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ABSTRACT

An algorithm for estimating the basis vectors used in
the Karhunen-Loeve Transform (KLT) is described. The
algorithm is “blind” in the sense that it utilizes mini-
mal information about the data vector being encoded.
It is capable of estimating the KLT basis vectors us-
ing only the KLT coefficients and one additional scalar
quantity. This eliminates the need to repeatedly en-
code and transmit the KLT basis vectors.

1. INTRODUCTION

The Karhunen-Loeve Transform (KLT) is known to be
the optimum transform for signal compression [1, 2].
Unfortunately, the KLT basis functions, which are the
eigenvectors of the data correlation matrix, are data
dependent. Hence the basis functions must also be en-
coded and transmitted which reduces compression and
leads to increased data rates. For this reason, the KLT
has found limited use in data compression applications.
Let

xn =
[
x(nN − 1) x(nN − 2) · · · x(N(n− 1))

]T

(1)
be the N -dimensional signal frame to be encoded. We
assume that xn has correlation matrix R = E

[
xnx

T
n

]
having rank r ≤ N . This means that xn can be rep-
resented as a linear combination of the eigenvectors
of R given by q1, q2, . . . , qr, corresponding to eigen-
values λ1 ≥ λ2 ≥ . . . ≥ λr > 0, respectively. Let
Q =

[
q1 q2 · · · qr

]
be an N × r matrix whose

columns are the KLT basis vectors (eigenvectors of R).
The transform coefficients, given by αn = QTxn, can
then be quantized as α̂, encoded, and transmitted. If
the receiver has knowledge of the basis vectors Q, xn

can be recovered as x̂n = Qα̂n. If the signal x(n) is sta-
tistically stationary then the eigenvectors need only be
estimated and transmitted once, which would not lead
to much loss of compression, however in practice, the
eigenstructure of most signals tends to vary consider-
ably over time. Hence the eigenvectors of R need to be
constantly retransmitted which is why the KLT is not

often used. In this paper, we give a method of deter-
mining the basis vectors for the KLT directly from the
KLT coefficients given only very limited knowledge of
x(n). This eliminates the need to retransmit the KLT
basis vectors.

2. TRACKING KLT BASIS VECTORS

Blind estimation of the KLT basis vectors can be ac-
complished using ideas from the subspace tracking lit-
erature. Let R̂n be an estimate of E

[
xnx

T
n

]
at time n

that is updated using,

R̂n = γR̂n−1 + xnx
T
n (2)

where 0 < γ < 1. Let

Q̂n =
[
q̂1
n q̂2

n · · · q̂r
n

]
(3)

and Λ̂n = diag(λ̂1
n, λ̂

2
n, . . . , λ̂

r
n) be estimates of the eigen-

vectors and eigenvalues, respectively, of R̂n. Then R̂n ≈
γQ̂n−1Λ̂n−1Q̂

T
n−1 + xnx

T
n . The eigenvector estimates

can be updated as follows:

1. Solve the generalized eigenvalue problem

FWn = GWnΠn (4)

where F = Q
T

n

(
γQ̂n−1Λ̂n−1Q̂

T
n−1 + xnx

T
n

)
Qn,

G = Q
T

nQn, and Wn and the diagonal matrix Πn

are the respective generalized eigenvectors and
eigenvalues. The matrix Qn =

[
Q̂n−1 vn

]
has

dimension N×(r+1) and vn is a search direction
vector.

2. Update the eigenvector estimates as

Q̂n = QnWn(1 : r) (5)

where Wn(1 : r) are the eigenvectors correspond-
ing to the maximum r eigenvalues in Πn.

