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Abstract

In system identi�cation, estimates of the unknown system model orders are of-
ten required. An algorithm for estimating model orders is described which looks at
input/output data covariance matrix eigenvectors. When model orders are overesti-
mated, zeros appear in the noise subspace eigenvectors. The number of zeros present
can be used to estimate model orders.
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I. Introduction

The identi�cation of pole-zero systems using the eigen- or singular value decomposition of

the input/output data covariance matrix has been known for some time [1, 2, 3, 4, 5]. These

techniques o�er the advantage of giving unbiased parameter estimates when both the input

and output data are subject to error. More recently, there has been a renewed interest in

Total Least Squares (TLS) for parameter identi�cation and frequency estimation [6, 7, 8, 9]

Several variants of TLS have been described in [10, 11, 12, 13]. Total Least Squares can be

seen to be closely related to the earlier eigen-decomposition techniques. When model orders

are overestimated, the usual approach is to compute the eigenvectors spanning the noise

subspace of the input/output data covariance matrix and then �nd the linear combination

of these eigenvectors having a constrained minimum norm [8, 6]. It can be easily shown

however that this minimum norm solution will not produce correct parameter estimates.

When TLS is applied to pole-zero system identi�cation, it becomes necessary that the model

order be known a priori. It is shown in [8] that for the overestimated model order case, the

noise subspace eigenvectors can be used to estimate the frequency response of the unknown

system; however, some applications like model reference adaptive control, require explicit

knowledge of the unknown system parameters [14].

This paper describes a method of estimating the model order of a pole-zero system using

the noise subspace eigenvectors of the sample data covariance matrix. When model orders

are overestimated, zeros appear in the noise subspace eigenvectors. The number of zeros

can then be used to estimate model order. A related approach was recently described by

Liang, Wilkes, and Cadzow which looks at the eigenvalues of the data covariance matrix [15].

The method in [15] requires the evaluation of covariance matrix eigenvalues corresponding

to numerous possible model orders before a �nal choice can be made. Eigenvector entries

appear to undergo more abrupt transitions from nonzero values to small (ideally zero) values.

Eigenvalues, on the other hand, may undergo small transitions in amplitude in going from

the signal to the noise subspace, thereby making it di�cult to determine the noise subspace

dimension.
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II. Background

Consider the pole-zero system having no pole-zero cancellations satisfying

y(n) =
N�1X
i=1

ai(n)y(n� i) +
M�1X
j=0

bj(n)x(n� j) (1)

When prewindowed, noisy measurements, ~y(n) and ~x(n), of the input and output are avail-

able up to time n (see Fig. 1), the TLS method computes the (N+M)�(N+M) covariance

matrix

Rn =
nX
i=0

�i�
T

i (2)

where,

�n = [~y(n)~y(n� 1) � � � ~y(n�N + 1)~x(n)~x(n� 1) � � � ~x(n �M)]T

~y(n) = y(n) + vo(n), and ~x(n) = x(n) + vi(n). Here, vo(n) and vi(n) are uncorrelated, zero-

mean white measurement noise processes having variance �2o and �2i , respectively. If the

MA and AR model orders have been estimated correctly, the parameter estimates are ob-

tained from the generalized eigenvector associated with the minimum generalized eigenvalue

satisfying Rq = �Dq, with [1]

D =

2
64

�2o
�2
i

IN 0

0 IM

3
75 (3)

Only the ratio of output to input measurement noise variance is required. If the input x(n)

is assumed known with zero error, the matrix D is

D =

2
64 IN 0

0 0M

3
75 (4)

The parameter estimates are then obtained as
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�̂ �
h
â1 � � � âN�1b̂0 � � � b̂M�1

iT
=
�[q]2;N+M

[q]1
(5)

where [q]1 and [q]2;N+M are the �rst and second through (N+M)th entries of q, respectively.

