Algorithms

Copyright ©2006 S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani

July 18, 2006

Algorithms

Contents

Preface 9
0 Prologue 11
0.1 Booksandalgorithms 11
0.2 Enter Fibonacci e e e 12
0.3 Big-Onotation e e e e 15
Exercises e e e e 18
1 Algorithms with numbers 21
1.1 Basicarithmetic e 21
1.2 Modular arithmetic 25
1.3 Primality testing e 33
1.4 Cryptography e e e 39
1.5 Universalhashing 43
Exercises e e e e e 48
Randomized algorithms: a virtual chapter 39
2 Divide-and-conquer algorithms 55
2.1 Multiplication e e e 55
2.2 Recurrencerelations 58
2.3 Mergesort e e e e e e e e e 60
24 Medians. e e e e 64
2.5 Matrix multiplication e 66
2.6 The fast Fourier transform 68
Exercises e e e e 83
3 Decompositions of graphs 91
3.1 Whygraphs? e e e 91
3.2 Depth-first search in undirected graphs 93
3.3 Depth-first search in directed graphs 98
3.4 Strongly connected components e 101
Exercises e e e e e 106

Algorithms

Paths in graphs 115
4.1 Distances e e e e e e 115
4.2 Breadth-firstsearch 116
4.3 Lengthsonedges e 118
4.4 Dijkstra’salgorithm 119
4.5 Priority queue implementations 126
4.6 Shortest paths in the presence of negativeedges 128
4.7 Shortest pathsindags 130
Exercises e e e e 132
Greedy algorithms 139
5.1 Minimum spanningtrees e e e e e e e e e e e e 139
52 Huffmanencoding e 153
53 Hornformulas e 157
5.4 Setcover e e 158
Exercises e e e e 161
Dynamic programming 169
6.1 Shortest paths in dags, revisited 169
6.2 Longest increasing subsequences e 170
6.3 Editdistance e e e e 174
6.4 Knapsack e e e 181
6.5 Chain matrix multiplication 184
6.6 Shortestpaths e 186
6.7 Independentsetsintrees. 189
Exercises e e e e 191
Linear programming and reductions 201
7.1 An introduction to linear programming, 201
7.2 Flowsinnetworks e 211
7.3 Bipartitematching e 219
7.4 Duality e e e 220
7.5 Zero-sum games v v v vt e e e e e e e e e e e e e 224
7.6 The simplex algorithm 2217
7.7 Postscript: circuit evaluation, 236
Exercises e e e e 239
NP-complete problems 247
8.1 Search problems 247
8.2 NP-complete problems e 257
8.3 Thereductions e e 262

Exercises o e e e 278

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 5

9 Coping with NP-completeness 283
9.1 Intelligent exhaustivesearch 284
9.2 Approximation algorithms e 290
9.3 Local search heuristics 297
Exercises e e e e e e e e 306

10 Quantum algorithms 311
10.1 Qubits, superposition, and measurement 311
102 Theplan e e e e e e e 315
10.3 The quantum Fourier transform 316
10.4 Periodicity e e e e e 318
10.5 Quantum circuitS e e e e e e 321
10.6 Factoring as periodicity e 324
10.7 The quantum algorithm for factoring 326
Exercises e e e e e e e e 329

Historical notes and further reading 331

Index 333

Algorithms

List of boxes

Basesandlogs e e 21
Two's complement e e e 27
Is your social security number a prime?, 33
Hey, that was group theory! 36
Carmichael numbers 37
Randomized algorithms: a virtual chapter 39
An application of number theory? 40
Binarysearch 60
An nlognlower bound for sorting 62
The Unix sort command ittt .. 66
Why multiply polynomials? 68
The slow spread of a fast algorithm 82
How bigisyour graph? e e 93
Crawling fast e e e e 105
Which heapisbest? e e 125
Trees i o e e e e e e e e e e e e 140
A randomized algorithm for minimumcut 150
Entropy e e e e e e e 155
Recursion? No, thanks. e 173
Programming? e e 173
Common subproblems 177
Ofmiceandmen. e e 179
Memoization e e e e e e e e e 183
Ontimeand memory i it i it e e e e e 189
A magic trick called duality 205
Reductions e e 209
Matrix-vector notation 211
Visualizing duality e 222
Gaussian elimination e 234

