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Abstract

A new algorithm for doing signal averaging of steady-state visual evoked potentials

(VEP's) is described. The subspace average is obtained by �nding the orthogonal

projection of the VEP measurement vector onto the signal subspace, which is based

on a sinusoidal VEP signal model. The subspace average is seen to out-perform the

conventional average using a new SNR-based performance measure on simulated and

actual VEP data.
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I. Background

Steady-state visual evoked potentials (VEPs) are used in a variety of clinical applications.

These include estimation of optic nerve function, estimation of visual acuity in infants, young

children and adults unable to provide reliable verbal responses, detection of hysteria and ma-

lingering, assessment of amblyopia and strabismus, diagnosis of cortical blindness, assessment

of delayed neurological maturation, and assessment of abnormal optic tract decussation in

albinism [1, 2]. There are some instances, particularly in pediatric VEP measurements,

where it is imperative that acquisition times be minimized.

Signal averaging is the most commonly used method for estimating the brain evoked

potential (EP) [3, 4, 5]. The EP is measured by presenting a series of short duration sensory

stimuli, and recording the EEG immediately after the presentation of the stimulus for M

samples. Let xk = [x[kM ] x[kM + 1] � � � x[(k + 1)M � 1]] ; k � 0, called a \trial",

represent the measurement of the scalp signal, x[n] taken after the kth stimulus. Then the

conventional average is given by

xN =
1

N

NX
k=1

xk (1)

Assume that the kth trial is modeled as xk = s + zk where zk is the additive noise due to

spontaneous EEG. If one further assumes that the noise component zk is uncorrelated and

zero-mean across trials, is uncorrelated with the signal, and that the power of the signal and

noise terms, �2s and �2z , respectively, is constant across trials then it can be shown that the

signal-to-noise ratio (SNR) of xN is given by

N�2s
�2z

(2)

There is evidence that the above assumptions are not entirely valid [6], nevertheless, the

model and simplifying assumptions provide some useful insights into the convergence of

signal averaged EP data.

Over the past several decades there have been numerous attempts at improving on the
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conventional average. These include the Woody average wherein individual trials are time

shifted to compensate for latency shifts assumed to occur uniformly over the entire trial [7].

Latency corrected averaging has also been proposed to compensate for non-uniform latency

jitter occurring among the various components of the EP within a single trial [8, 9, 10].

Other approaches based on Wiener �ltering [11, 12, 13, 14] and time-varying Wiener �ltering

[15, 16] have also been proposed . The Wiener �lter approach is based on a minimum mean-

squared error criterion. Other estimators based on parametric methods have also appeared

[17, 18, 19, 20, 21, 22, 23]. In order to accommodate the nonstationary nature of the evoked

potential, adaptive �lters have been used [24, 25, 26, 27, 28, 29, 30]. Wavelet analysis has also

been applied to the evoked potential [31, 32]. All of the above methods dealt with estimation

or analysis of transient evoked responses. Relatively few papers have appeared on estimation

of steady-state VEP's [33, 34]. We make a distinction here between estimation of steady-

state VEP waveforms and detection of VEP waveforms. The body of literature for detection

is more substantial and will not be considered here. A recent survey of VEP detection

algorithms is found in [35]. The method in [33] used analog comb �lters to estimate the

steady-state VEP while the method in [34] used an adaptive line enhancer. Unfortunately,

it is diÆcult to quantify the performance of either of these two estimation methods. In

this paper a new approach to signal averaging of steady-state VEP's is described which pre-

processes each trial in order to increase it's SNR prior to computing the average. This has

the e�ect of increasing the convergence speed of the ensemble average. Moreover, we shall

develop expressions which enable us to evaluate the performance of the new method relative

to the conventional average as the average is being computed.
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II. Subspace Averaging

We assume the following signal model for the steady-state VEP, derived via counterphase

modulated contrast gratings

x[n] =
rX

k=1

�kcos(!kn� �k) + z[n] (3)

The signal is a sum of d sinusoids having frequencies !m = m2�=M;m = 1; : : : ; d and

constant amplitudes and phases �m; �m; m = 1; : : : ; d, respectively. The integer M is the

inter-stimulus interval as well as the length of each single trial and T is the sampling interval.