Many analytic results on TLS and its variants along with additional references appear in

[16]. The existence and uniqueness of the TLS solution for pole-zero system identi�cation

has been considered in [8, 16, 17]. It is shown in [17] that a unique TLS solution is possible

if either the MA or AR model order is overestimated. However, if both the AR and MA

model orders are overestimated, the TLS solution will not be unique. The proof of these

assertions results from examining the nullspace of the noiseless (vi(n) = vo(n) = 0) covariance

matrix Rn. This nullspace is spanned by the generalized eigenvector(s) corresponding to the

minimum generalized eigenvalue of the noisy version of Rn. Consequently, examination of

the dimension of this nullspace makes it possible to determine the uniqueness of the TLS

solution: a one dimensional nullspace giving a unique solution. The noiseless data vector

can be expressed as [18]

�n =

2
6666666666666666666664

y(n)

y(n� 1)

...

y(n�N + 1)

x(n)

...

x(n�M + 1)

3
7777777777777777777775

= L(B;A)

2
6666666664

x(n)

x(n� 1)

...

x(n�N �M + 2)

3
7777777775

1

A (��1)
(6)

where A(z) = 1�
PN�1

i=1 aiz
i, ��1 is the unit delay operator and
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L(B;A) =

2
66666666666666666666666664

b0 b1 � � � bM�1 0 � � � 0

0 b0 b1 � � � bM�1 � � � 0

...
. . . . . . . . . � � �

. . .
...

0 � � � 0 b0 b1 � � � bM�1

1 �a1 � � � �aN�1 0 � � � 0

0 1 �a1 � � � �aN 0
�1 � � � 0

...
. . . . . . . . . � � �

. . .
...

0 � � � 0 1 �a1 � � � �aN�1

3
77777777777777777777777775

9>>>>>>>>>>=
>>>>>>>>>>;

N

9>>>>>>>>>>=
>>>>>>>>>>;

M

(7)

is the (N +M) � (N +M � 1) Sylvester matrix. The data covariance matrix for this data

vector can then be expressed as

Rn = L(B;A)
nX
i=0

~�n ~�
T
nL(B;A)

T (8)

with

~�n =

2
666664

x(n)

...

x(n�M �M + 2)

3
777775

1

A (��1)
(9)

The inner summation in (8) is positive de�nite provided x(n) is persistently exciting of at

least order N+M�1 [18]. Correspondingly, the nullspace of Rn can be examined by looking

at the left nullspace of L(B;A).

Theorem 1: The left nullspace of (7) is spanned by

�
1 �a1 � � � �aN�1 �b0 � � � �bM�1

�
(10)

Proof: Multiplying by L(B;A), it is easy to verify that its left nullspace contains (10).

The dimension of the left nullspace of L(B;A) is the di�erence between the number of rows

of L(B;A), N +M , and the rank of L(B;A), N +M � 1 ([18], Appendix A.6), [19]. 2
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Now suppose the MA and AR model orders have been overestimated as M 0 > M and

N 0 > N , respectively. The following (N 0 +M 0) �max(M + N 0 � 1; N +M 0 � 1) Sylvester

matrix results:

L(B;A) =

2
66666666666666666666666664

b0 b1 � � � bM�1 0 � � � 0 (0)

0 b0 b1 � � � bM�1 � � � 0 (0)

...
. . .

. . .
. . . � � �

. . .
... (0)

0 � � � 0 b0 b1 � � � bM�1 (0)

1 �a1 � � � �aN�1 0 � � � 0 (0)

0 1 �a1 � � � �aN�1 � � � 0 (0)

...
. . .

. . .
. . . � � �

. . .
... (0)

0 � � � 0 1 �a1 � � � �aN�1 (0)

3
77777777777777777777777775

9>>>>>>>>>>=
>>>>>>>>>>;

N 0

9>>>>>>>>>>=
>>>>>>>>>>;

M 0

(11)

The notation \(0)" denotes the possibility of one or more zeros depending on whether M 0�

M > N 0 �N;M 0 �M < N 0 �N; or M 0 �M = N 0 �N .

Theorem 2: The left nullspace of L(B;A) is spanned by the min(M 0 �M;N 0 � N) +

1; (N 0 +M 0)� 1 vectors:
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2
66666666666666666666666666666666666666664

1

�a1
...

�aN�1

0

...

0

�b0
...

�bM�1

0

...

