :
eN = 0N×1

e1
N = 0N×1

fN = 0N×1

For n = N + 1, N + 2, . . .

en = λ2en−1 + λxnx
T
n r̃n−1 + λg̃n−1x(n) + xn

(
xT

nxn−1

)
x(n) 5N + 8

e1
n = λ2e1

n−1 + λxnx
T
nrn−1 + λg1

n−1x(n−N) + xn

(
xT

nxn

)
x(n−N) 5N + 8

ẽn =
(
en − xnx

T
n r̃n

)
/λ 3N[

hn

]
1

= r(n)2y(n) + r̃T
n r̃ny(n) + r(n)r̃T

n yn−1 + r̃T
n gn−1 2N + 4[

hn

]
2,N

= r̃nr(n)y(n) + ẽny(n) + r̃nr̃
T
n yn−1 + hn−1 3N + 2

h1
n =

[
hn

]
1,N

− rnr
T
n yn − e1

ny(n−N) − rnr(n−N)y(n−N) 4N + 1

fn = λfn−1 + xn

(
xT

nxN

)
3N

hn = h1
n + λn−NxNxT

Ng1
n + λn−Nfnx

T
Nyn + λ2(n−N)xN

(
xT

NxN

)
xT

Nyn 4N + 7

g̃n = λgn−1 + xnx
T
nxn 3N

32N + 30

Table V: Algorithm for updating hn = (Rn)2 yn showing number of operations. The operation
count does not reflect the computation of quantities already computed in Table I.

20



References

[1] D. H. Johnson and D. E. Dudgeon, Array Signal Processing. Prentice Hall, 1993.

[2] N. Owsley, “Sonar array processing,” in Array Signal Processing (S. Haykin, ed.), Pren-
tice Hall, 1985.

[3] R. A. Monzingo and T. W. Miller, Introduction to Adaptive Arrays. Wiley-Interscience,
1980.

[4] S. M. Kay, Modern Spectral Estimation. Prentice Hall, 1988.

[5] Y. Ephraim and H. L. Van Trees, “A signal subspace approach for speech enhancement,”
IEEE Trans. on Speech and Audio Processing, vol. 3, pp. 251–266, July 1995.

[6] J. Huang and Y. Zhao, “An energy-constrained signal subspace method for speech
enhancement and recognition in white and colored noises,” Speech Communication,
vol. 26, pp. 165–181, 1998.

[7] S. Haykin, Adaptive Filter Theory. Prentice Hall, 1991.

[8] D. J. Rabideau, “Fast, rank adaptive subspace tracking and applications,” IEEE Trans.
Acoust. , Speech, Signal Processing, vol. 44, pp. 2229–2244, September 1996.

[9] P. Strobach, “Low-rank adaptive filters,” IEEE Transactions on Signal Processing,
vol. 44, pp. 2932–2947, Dec 1996.

[10] P. Strobach, “Square Hankel SVD subspace tracking algorithms,” Signal Processing,
vol. 57, pp. 1–18, Feb. 1997.

[11] J. S. Goldstein and I. S. Reed, “Reduced-rank adaptive filtering,” IEEE Transactions
on Signal Processing, vol. 45, pp. 492–496, Feb 1997.

[12] D. Linebarger, B. Raghothaman, D. Begusic, E. Dowling, R. DeGroat, and S. Oh, “Low
rank transform domain adaptive filtering,” in Proceedings of the 1997 31st Asilomar
Conf. on Signals, Systems and Computers, (Monterey, CA), pp. 123–127, 1997.

[13] S. Hosur, A. H. Tewfik, and D. Boley, “ULV and generalized ULV subspace tracking
adaptive algorithms,” IEEE Transactions on Signal Processing, vol. 46, pp. 1282–1297,
May 1998.

[14] M. L. Honig, “Adaptive linear interference suppression for packet DS-CDMA,” European
Transactions on Telecommunications, vol. 9, pp. 173–181, Mar-Apr 1998.

[15] C. Yeh, “Simple computation of projection matrix for bearing estimations,” IEE Pro-
ceedings, Part F, vol. 134, pp. 146–150, April 1987.

[16] D. Fuhrmann, “An algorithm for subspace computation with applications in signal
processing,” SIAM Jour. Matrix Anal. Appl., vol. 9, pp. 213–220, April 1988.

21



[17] P. Comon and G. Golub, “Tracking a few extreme singular values and vectors in signal
processing,” Proc. IEEE, vol. 78, pp. 1327–1343, Aug. 1990.

[18] G. Stewart, “An updating algorithm for subspace tracking,” IEEE Trans. Signal Pro-
cessing, vol. SP-40, pp. 1535–1541, June 1992.

[19] G. Xu and T. Kailath, “Fast subspace decomposition,” IEEE Trans. Acoust. , Speech,
Signal Processing, vol. SP-42, pp. 539–551, March 1994.

[20] A. Eriksson and P. Stoica and T. Söderström, “On-line subspace algorithms for tracking
moving sources,” IEEE Trans. Acoust. , Speech, Signal Processing, vol. SP-42, pp. 2319–
2330, Sept. 1994.

[21] I. Karasolo, “Estimating the covariance matrix by signal subspace averaging,” IEEE
Trans. Acoust. , Speech, Signal Processing, vol. 34, pp. 8–12, Feb. 1986.

[22] E. M. Dowling, L. P. Ammann, and R. D. DeGroat, “A TQR-iteration based adap-
tive SVD for real time angle and frequency tracking,” IEEE Transactions on Signal
Processing, vol. 42, pp. 914–926, April 1994.