Hence, the frequencies of the sinusoids consist of the contrast reversal frequency and its d�1

subsequent harmonics. The signal z[n] constitutes the background EEG. This model of the

steady-state VEP is well-established in the literature [3, 25]. Its justi�cation is based on

the fact that for steady-state VEPs, the visual stimulus is a periodic signal, and hence

contains only sinusoidal frequency compenents at the fundamental frequency (!m) and its

harmonics (!2; : : : ; !d). If we assume that the visual system is time invariant, the output of

the visual system (the VEP signal component) will therefore also be periodic with sinusoidal

components at the same frequencies (of course, the amplitudes and phases will di�er). The

frequencies contained in the VEP signal component will be the same regardless of whether

the visual system is linear or nonlinear provided there is no nonlinear mixing (multiplication)

between signal and noise, and the visual system is time invariant over the relatively short

time intervals corresponding to the length of a single-trial. The stationarity of the EEG

for periods of several hundred ms has been reported in the literature [36]. We are using

single-trial epochs of about 500 ms, hence, the stationarity assumption is justi�ed. On the

nonlinear mixing, there is no clear evidence in the literature that we know of which suggests

that there exists a nonlinear interaction between noise and signal components in the evoked

potential, hence the additive noise assumption is made by virtually all evoked potential

estimation algorithms. Figure 1 shows an estimate of the power spectral density of a steady-

state VEP obtained using a counterphase modulated contrast grating showing the presence
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of several harmonics of the contrast reversal frequency of 7.5 Hz.

Signal subspace processing has been widely applied to problems in array processing aris-

ing in telecommunications and radar [37, 38, 39]. Since the theory and practice of signal

subspace processing is well understood, we give only an abbreviated description of it here. A

more detailed treatments of this topic can be found in [37]. The basic idea behind subspace

processing is that if the signal measurement vector is known to exist within a low dimensional

subspace of Euclidean vector space, called a signal subspace, the SNR of a measurement vec-

tor containing the signal can be increased by computing the orthogonal projection of the

measurement vector onto the signal subspace. By orthogonal projection, we mean the ap-

proximation of anM�1 vector x by another vector, x̂, formed by taking a linear combination

of linearly independent vectors, s1; s2; : : : ; sd,

x̂ =
dX

k=1

�ksk (4)

such that the squared Euclidean norm, kx̂� xk2 is minimized. We say that x̂ is the orthog-

onal projection of x onto the subspace spanned by the vectors s1; s2; : : : ; sd. Moreover, the

orthogonal projection is given by [40]

ŷ = PSy (5)

where PS = S
�
STS

��1
ST is called a projection matrix and S =

�
s1 s2 � � � sd

�
. To see

why the orthogonal projection increases the SNR, we must assume that x = s+z, where s is

an M � 1 signal vector existing in a low-dimensional subspace and z is an M � 1 white noise

vector. If s lies in a low-dimensional subspace, then we can express s in terms of a basis for

that subspace, s = Sw, where S is an M � d matrix whose columns are the signal subspace

basis vectors and w is a d� 1 random vector having the property E
h
wwT

i
= P , where P is

positive de�nite. We show below that projecting the vector x onto the subspace spanned by

the columns of S will increase the SNR or x. The problem then is to determine S from the
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data vector x. This can be done by noting that the autocorrelation matrix of x is given by