3. The eigenvalue estimates are updated as Λ̂n =
Πn(1 : r, 1 : r).
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If, in the above algorithm, the search direction is set
to vn = xn, then the algorithm is a standard subspace
averaging algorithm used for subspace tracking [3, 4].
Note that if we treat the columns of Q̂n−1 as the KLT
basis vectors, then the KLT coefficients are contained
in the first r elements of Q

T

nxn (see (4)), hence the al-
gorithm never explicitly uses xn. We will show that
if vn is a white noise vector, independent of xn, then
the eigenvectors of R̂n can still be tracked. This im-
plies that the above algorithm can be run by both the
sender and the receiver concurrently using the same
initial conditions. If the search direction vectors are
known to both the sender and the receiver, then the re-
ceiver can also track the KLT basis vectors having only
knowledge of the KLT coefficients and the additional
scalar coefficient, vT

nxn. In this context, the algorithm
is “blind” since the receiver requires no explicit knowl-
edge of the signal x(n) to track the KLT basis vectors.

3. ALGORITHM CONVERGENCE

It can be shown that the algorithm attempts to find the
subspace in the column space of Qn which is closest in
terms of Euclidean distance to the subspace spanned
by the r eigenvectors of γQ̂n−1Λ̂n−1Q̂

T
n−1 + xnx

T
n ; this

subspace is often referred to as the signal subspace.
The vectors in Wn give the linear combinations of the
columns of Qn which are closest to the signal subspace.
A suitable measure of the algorithm’s convergence is

ε(n) ≡ trE
[
P⊥

Qn

(
γQ̂n−1Λ̂n−1Q̂

T
n−1 + xnx

T
n

)
P⊥

Qn

]
(6)

where P⊥
Qn

= IN − PQn
, PQn

is a projection matrix

onto the column space of Qn, and tr is the matrix trace
operation. Some straight-forward calculations give

ε(n) =
r∑

i=1

λiE‖P⊥
Qn

qi‖2, i = 1, . . . , r (7)

Where qi, i = 1, . . . , r is the eigenvector of R corre-
sponding to eigenvalue λi. We note that ε(n) = 0 only
when qi is contained in the column space of Qn for
i = 1, . . . , r. Next we note that

PQn
qi = PQ̂n−1

qi +
P⊥

Q̂n−1
vnv

T
nP

⊥
Q̂n−1

vT
nP

⊥
Q̂n−1

vn
qi (8)

Some additional manipulations lead to

ε(n) = E

(
1− vT

nAvn

vT
nBvn

) r∑
i=1

λiqiTP⊥
Q̂n−1

qi (9)

where A =
P⊥

Q̂n−1
qiqiT P⊥

Q̂n−1

qiT P⊥
Q̂n−1

qi and B = P⊥
Q̂n−1

. Hence,

the reduction in each mode of ε(n) at each time step is
determined by,

E
[
vT

nAvn/v
T
nBvn

]
which has an upper bound of 1. This expectation can
be evaluated using the method developed by Bershad
for analyzing the normalized LMS algorithm [5]. If we
assume that vn is a zero mean, unit variance Gaussian
white noise vector then

E

[
vT

n Avn

vT
n Bvn

]
=

1

(2π)N/2

∫
vT

n Avn

vT
n Bvn

exp

{−vT
n vn

2

}
dv (10)

Let

g(β) ≡ 1

(2π)N/2

∫
vT

n Avn

vT
n Bvn

exp
{
−βvT

n Bvn

}
exp

{
−vT

n vn

2

}
dv

(11)
Then

dg

dβ
=

−1

(2π)N/2

∫
v

T
n Avnexp

{
−βv

T
n Bvn

}
exp

{
−vT

n vn

2

}
dv (12)

= −|C|1/2

[
1

(2π)N/2|C|1/2

∫
v

T
n Avnexp

{
−vT

n C−1vn

2

}
dv

]

where C−1 = (I + 2βB). The quantity in the square
brackets is the expectation of vT

nAvn where vn is a zero-
mean Gaussian vector with covariance matrix C. Since
A = aaT is a constant rank-1 matrix, E

[
vT

nAvn

]
=

trAE
[
vnv

T
n

]
= trAC = aTCa hence

dg

dβ
= −|C|1/2aTCa (13)

where a = P⊥
Q̂n−1

qi/
√
qiTP⊥

Q̂n−1
qi, i = 1, . . . , r. There-

fore

ρ(N, r) ≡ E

[
vT

nAvn

vT
nBvn

]
=

∫
dg

dβ
dβ

∣∣∣∣
β=0

+D (14)

where the integration constant D = 0 [5]. The integral
in (14) can be evaluated numerically. It can be shown
that ρ(N, r) is dependent only on N and r, and is inde-
pendent of P⊥

Q̂n−1
and qi, i = 1, . . . , r. Figure 1 shows

ρ(N, r) for a range of values of N , and r; it is seen to
increase with decreasing N and increasing r.