0

0

3
77777777777777777777777777777777777777775

T

9>>>=
>>>;

N 0
� N

9>>>>>>>>=
>>>>>>>>;

M 0
�M

2
66666666666666666666666666666666666666664

0

1

�a1

...

�aN�1

0

...

0

�b0
...

�bM�1

0

...

0

3
77777777777777777777777777777777777777775

T

9>>>=
>>>;

N 0
�N

9>>>=
>>>;

M 0
�M � 1

� � �

2
66666666666666666666666666666666666666664

0

...

0

1

�a1

...

�aN�1

0

...

0

�b0
...

�bM�1

(0)

3
77777777777777777777777777777777777777775

T 9>>>=
>>>;

M 0
�M � 

9>>>=
>>>;

N 0
�N

o


(12)

where the parentheses indicate the number of consecutive zeros and  = max(0;M 0 �M �

(N 0 �N)). Moreover, these vectors form a basis for the left nullspace of L(B;A).

Proof: Each of the above linearly independent vectors can be veri�ed to be in the left

nullspace of L(B;A) by directly multiplying out. Subtracting the rank of L(B;A),max(M+

N 0�1; N+M 0�1) (see [18]), from the number of rows of L(B;A), the left nullspace dimension

of L(B;A) is seen to be min(M 0 �M;N 0 �N) + 1. A similar result is found in [8]. 2

The left nullspace of L(B;A), or equivalently the nullspace of Rn is usually referred to

as the \noise subspace". An immediate consequence of Theorem 2 is:

Theorem 3:

� When M 0 �M > N 0 �N , the last (M 0 �M)� (N 0 �N) entries of all noise subspace

eigenvectors are zero.

� When M 0 �M < N 0 �N , there are (N 0 �N) � (M 0 �M) zero entries after the �rst

M 0 �M +N (usually nonzero) entries of the noise subspace eigenvectors.
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� When M 0 �M = N 0 �N , there are no guaranteed zero entries in the noise subspace

eigenvectors.

Theorem 3 is illustrated via several examples in the Appendix. By counting the number of

zero entries within the noise subspace eigenvectors, it becomes possible to estimate N and

M .

III. Model Order Estimation Algorithm

1. It is assumed that M 0 and N 0 have been chosen so that the noise subspace has a

dimension of one or greater. This can be accomplished by checking to see that there

are a su�cient number of small eigenvalues ofRn which can be assumed to be associated

with a noise subspace. This may require several eigendecompositions.

2. Compute the eigendecomposition of the (M 0+N 0)� (M 0 +N 0) covariance matrix Rn.

Assuming no noise is present in the input measurements, the eigenvalue problem to

be solved is Rnq = �Dq, where D is de�ned in (4). The output measurements should

undergo noise reduction as described in [15].

3. Choose a candidate pair of model order estimates M̂ and N̂ .

4. Determine the location and size of the zero block which would occur if M̂ = M and

N̂ = N . The number of columns in the zero block is the noise subspace dimension and

can be determined as min(M 0�M̂;N 0� N̂)+1. The number of rows in the zero block

is given by j(N 0 � N̂) � (M 0 � M̂)j. If N 0 � N̂ > M 0 � M̂ , then the zero block starts

at row M 0 � M̂ + N̂ + 1 of the noise subspace eigenvectors. If N 0 � N̂ < M 0 � M̂ , it

is located at the \bottom" of the noise subspace eigenvectors.

5. Compute the average power, �
N̂;M̂

, of the assumed zero block entries and enter the

result in a table indexed by M̂ and N̂ .
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6. The correct model order is the \small" entry in the �N̂ ;M̂ table that is closest to the

(1,1) entry. This can be found by taking the ratio of adjacent �
N̂;M̂

table entries along

all columns and along all rows, generating two additional tables or matrices of ratios,

indexed by M̂ and N̂ . The Hadamard (element by element) product of these two

matrices is then searched for the largest entry, which corresponds to the model order

estimate. For M̂ < M or N̂ < N , the assumed zero block will not lie strictly within

the actual zero block, hence the entries in the �N̂;M̂ table for these values of M̂ and N̂

will tend to be larger than those entries for which the assumed zero block lies entirely

within the actual zero block.