Rxx � E
h
xxT

i
= SPST + �2zIM (6)

and since adding a diagonal matrix to a symmetric matrix does not change the eigenvectors

of that matrix, the eigenvectors of Rxx corresponding to its maximum d eigenvalues are the

same as the eigenvectors corresponding to the d nonzero eigenvalues of SPST . Moreover,

it can be shown that these d eigenvectors span the column space of S, i.e. the signal

subspace. In practice, the signal subspace then can be estimated by computing the sample

autocorrelation matrix R̂xx and then �nding the eigenvectors of R̂xx corresponding the to

its d maximum eigenvalues. Fortunately, for the sinusoidal signal model in (3), the signal

subspace is known, it is spanned by the vectors [37]

sm =
�
1 cos(!m) cos(2!m) � � � cos((M � 1)!m)

�T
; m = 1; 3; : : : ; 2r � 1 (7)

=
�
1 sin(!m�1) sin(2!m�1) � � � sin((M � 1)!m�1)

�T
; m = 2; 4; : : : ; 2r

Hence, the signal subspace dimension is d = 2r. As mentioned earlier, for counterphase

modulated grating stimuli, !1 is equal to the contrast (polarity) reversal frequency of the

stimulus [3].

The subspace averaging algorithm is then given by:

1. Form the signal subspace projection matrix PS = SST , where S is given by

2
66666666666664

1 1 � � � 1 1

cos(!1) sin(!1) � � � cos(!r) sin(!r)

cos(2!1) sin(2!1) � � � cos((2!r) sin(2!r)

...
... � � �

...
...

cos((M � 1)!1) sin((M � 1)!1) � � � cos((M � 1)!r) sin((M � 1)!r)

3
77777777777775

(8)

2. Acquire the steady-state VEP time series x[n]; n = 1; : : : ; N .
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3. Pre-whiten x[n] with a suitable linear prediction-error �lter, the steps for carrying this

out are:

(a) Form the p� L sample autocorrelation sequence (via autocorreltion method)

r̂xx[k] =
1

N

N�kX
n=1

x[n]x[n + k]; k = 0; : : : ; p

(b) Apply the Levinson algorithm to r̂xx[k] to obtain the autoregressive parameter

estimates a[1]; a[2]; : : : ; a[p] [37].

(c) Prewhiten x[n] by �ltering it with the FIR �lter

w[n] =
�
1 a[1] a[2] � � � a[p]

�

x w[n] ? x[n]

4. for k = 1; 2; : : :

(a) Update the conventional ensemble average as

xk = xk�1 + xk (9)

where

xk = [x[kM ] x[kM + 1] � � � x[(k + 1)M � 1]] ; k � 1 (10)

corresponds to the kth single trial and x0 has been initialized to a zero vector.

(b) Compute the subspace average as

xsk = PSxk (11)

5. end for

6. If desired, the e�ects of prewhitening can be compensated for by multiplying the inverse
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�lter,
1

A (ej!)

with the Fourier transform of xsk, where A (ej!) is the Fourier transform of the inverse

�lter. Since linear prediction error �lters are minimum phase, the inverse operation is

stable.

The e�ect of prewhitening on steady-state VEP data can be seen in the power spectral density

estimates before and after prewhitening in Figure 2. As is evident, prewhitening seems to

have virtually no e�ect on the SNR of the data. A good prewhitener results by applying a

linear prediction-error �lter based on an autoregressive (AR) model for z[n] as described in

[35]. Another example of prewhitening in evoked potential signal processing is found in [23].

Prewhitening is used for several reasons, (1) it enables the use of a performance measure, �(k),

described below, which assumes that the additive noise is white. (2) Prewhitening makes it

easier to validate the mathematical model used as a basis for this algorithm since one can

simply look for sinusoidal frequency components in a at noise background in data spectra.

(3) We have been interested un using the VEP for measurement of visual acuity, which

requires detecion of low-level VEP's. Hence, prewhitening is very useful for implementing

signal detection algorithms [41].