Algorithms

Linear programming in polynomial time 236
The story of Sissa and Moore e 247
Why Pand NP? e e 258
The two ways tousereductions e 259
Unsolvable problems 276
Entanglement 314
The Fourier transform of a periodicvector 320
Setting up a periodic superposition e 325

Quantum physics meets computation 327

Preface

This book evolved over the past ten years from a set of lecture notes developed while teaching
the undergraduate Algorithms course at Berkeley and U.C. San Diego. Our way of teaching
this course evolved tremendously over these years in a number of directions, partly to address
our students’ background (undeveloped formal skills outside of programming), and partly to
reflect the maturing of the field in general, as we have come to see it. The notes increasingly
crystallized into a narrative, and we progressively structured the course to emphasize the
“story line” implicit in the progression of the material. As a result, the topics were carefully
selected and clustered. No attempt was made to be encyclopedic, and this freed us to include
topics traditionally de-emphasized or omitted from most Algorithms books.

Playing on the strengths of our students (shared by most of today’s undergraduates in
Computer Science), instead of dwelling on formal proofs we distilled in each case the crisp
mathematical idea that makes the algorithm work. In other words, we emphasized rigor over
formalism. We found that our students were much more receptive to mathematical rigor of
this form. It is this progression of crisp ideas that helps weave the story.

Once you think about Algorithms in this way, it makes sense to start at the historical be-
ginning of it all, where, in addition, the characters are familiar and the contrasts dramatic:
numbers, primality, and factoring. This is the subject of Part I of the book, which also in-
cludes the RSA cryptosystem, and divide-and-conquer algorithms for integer multiplication,
sorting and median finding, as well as the fast Fourier transform. There are three other parts:
Part II, the most traditional section of the book, concentrates on data structures and graphs;
the contrast here is between the intricate structure of the underlying problems and the short
and crisp pieces of pseudocode that solve them. Instructors wishing to teach a more tradi-
tional course can simply start with Part II, which is self-contained (following the prologue),
and then cover Part I as required. In Parts I and II we introduced certain techniques (such
as greedy and divide-and-conquer) which work for special kinds of problems; Part III deals
with the “sledgehammers” of the trade, techniques that are powerful and general: dynamic
programming (a novel approach helps clarify this traditional stumbling block for students)
and linear programming (a clean and intuitive treatment of the simplex algorithm, duality,
and reductions to the basic problem). The final Part IV is about ways of dealing with hard
problems: NP-completeness, various heuristics, as well as quantum algorithms, perhaps the
most advanced and modern topic. As it happens, we end the story exactly where we started
it, with Shor’s quantum algorithm for factoring.

The book includes three additional undercurrents, in the form of three series of separate

9

10 Algorithms

“boxes,” strengthening the narrative (and addressing variations in the needs and interests of
the students) while keeping the flow intact: pieces that provide historical context; descriptions
of how the explained algorithms are used in practice (with emphasis on internet applications);
and excursions for the mathematically sophisticated.

Chapter 0

Prologue

Look around you. Computers and networks are everywhere, enabling an intricate web of com-
plex human activities: education, commerce, entertainment, research, manufacturing, health
management, human communication, even war. Of the two main technological underpinnings
of this amazing proliferation, one is obvious: the breathtaking pace with which advances in
microelectronics and chip design have been bringing us faster and faster hardware.

This book tells the story of the other intellectual enterprise that is crucially fueling the
computer revolution: efficient algorithms. It is a fascinating story.

Gather round and listen close.

0.1 Books and algorithms

Two ideas changed the world. In 1448 in the German city of Mainz a goldsmith named Jo-
hann Gutenberg discovered a way to print books by putting together movable metallic pieces.
Literacy spread, the Dark Ages ended, the human intellect was liberated, science and tech-
nology triumphed, the Industrial Revolution happened. Many historians say we owe all this
to typography. Imagine a world in which only an elite could read these lines! But others insist
that the key development was not typography, but algorithms.