4. INCREASING CONVERGENCE SPEED

As seen in Figure 1, the reduction in the eigenvector
estimation error ε(n) can be slow for a white noise
search direction, particularly for larger values of N .
One way of improving convergence speed is with a code-
book search. If both the sender and the receiver have



3

10
20

30 30
40

50
60

70

0.02

0.04

0.06

r N

ρ(N, r)

Figure 1: ρ(N, r) is proportional to the reduction in
the error measure εi(n) per time step.

the same codebook, then since each are running the
same algorithm with the same initial conditions, each
can search the codebook for the search direction which
maximizes trΠn(1 : r, 1 : r). This eliminates the need
to transmit the codebook index for the best search di-
rection.

5. EXPERIMENTS

The following signal was generated

x(n) =

{
cos(0.3πn) + cos(0.7πn + 0.35π), n = 1, . . . , 999
cos(0.6πn) + cos(0.8πn + 0.35π), n = 1000, . . . , 2, 000

(15)

and the adaptive KLT (AKLT) algorithm described
above was applied to this signal with γ = 0.7 and r = 4.
The search direction vn was set to a zero-mean Gaus-
sian white noise vector. To measure the algorithm’s
performance the mean squared error between the orig-
inal and reconstructed data frame was estimated as

ε(n) = |xn − Q̂nQ̂
T
nxn|2 (16)

Figure 2 shows ε(n) for different values of N . As pre-
dicted, the convergence speed increases with decreasing
N . Then experiment was then repeated, but this time,
using a 1000-word Gaussian white noise codebook to
find the best search direction as described above. The
resulting mean squared error plots are shown in Figure
3. The codebook search gives a dramatic improvement
in convergence speed. Next we applied the algorithm
to speech data sampled at 8 kHz, 16-bits per sample
using N = 20, and γ = 0.5. Figure 4(a) shows ε(n) for
two runs, one with r = 5, and the other with r = 15. In
both cases a 1000 word Gaussian white noise codebook

was used to select the best search direction. The error
for r = 15 is much lower than for r = 5, this reflects
the fact that the algorithm converges faster for larger
values of r. So if for each frame, nearly all of the KLT
coefficients must be transmitted for accurately tracking
the basis vectors of speech, the usefulness of this ap-
proach as a data compression method may seem ques-
tionable. However, for the KLT, most of the energy is
contained in the first few transform coefficients. Hence
only the (few) larger KLT coefficients need be allocated
a significant number of bits, the majority of smaller co-
efficients can be allocated fewer bits [2]. This raises the
possibility of very low-rate coding.

6. SUMMARY

An algorithm for blindly tracking the KLT basis vec-
tors using only the KLT coefficients and one additional
scalar coefficient was described. Convergence of the
KLT basis vector tracker was proven for a Gaussian
white noise search direction. A codebook search method
was described which greatly improves the convergence
rate of the algorithm. Several experiments designed
to demonstrate the feasibility of blind adaptive KLT
coding were described. Future work involves the use
of codebooks more ideally suited for the signal being
encoded, and quantizing the KLT coefficients.
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Figure 2: Mean squared error for sinusoid reconstruc-
tion for different frame lengths N using a white noise
search direction.
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Figure 3: Mean squared error for sinusoid reconstruc-
tion using a codebook search to find the optimum
search direction. Codebook searching leads to a sig-
nificant increase in convergence rate.
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Figure 4: (a) Mean squared error for speech recon-
struction experiment for r = 5 and r = 15 dimensional
signal subspace; (b) Speech segment used.