[23] Z. Fu and E. M. Dowling, “Conjugate gradient eigenstructure tracking for adaptive
spectral estimation,” IEEE Transactions on Signal Processing, vol. 43, pp. 1151–1160,
May 1995.

[24] P. Strobach, “Bi-iteration SVD subspace tracking algorithms,” IEEE Trans. Acoust. ,
Speech, Signal Processing, vol. 45, pp. 1222–1240, May 1997.

[25] R. DeGroat, “Noniterative subspace tracking,” IEEE Trans. Signal Processing, vol. SP-
40, pp. 571–577, March 1992.

[26] B. Champagne, “Adaptive eigendecomposition of data covariance matrices based on
first-order perturbations,” IEEE Transactions on Signal Processing, vol. 1994, pp. 2758–
2771, October 1994.

[27] B.Yang, “Projection approximation subspace tracking,” IEEE Trans. Acoust. , Speech,
Signal Processing, vol. 43, pp. 95–107, January 1995.

[28] B. Champagne and Q. Liu, “Plane rotation-based evd updating schemes for efficient
subspace tracking,” IEEE Trans. Acoust. , Speech, Signal Processing, vol. 46, pp. 1886–
1900, July 1998.

[29] E. C. Real, D. W. Tufts, and J. W. Cooley, “Two algorithms for fast approximate
subspace tracking,” IEEE Transactions on Signal Processing, vol. 47, pp. 1936–1945,
July 1999.

[30] N. Owsley, “Adaptive data orthogonalization,” in Proc. ICASSP, pp. 109–112, 1978.

[31] P. Thompson, “An adaptive spectral analysis technique for unbiased frequency esti-
mation in the presence of white noise,” in Proc. 13th Asilomar Conf. Circuits, Sys. ,
Comput., (Monterrey), pp. 529–533, Nov. 1979.

22



[32] J. Yang and M. Kaveh, “Adaptive eigensubspace algorithms for direction or frequency
estimation and tracking,” IEEE Trans. Acoust. , Speech, Signal Processing, vol. ASSP-
36, pp. 241–251, Feb. 1988.

[33] C. Davila and M. Mobin, “Efficient tracking of time-varying signal subspaces,” in Proc.
1992 IEEE International Conference on Acoustics, Speech, and Signal Processing, (San
Francisco), pp. 133–136, March 1992.

[34] G. Strang, Linear Algebra and Its Applications. Academic Press, 1980.

[35] G. H. Golub and C. F. Van Loan, Matrix Computations. Johns Hopkins University
Press, 1989.

[36] L. Ljung, M. Morf, and D. Falconer, “Fast calculation of gain matrices for recursive
estimation schemes,” Int. J. Contr., vol. 27, pp. 1–19, 1978.

[37] G. W. Stewart, Introduction to Matrix Computations. Academic Press, 1973.

[38] C. E. Davila, “Line search algorithms for adaptive filtering,” IEEE Trans. Signal Proc.,
vol. SP-41, pp. 2490–2494, July 1993.

23



0 500 1000 1500 2000

10
−6

10
−4

10
−2

10
0

n

ε 
(n

)

SP−2
SP−1
KARA/KFST
BISVD

Figure 1: Subspace tracking experiments for noisy sinusoids. This plot compares SP-1 and
SP-2 against algorithms KAR, KFST, and BISVD. The increase in the error at n = 1000
corresponds to a step change in the sinusoidal frequencies.

24



0 500 1000 1500 2000

10
−6

10
−4

10
−2

10
0

n

ε 
(n

)

SP−2
SP−1
PAST
PROT

Figure 2: Subspace tracking experiments for noisy sinusoids. This plot compares SP-1 and
SP-2 against algorithms PAST, and PROT.

25



0 500 1000 1500 2000

10
−6

10
−4

10
−2

10
0

n

ε 
(n

)

SP−2
SP−1
PC
ROSA

Figure 3: Subspace tracking experiments for noisy sinusoids. This plot compares SP-1 and
SP-2 against algorithms PC, and ROSA.

26



0 500 1000 1500 2000
10

−2

10
−1

10
0

10
1

n

δ(
n)

SP−2, SP−1
KARA, KFST, BISVD
PROT, PC

Figure 4: Comparison of SP-1 and SP-2 with subspace averaging algorithms (KARA, KFST,
BISVD), and perturbation algorithms (PROT, PC) for error measure δ(n).

27



0 500 1000 1500 2000
10

−2

10
−1

10
0

10
1

n

δ(
n)

SP−2, SP−1
ROSA
PAST

Figure 5: Comparison of SP-1 and SP-2 with ROSA and PAST for error measure δ(n).

28



0

2

4

0

2

4

0

2

4

0

2

4

0

2

4

0

2

4

0

2

4

0 2000 4000 6000 8000 10000 12000
0

2

4

n

 -2
0
2
4

s(
n)

ε(n)
δ(n)

SP-2

SP-1

KARA/KFST

BISVD

ROSA

PC

PROT

PAST

Figure 6: Subspace tracking experiments for a noisy speech signal. The top plot is the noise-
free speech segment, the remaining plots show the error measures ε(n) and δ(n) vs. sample
number.

29



10 20 30 40 50
0

2000

4000

6000

8000

10000

k

λ k

Figure 7: Mean eigenvalue distribution for the speech signal used in the experiments.

30