Today we are so used to writing numbers in decimal, that it is easy to forget that Guten-
berg would write the number 1448 as MCDXLVIII. How do you add two Roman numerals?
What is MCDXLVIII + DCCCXII? (And just try to think about multiplying them.) Even a
clever man like Gutenberg probably only knew how to add and subtract small numbers using
his fingers; for anything more complicated he had to consult an abacus specialist.

The decimal system, invented in India around AD 600, was a revolution in quantitative
reasoning: using only 10 symbols, even very large numbers could be written down compactly,
and arithmetic could be done efficiently on them by following elementary steps. Nonetheless
these ideas took a long time to spread, hindered by traditional barriers of language, distance,
and ignorance. The most influential medium of transmission turned out to be a textbook,
written in Arabic in the ninth century by a man who lived in Baghdad. Al Khwarizmi laid
out the basic methods for adding, multiplying, and dividing numbers—even extracting square
roots and calculating digits of . These procedures were precise, unambiguous, mechanical,

11

12 Algorithms

efficient, correct—in short, they were algorithms, a term coined to honor the wise man after
the decimal system was finally adopted in Europe, many centuries later.

Since then, this decimal positional system and its numerical algorithms have played an
enormous role in Western civilization. They enabled science and technology; they acceler-
ated industry and commerce. And when, much later, the computer was finally designed, it
explicitly embodied the positional system in its bits and words and arithmetic unit. Scien-
tists everywhere then got busy developing more and more complex algorithms for all kinds of
problems and inventing novel applications—ultimately changing the world.

0.2 Enter Fibonacci

Al Khwarizmi’s work could not have gained a foothold in the West were it not for the efforts of
one man: the 15th century Italian mathematician Leonardo Fibonacci, who saw the potential
of the positional system and worked hard to develop it further and propagandize it.

But today Fibonacci is most widely known for his famous sequence of numbers

0,1,1,2,3,5,8,13,21,34, ...,

each the sum of its two immediate predecessors. More formally, the Fibonacci numbers F, are
generated by the simple rule

0 ifn=0.

No other sequence of numbers has been studied as extensively, or applied to more fields:
biology, demography, art, architecture, music, to name just a few. And, together with the
powers of 2, it is computer science’s favorite sequence.

In fact, the Fibonacci numbers grow almost as fast as the powers of 2: for example, Fyj is
over a million, and F} is already 21 digits long! In general, F,, ~ 299" (see Exercise 0.3).

But what is the precise value of I, or of Fy? Fibonacci himself would surely have
wanted to know such things. To answer, we need an algorithm for computing the nth Fibonacci
number.

An exponential algorithm

One idea is to slavishly implement the recursive definition of F,. Here is the resulting algo-
rithm, in the “pseudocode” notation used throughout this book:

function fibl(n)

if n=0: return 0

if n=1. return 1

return fibl(n—1) + fibl(n—-2)

Whenever we have an algorithm, there are three questions we always ask about it:

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 13

1. Is it correct?
2. How much time does it take, as a function of n?
3. And can we do better?

The first question is moot here, as this algorithm is precisely Fibonacci’s definition of F,.
But the second demands an answer. Let 7'(n) be the number of computer steps needed to
compute fi bl(n); what can we say about this function? For starters, if n is less than 2, the
procedure halts almost immediately, after just a couple of steps. Therefore,

T(n) <2 forn<1.

For larger values of n, there are two recursive invocations of f i b1, taking time 7'(n — 1) and
T (n—2), respectively, plus three computer steps (checks on the value of n and a final addition).
Therefore,

Tn)=Tn—-1)+T(n—2)+3 forn > 1.

Compare this to the recurrence relation for F,: we immediately see that 7'(n) > F,.

This is very bad news: the running time of the algorithm grows as fast as the Fibonacci
numbers! T'(n) is exponential in n, which implies that the algorithm is impractically slow
except for very small values of n.