A related method called the Adaptive Fourier Linear Combiner (AFLC) has previously

been described in [25]. The AFLC di�ers from this method in its use of a Least Mean

Square (LMS) algorithm for adjusting the coeÆcients of the linear combiner. In subspace

averaging, the coeÆcients are, in e�ect, the quantity
�
STS

��1
STxi, which corresponds to a

least squares approximation of xi by the signal subspace, hence the subspace projection will

not exhibit the excess mean-squared error typical of LMS adaptive �lter algorithms [30]. The

idea of projecting onto a signal subspace for signal estimation is not new, it was evidently

�rst proposed by Tufts and Kumaresan in [39]. The subspace projection approach described

here also enables a simple performance analysis based on signal to noise ratio as discussed

in the following section.
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III. Performance Analysis

Next we develop expressions for the SNR of the subspace average and compare it to the SNR

of the conventional average given above. We �rst assume that the signal and noise power in

the single trial xk is constant over all k. Since xk = s+ zk where s and zk are the respective

signal and noise components in xk, the signal power after projecting a single trial onto the

signal subspace is given by

�2ss = E
h
sTPSs

i
= sT sk =M�2s (12)

where we have used the fact that projection matrices are idempotent (PSPS = PS). The

noise power, after projecting onto the signal subspace, is

�2sz = E
h
zTk PSzk

i
= �2ztr fPSg = d�2z (13)

where tr fg denotes the matrix trace operation and z[n] is assumed to have been pre-

whitened. The fact that the trace of a projection matrix is equal to the dimension of the

subspace onto which it projects was also used [40]. Hence, the SNR of the projected single

trial is
�2ss
�2sz

=
M

d

�2s
�2z

(14)

where �2
s

�2
z

is the SNR of the single trial. The SNR of a single trial after projecting onto the

signal subspace is increased to the extent that M=d > 1. Typically, M � d so one can

anticipate a substantial increase in the single trial SNR. The SNR of the subspace average

is then

N
M

d

�2s
�2z

(15)

where N is the number of trials in the average. At �rst glance, this would appear to be

an unlikely result, given that the SNR can evidently be increased by simply increasing the

length M of each trial. The reason for this is, that as M is increased, the noise component,
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zk tends to become more and more \orthogonal" to the basis vectors in the signal subspace.

Hence less noise energy projects onto the signal subspace as M increases.

We note that for any vector s lying in the signal subspace, PSs = s. The implication

here is that if the signal amplitudes and phases change from trial-to-trial, the projected

measurement vector still exhibits an increase in SNR, hence the assumption that the signal

and noise powers are constant across trials was only necessary for purposes of developing

formulas for performance analysis, however if these assumptions are violated, the subspace

average will still have a higher SNR.

IV. A Performance Measure For Ensemble Averaging

Since the signal component is unavailable during ensemble averaging, it would be useful to

have some measure of the quality of the ensemble average which can be computed while the

average is being acquired. We propose the following error measure for comparing ensemble

averages,

~�(k) =
kxk � xk�1k

2

kxkk2
(16)

where xk is the ensemble average of k trials as de�ned in (1), and k k is the Euclidean vector

norm (or vector 2-norm) [42]. If we assume that sT s = M�2s , z
T
i zj � 0; i 6= j, zTk zk � M�2z ,

and zTk s � 0, then

~�(k) =
�2z

k(k � 1) (�2s + �2z=k)
(17)

Now clearly the k(k� 1) factor in the denominator will cause the error measure to decrease

with each single trial, and is therefore redundant, so we de�ne the normalized error measure

�(k) = k(k � 1)~�(k) (18)

which can be expressed as

�(k) =
�2z

�2s + �2z=k
=

1

�+ 1=k
(19)
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where � = �2s=�
2

z is the SNR of a single trial. Interestingly, �(k) converges to the \noise-to-

signal ratio" (NSR),

lim
k!1

�(k) =
�2z
�2s

(20)

This convergence is dependent on the SNR of the single trials, higher SNR's give faster

convergence than lower SNR's. The signi�cance of the measure �(k) is that it provides a

method of comparing the performance of di�erent ensemble averaging methods by providing

an estimate of the e�ective NSR of the single trials. Figure 3 shows a graph of �(k) for

several di�erent SNR's. It can be seen that convergence to �2z=�
2

s is faster for the higher

SNR's. For SNR's below -20 dB, it can be seen that �(k) has yet to converge after 200

trials. Note that for the -20 dB SNR, after 200 trials �(k) has yet to even come close to its

asymptotic value of 100. Figure 3 can e�ectively be used to calibrate corresponding curves

for real data to estimate single-trial VEP SNR's. Also, since �(k) converges to the noise to

signal power ratio, for and SNR of 0, �(k) will never converge to a �xed value.