To reduce the SNR at which the proposed method yields correct model order estimates,

the �
N̂;M̂

table can be averaged over di�erent values of M 0 and N 0 (i.e. di�erent eigende-

compositions). This has the e�ect of reducing the e�ect of outliers. Moreover, by �xing

M 0 and varying N 0 or vice versa, the possibility of having M 0 �M = N 0 � N for each

eigendecomposition is averted.

IV. Experimental Results

Experiments similar to those described in [15] were performed.

Experiment 1: The unknown system satis�ed the di�erence equation

y(n) = 1:2798y(n� 1)� 0:7805y(n� 2) + 0:1635y(n� 3)

�0:7566y(n� 4) + 1:0621y(n� 5)� 0:7821y(n� 6)

+x(n)� 0:2997x(n� 1) + 0:4147x(n� 2)

�0:2794x(n� 3) + 0:4973x(n� 4) (13)

giving N = 7 and M = 5. Noise was added to the unknown system output to simulate

measurement noise giving an SNR of 10 dB. The unknown system input and output was

measured for 1,500 time samples. The noise reduction technique described in [15] was ap-

plied to increase the SNR of the output measurements. Figure 2 shows the noise subspace
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eigenvector entries for M 0 = 12 and N 0 = 10. The square in the lower right surrounds the

entries which are supposed to be zero, in theory. They are not zero due to perturbations in

the eigenvector estimates from the noise in the data and �nite sample size. Fig. 3 shows

the �N̂;M̂ table for the eigenvectors in Fig. 2. The region marked o� within the �N̂;M̂ table

corresponds to assumed zero blocks which lie entirely within the actual zero block. Figure 4

shows the Hadamard product of the row and column ratios of the �N̂ ;M̂ table. The largest

entry corresponds to the true model order.

To study the performance of the method at di�erent SNR's, a series of experiments were

performed at SNR's ranging from 2 dB to 20 dB in 2 dB steps. For each SNR, overestimated

model orders were set to N 0 = 10 while M 0 was varied from 10 to 19. This resulted in

10 di�erent eigendecompositions. For each eigendecomposition a �N̂;M̂ table was generated.

The 10 tables were subsequently averaged and a model order estimate was obtained from

the average �N̂ ;M̂ table. For each SNR, 25 independent trials were run and the percent cor-

rect model order estimation was computed. The proposed eigenvector method (EVEC) was

compared with the eigenvalue-based method (EVAL) of [15]. For the eigenvalue method,

the same generalized eigendecomposition used for the eigenvector method was used. The

generalized eigendecomposition appears to give better results than the conventional eigen-

decomposition since the former does not account for di�erences in input and output noise

levels. The results of the comparison are illustrated in Fig. 5. The proposed method is seen

to give correct model order estimates at lower SNR values that the eigenvalue method.

Experiment 2: The above experiment was repeated, with the unknown system satisfying

y(n) = �0:7907y(n� 1)� 0:042y(n� 2) + 0:5556y(n� 3)

+0:0247y(n� 4)� 0:3846y(n� 5)� 0:3026y(n� 6))

+x(n) + 0:3452x(n� 1) + 0:53x(n� 2)

+0:3985x(n� 3) + 0:8138x(n� 4) (14)

Here, N = 7 and M = 5 and the poles have been chosen to be closer to the origin than
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in Experiment 1. The results are shown in Fig. 6. Again, the proposed method outperforms

the eigenvalue method, though the improvement is not as pronounced is in Experiment 1.

V. Summary

This paper describes a method of estimating the model orders of pole-zero systems which

uses the entries of the noise subspace eigenvectors. The method was found to out-perform a

recently published eigenvalue-based method.

VI. Appendix

For each example, the output of the unknown IIR system obeys

y(n) = a1y(n� 1) + b0x(n) + b1x(n� 2) + b2x(n� 2) (15)

so that M = 3 (MA order ) and N = 2 (AR order).