Let’s be a little more concrete about just how bad exponential time is. To compute Fy,
the fi bl algorithm executes 7/(200) > Fyyy > 2'3® elementary computer steps. How long this
actually takes depends, of course, on the computer used. At this time, the fastest computer
in the world is the NEC Earth Simulator, which clocks 40 trillion steps per second. Even on
this machine, fi b1(200) would take at least 2°? seconds. This means that, if we start the
computation today, it would still be going long after the sun turns into a red giant star.

But technology is rapidly improving—computer speeds have been doubling roughly every
18 months, a phenomenon sometimes called Moore’s law. With this extraordinary growth,
perhaps fi bl will run a lot faster on next year’s machines. Let’s see—the running time of
fi bl(n) is proportional to 294" ~ (1.6)", so it takes 1.6 times longer to compute F},; than
F,. And under Moore’s law, computers get roughly 1.6 times faster each year. So if we can
reasonably compute Iy with this year’s technology, then next year we will manage F1g;. And
the year after, Fip2. And so on: just one more Fibonacci number every year! Such is the curse
of exponential time.

In short, our naive recursive algorithm is correct but hopelessly inefficient. Can we do
better?

A polynomial algorithm

Let’s try to understand why f i b1 is so slow. Figure 0.1 shows the cascade of recursive invo-
cations triggered by a single call to f i b1(n). Notice that many computations are repeated!

A more sensible scheme would store the intermediate results—the values Fy, I, ..., F,,_1—
as soon as they become known.

14 Algorithms

Figure 0.1 The proliferation of recursive calls in fi b1.
F,
anl Fn—2
an2 Fn—3 Fn73 an4

Fn—3 Fn—4 Fn—4 Fn—5 Fn—4 Fn—5 Fn—5 Fn—G

function fib2(n)
if n=0return 0
create an array f[0...n]
f[o] =0, f[1] =1
for i=2...n:

fldq ="f[i—-1] + f[i—2]
return f[n]

As with fi b1, the correctness of this algorithm is self-evident because it directly uses the
definition of F,,. How long does it take? The inner loop consists of a single computer step and
is executed n — 1 times. Therefore the number of computer steps used by fi b2 is linear in n.
From exponential we are down to polynomial, a huge breakthrough in running time. It is now
perfectly reasonable to compute Fyqy or even Fgoo,ooo.l

As we will see repeatedly throughout this book, the right algorithm makes all the differ-
ence.

More careful analysis

In our discussion so far, we have been counting the number of basic computer steps executed
by each algorithm and thinking of these basic steps as taking a constant amount of time.
This is a very useful simplification. After all, a processor’s instruction set has a variety of
basic primitives—branching, storing to memory, comparing numbers, simple arithmetic, and

ITo better appreciate the importance of this dichotomy between exponential and polynomial algorithms, the
reader may want to peek ahead to the story of Sissa and Moore, in Chapter 8.

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 15

so on—and rather than distinguishing between these elementary operations, it is far more
convenient to lump them together into one category.

But looking back at our treatment of Fibonacci algorithms, we have been too liberal with
what we consider a basic step. It is reasonable to treat addition as a single computer step if
small numbers are being added, 32-bit numbers say. But the nth Fibonacci number is about
0.694n bits long, and this can far exceed 32 as n grows. Arithmetic operations on arbitrarily
large numbers cannot possibly be performed in a single, constant-time step. We need to audit
our earlier running time estimates and make them more honest.

We will see in Chapter 1 that the addition of two n-bit numbers takes time roughly propor-
tional to n; this is not too hard to understand if you think back to the grade-school procedure
for addition, which works on one digit at a time. Thus fi b1, which performs about F, ad-
ditions, actually uses a number of basic steps roughly proportional to nF,. Likewise, the
number of steps taken by fi b2 is proportional to n?, still polynomial in n and therefore ex-
ponentially superior to fi bl. This correction to the running time analysis does not diminish
our breakthrough.

But can we do even better than fi b2? Indeed we can: see Exercise 0.4.

0.3 Big-O notation

We've just seen how sloppiness in the analysis of running times can lead to an unacceptable
level of inaccuracy in the result. But the opposite danger is also present: it is possible to be
too precise. An insightful analysis is based on the right simplifications.