V. Simulations

The steady-state VEP was simulated with a 21,600-point time series as

x[n] =
8X

m=1

�kcos(!m(n� 1)T � �m) + z[n] (21)

with !1 = 15�; !2 = 30�; !3 = 45�; !4 = 60�, �1 = 0; �2 = 0:3�; �3 = 0:7�; �4 = �, and

�1 = 1; �2 = 0:9; �3 = 0:85; �4 = 0:4. The sampling interval T was selected as 1/202.5 in

order to give a trial length of M = 108 samples. The noise z[n] was white Gaussian noise

having a variance of 15 which produced an SNR of approximately -10 dB. In all, thirty 21,600

point runs were generated, each run corresponding to 200 trials. A second set of 30 runs at

an SNR of -19 dB was also generated. The signal in each trial is depicted in Figure 4. Each

single trial contains two stimulus presentations, in order to have a long enough trial length

(M) to more readily uncorrelate noise and signal components as discussed above; moreover,
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it should be observed that even though the number of trials has been halved (from 400 to

200), M has been doubled thereby doubling the SNR of the subspace average. We also note

that for contrast gratings, typically used for measuring steady-state VEP's, a single stimulus

presentation corresponds to two contrast (i.e. polarity) reversals.

Both the conventional and subspace averages were computed for each 200 trial run.

For each run, the signal and noise powers were computed as a function of trial number and

subsequently averaged over the 30 independent runs for each SNR. The signal and noise power

estimates vs. trial number was then used to form an estimate of the subspace (conventional)

SNR versus trial number, which is shown in Figure 5, along with the theoretical SNR (see (2),

(14)). Figure (6) shows the function �(k) as a function of trial number for the subspace and

conventional average for a single run, along with the theoretical value of �(k) given in (19).

The experimental �(k) tracks the theoretical value quite closely. It can also be seen that

the �(k) for the -19 dB run does not converge for the conventional average after 200 trials

suggesting a low single-trial SNR. Finally, Figure 7 shows the subspace and conventional

averages obtained after a single 200-trial run. The subspace average is seen to give a much

closer representation of the actual signal in Fig 4 than the conventional average.

VI. Steady-State VEP Experiments

Counterphase modulated steady-state VEP's were acquired by presenting a black and white

vertical square wave gratings with contrast set to 92%. The stimulus was created on a video

monitor using a high resolution graphics board (Omnicomp, Texan ET, 1280 by 1024 pixels,

60 Hz, non-interleaved). The subjects viewed the video monitor binocularly from a distance

of 3 m in a darkened room. The video screen was masked to reveal a 5.5 degree circular

�eld. A small �xation dot was placed at the center of the display. The luminance of the

display was approximately 30 Foot Lamberts. Counter-phase contrast reversal (7.5 contrast

reversals per sec, square wave modulation) was used as the visual stimulus. Four 22,000

sample runs where obtained at stimulus spatial frequencies of 4, 10, 24,and 40 c/d, the �rst
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three (4, 10, 24 c/d) where chosen to produce VEP's with relative high, moderate, and low

SNR's, respectively. The 40 c/d stimulus appears to the subject as a homogeneous �eld

which produces no VEP (spatial frequency threshold is about 30 c/d) so the 40 c/d data was

used as a noise-only reference. In the high SNR data, four harmonics where clearly observed

in the frequency domain, so d was set equal to 4 and the harmonics used for the subspace

average were the same as those in the simulations.