Example 1: Suppose that both the AR and MA orders have been overestimated so that

N 0 = 3 and M 0 = 5 so that (M 0 �M) > (N 0 �N). The data vector becomes

2
66666666666666666666666664

y(n)

y(n� 1)

y(n� 2)

x(n)

x(n� 1)

x(n� 2)

x(n� 3)

x(n� 4)

3
77777777777777777777777775

=

2
66666666666666666666666664

b0 b1 b2 0 0 0

0 b0 b1 b2 0 0

0 0 b0 b1 b2 0

1 �a1 0 0 0 0

0 1 �a1 0 0 0

0 0 1 �a1 0 0

0 0 0 1 �a1 0

0 0 0 0 1 �a1

3
77777777777777777777777775

2
666666666666666664

x(n)

x(n� 1)

x(n� 2)

x(n� 3)

x(n� 4)

x(n� 5)

3
777777777777777775

1

1 � a1��1
(16)
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The Sylvester matrix left nullspace is spanned by
�
1 �a1 0 �b0 �b1 �b2 0 0

�T

and
�
0 1 �a1 0 �b0 �b1 �b2 0

�T
. Since the 2 noise subspace eigenvectors also

span this same nullspace, they will also have zeros in their last (M 0 �M) � (N 0 � N) =

(5� 3) � (3 � 2) = 1 entry.

Example 2: Finally suppose that N 0 = 5 and M 0 = 4 so that (N 0�N) > (M 0�M). The

data vector becomes

2
66666666666666666666666666664

y(n)

y(n� 1)

y(n� 2)

y(n� 3)

y(n� 4)

x(n)

x(n� 1)

x(n� 2)

x(n� 3)

3
77777777777777777777777777775

=

2
66666666666666666666666666664

b0 b1 b2 0 0 0 0

0 b0 b1 b2 0 0 0

0 0 b0 b1 b2 0 0

0 0 0 b0 b1 b2 0

0 0 0 0 b0 b1 b2

1 �a1 0 0 0 0 0

0 1 �a1 0 0 0 0

0 0 1 �a1 0 0 0

0 0 0 1 �a1 0 0

3
77777777777777777777777777775

2
6666666666666666666664

x(n)

x(n� 1)

x(n� 2)

x(n� 3)

x(n� 4)

x(n� 5)

x(n� 6)

3
7777777777777777777775

1

1 � a1��1
(17)

The Sylvester matrix left nullspace is spanned by
�
1 �a1 0 0 0 �b0 �b1 �b2 0

�T

and
�
0 1 �a1 0 0 0 �b0 �b1 �b2

�T
. Note that any vector in the noise subspace

has (N 0 �N)� (M 0 �M) = 3 zeros starting with the M 0 �M +N + 1 = 4th entry.
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x(n)~ y(n)~

ARMA

system

v (n)
i o

v (n)

x(n) y(n)

Figure 1: System Identi�cation Problem.
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   1   0.0147    0.1891    0.0687    0.3269