Expressing running time in terms of basic computer steps is already a simplification. After
all, the time taken by one such step depends crucially on the particular processor and even on
details such as caching strategy (as a result of which the running time can differ subtly from
one execution to the next). Accounting for these architecture-specific minutiae is a nightmar-
ishly complex task and yields a result that does not generalize from one computer to the next.
It therefore makes more sense to seek an uncluttered, machine-independent characterization
of an algorithm’s efficiency. To this end, we will always express running time by counting the
number of basic computer steps, as a function of the size of the input.

And this simplification leads to another. Instead of reporting that an algorithm takes, say,
5n3 +4n + 3 steps on an input of size n, it is much simpler to leave out lower-order terms such
as 4n and 3 (which become insignificant as n grows), and even the detail of the coefficient 5
in the leading term (computers will be five times faster in a few years anyway), and just say
that the algorithm takes time O(n?3) (pronounced “big oh of n?”).

It is time to define this notation precisely. In what follows, think of f(n) and g(n) as the
running times of two algorithms on inputs of size n.

Let f(n) and g(n) be functions from positive integers to positive reals. We say
f = O(g) (which means that “f grows no faster than ¢”) if there is a constant ¢ > 0
such that f(n) < c-g(n).

Saying f = O(g) is a very loose analog of “f < ¢.” It differs from the usual notion of <
because of the constant ¢, so that for instance 10n = O(n). This constant also allows us to

16 Algorithms

Figure 0.2 Which running time is better?

100

9t
80
70F
60
0+
a0t —
30+ 2n+/20/7////// ’/

_ P
20 /

10- —

0 —

disregard what happens for small values of n. For example, suppose we are choosing between
two algorithms for a particular computational task. One takes fi(n) = n? steps, while the
other takes fy(n) = 2n + 20 steps (Figure 0.2). Which is better? Well, this depends on the
value of n. For n < 5, f; is smaller; thereafter, f> is the clear winner. In this case, fo scales
much better as n grows, and therefore it is superior.

This superiority is captured by the big-O notation: fo = O(f1), because

fg(n) _ 2n +20 < 99

fi(n) n?2 -
for all n; on the other hand, f; # O(f»), since the ratio fi(n)/f2(n) = n?/(2n + 20) can get
arbitrarily large, and so no constant ¢ will make the definition work.

Now another algorithm comes along, one that uses f3(n) = n + 1 steps. Is this better
than f»? Certainly, but only by a constant factor. The discrepancy between fs and f5 is tiny
compared to the huge gap between f; and f>. In order to stay focused on the big picture, we
treat functions as equivalent if they differ only by multiplicative constants.

Returning to the definition of big-O, we see that fo = O(f3):

fa(n) 2n + 20

- < 20,
f3(n) n+1l =

and of course f3 = O(f2), this time with ¢ = 1.

Just as O(+) is an analog of <, we can also define analogs of > and = as follows:

f=1Q(g) means g = O(f)
f=0©(g) means f = O(g) and f = Q(g).

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 17

In the preceding example, fo, = O(f3) and fi1 = Q(f3).

Big-O notation lets us focus on the big picture. When faced with a complicated function
like 3n% + 4n + 5, we just replace it with O(f(n)), where f(n) is as simple as possible. In this
particular example we'd use O(n?), because the quadratic portion of the sum dominates the
rest. Here are some commonsense rules that help simplify functions by omitting dominated
terms:

1. Multiplicative constants can be omitted: 14n? becomes n?.

2. n® dominates n’ if a > b: for instance, n> dominates n.
3. Any exponential dominates any polynomial: 3” dominates n° (it even dominates 2").
4

. Likewise, any polynomial dominates any logarithm: n dominates (logn). This also
means, for example, that n? dominates nlog n.

Don’t misunderstand this cavalier attitude toward constants. Programmers and algorithm
developers are very interested in constants and would gladly stay up nights in order to make
an algorithm run faster by a factor of 2. But understanding algorithms at the level of this
book would be impossible without the simplicity afforded by big-O notation.