For each �xed spatial frequency run, the VEP data was prewhitened with an order

L = 20 linear prediction error �lter determined from the Autocorrelation Method [37]. The

prewhitened data was then used to compute both the conventional and the subspace average

for a total of 200 non-overlapping trials. The performance measure, �(k) was also computed

for both subspace and conventional averages. Figure 8 depicts estimated power spectral

densities for the VEP data at each of the four spatial frequencies. The PSD was estimated

via Welch's averaged periodogram method using the Matlab function \psd". It can be seen

that the signal component consists of approximately four harmonics at 7.5, 15, 22.5, and 30

Hz, as predicted by the VEP model (3), furthermore, the harmonic amplitudes decrease with

increasing stimulus spatial frequency thereby reducing the VEP SNR. Figure 9 shows �(k)

computed from conventional and subspace averages at the four spatial frequencies. It can be

seen that each �(k) is fairly stable, though there is greater variation than in the simulations

suggesting that the SNR of the VEP data changes from trial to trial. Nevertheless, the

subspace average shows a signi�cantly lower value of �(k) for the three spatial frequencies

containing signal (4, 10, and 24 c/d), while there is virtually no di�erence in �(k) for the noise-

only spatial frequency (40 c/d). The di�erence in �(k) between the subspace and conventional

averages for the signal-bearing data seems to be by about a factor of 10 which is close to the

theoretically predicted SNR gain of M=d = 108=8 = 13:5 provided by the subspace average.

Figure 10 shows a comparison between the ensemble averages computed via the subspace

average and the conventional average. Even though the true signal morphology is unknown,

it seems evident that the subspace averages have the higher SNR.
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VII. Summary

A new algorithm for averaging steady-state VEP's was described. This algorithm increases

the SNR of the VEP by projecting the VEP data into a signal subspace. The resulting

subspace average was seen to produce higher SNR VEP's relative to the conventional average

by a factor of M=d where M is the single trial length and d is the number of harmonics used

to model the VEP. A new measure of VEP SNR which can be computed while the average

is being acquired was also described. The measure, �(k), was shown to converge to the noise

to signal power ratio of the single trial VEP.
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Figure 1: Power spectral density estimate of a steady-state VEP showing the contrast reversal
frequency (7.5 Hz) and several harmonics (15 Hz, 22.5 Hz, and 30 Hz).
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Figure 2: Power spectral density estimate of a steady-state before and after prewhitening,
the data SNR remains relatively unchanged by prewhitening.
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Figure 4: Single trial signal component used in simulations.

22



0 50 100 150 200
10

−2

10
−1

10
0

10
1

10
2

10
3

trial number, k

S
N

R
(k

)

SNR = −10 dB

subspace    
conventional
theoretical 

0 50 100 150 200
10

−2

10
−1

10
0

10
1

10
2

trial number, k

S
N

R
(k

)

SNR = −19 dB

subspace    
conventional
theoretical 

Figure 5: Comparison of estimated SNR and theoretically predicted SNR versus trial number
for the two simulated data experiments (SNR of -10 dB and -19 dB).
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Figure 6: The function �(k) for the two simulated data experiments (SNR of -10 dB and -19
dB) derived from a single run, along with the theoretically predicted value of �(k)
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Figure 7: Conventional and subspace averages after a 200-trial run for synthetic single-trial
SNR's of -10 dB and -19 dB.
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Figure 8: Estimated power spectral density obtained from actual VEP data for stimulus
spatial frequencies of 4 c/d, 10 c/d, 24 c/d, and 40 c/d (noise only).
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Figure 9: �(k) computed from subspace and conventional averages for actual VEP data for
stimulus spatial frequencies of 4 c/d, 10 c/d, 24 c/d, and 40 c/d (noise only), �(k) is a
measure of noise to signal ratio.
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Figure 10: Subspace and conventional averages computed from actual VEP data for stimulus
spatial frequencies of 4 c/d, 10 c/d, 24 c/d, and 40 c/d (noise only).
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