   2   0.1344    0.3304    0.2125    0.0349

   3   0.2232    0.0181    0.2645    0.1537

   4   0.1100    0.1725    0.3337    0.0399

   5   0.1286    0.2302    0.0708    0.1031

   6   0.0860    0.2757    0.1660    0.1969

   7   0.0470    0.1349    0.4676    0.0733

   8   0.2124    0.3019    0.2626    0.1100

   9   0.2419    0.3125    0.0830    0.0087

 10   0.1333    0.1592    0.1119    0.2799

 11   0.0304    0.1898    0.0734    0.3321

 12   0.1036    0.1325    0.2749    0.3650

 13   0.3576    0.1674    0.0271    0.4788

 14   0.4523    0.1166    0.2749    0.3071

 15   0.2169    0.2277    0.0332    0.1372

 16   0.1302    0.2921    0.1097    0.2587

 17   0.2642    0.0043    0.3457    0.1555

 18   0.0110    0.2428    0.1481    0.1985

 19   0.3820    0.0821    0.1603    0.0245

 20   0.2621    0.3024    0.0343    0.0308

 21   0.0330    0.2220    0.1876    0.0493

 22   0.2803    0.1574    0.2352    0.0321

    0.0207    0.5408    0.1424

    0.0074    0.0903    0.3556

    0.3328    0.2771    0.2956

    0.4746    0.1053    0.1024

    0.3234    0.1476    0.4599

    0.1260    0.3494    0.3260

    0.2745    0.2507    0.1454

    0.4014    0.0610    0.1898

    0.3142    0.2946    0.1893

    0.0582    0.0144    0.2324

    0.0017    0.0927    0.3688

    0.0334    0.4637    0.2107

    0.3161    0.1780    0.1281

    0.1746    0.0703    0.2290

    0.1504    0.0215    0.1106

    0.1309    0.1191    0.0952

    0.1769    0.1909    0.0045

    0.0401    0.0213    0.1358

    0.0033    0.0283    0.0131

    0.0181    0.0140    0.0207

    0.0082    0.0091    0.0145

    0.0027    0.0360    0.0286

q16 q18 q19 q20 q21 q22q17

Figure 2: zero entries in eigenvectors of Rn when N 0 � N̂ < M 0 � M̂ .
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 1   0.0358    0.0319    0.0243    0.0281    0.0399    0.0473    0.0531

 2   0.0328    0.0342    0.0341    0.0266    0.0303    0.0411    0.0485

 3   0.0275    0.0272    0.0264    0.0255    0.0238    0.0274    0.0416

 4   0.0210    0.0212    0.0197    0.0179    0.0231    0.0262    0.0290

 5   0.0181    0.0147    0.0125    0.0147    0.0142    0.0139    0.0255

 6   0.0154    0.0140    0.0083    0.0063    0.0066    0.0096    0.0117

 7   0.0101    0.0096    0.0067    0.0035    0.0006    0.0007    0.0007

 8   0.0095    0.0070    0.0063    0.0051    0.0017    0.0004    0.0004

 9   0.0100    0.0085    0.0060    0.0059    0.0049    0.0023    0.0005

           1             2             3             4             5             6             7          8             9            10           11

    0.0541    0.0569    0.0699    0.0592

    0.0521    0.0509    0.0678    0.0560

    0.0439    0.0459    0.0589    0.0635

    0.0377    0.0475    0.0533    0.0529

    0.0297    0.0447    0.0533    0.0376

    0.0273    0.0340    0.0465    0.0361

    0.0008    0.0230    0.0192    0.0442

    0.0004    0.0007    0.0192    0.0271

    0.0005    0.0006    0.0011    0.0160

M

N
^

^

Figure 3: �N̂;M̂ Table.

 7   1.5284    1.5352    1.7739    3.5462   66.4225   13.3105   13.8747

 

 1   1.0000    1.1239    1.3118    0.8647     0.7045     0.8419     0.8916

 2   1.0904    0.8963    0.7134    1.3566     1.1531     0.8475     0.9291

 3   1.1950    1.2675    1.3349    1.0768     1.3589     1.3102     0.7651

 4   1.3096    1.2712    1.4413    1.5722     0.7974     0.9206     1.3012

 5   1.1596    1.7829    1.8585    1.0269     1.6857     1.9342     0.6166

 6   1.1739    1.1526    2.5045    3.0564     2.0460     0.9896     1.8004

 8   1.0626    1.8493    1.1743    0.8288     1.0980     8.0163     1.8752

 9   0.9454    0.9788    1.5146    0.8807     0.4006     0.3472     3.4924

     0.9815     0.9502     0.8145    1.1799

     0.9665     1.1450     0.7730    1.2824

     1.1253     1.0591     0.8988    0.8171

     0.8961     0.7662     0.9867    1.2094

     1.0912     0.7073     0.8371    1.9978

     0.4653     1.0566     0.8385    1.3404

   32.7085     0.0505     2.9032    0.3545

     1.7560   19.0402     0.0367    1.1569

     0.8103     0.9859   10.3573    0.1121

           1             2             3             4              5              6              7       8              9             10           11 

N   

M

^

^

Figure 4: Product of row and column ratios tables.

16



2 6 10 14 18
SNR (dB)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
ss

 R
at

e 
(x

10
0%

)

EVEC
EVAL

Figure 5: Comparison of eigenvector (EVEC) and eigenvalue (EVAL) methods for Experi-

ment 1.
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Figure 6: Comparison of eigenvector (EVEC) and eigenvalue (EVAL) methods for Experi-

ment 2.
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