
A Robust Complex FastICA Algorithm Using
the Huber M-Estimator Cost Function

Jih-Cheng Chao1 and Scott C. Douglas2

1 Semiconductor Group, Texas Instruments, Dallas, Texas 75243, USA
2 Department of Electrical Engineering, Southern Methodist University,

Dallas, Texas 75275, USA

Abstract. In this paper, we propose to use the Huber M -estimator cost
function as a contrast function within the complex FastICA algorithm of
Bingham and Hyvarinen for the blind separation of mixtures of indepen-
dent, non-Gaussian, and proper complex-valued signals. Sufficient and
necessary conditions for the local stability of the complex-circular Fas-
tICA algorithm for an arbitrary cost are provided. A local stability anal-
ysis shows that the algorithm based on the Huber M -estimator cost has
behavior that is largely independent of the cost function’s threshold pa-
rameter for mixtures of non-Gaussian signals. Simulations demonstrate
the ability of the proposed algorithm to separate mixtures of various
complex-valued sources with performance that meets or exceeds that ob-
tained by the FastICA algorithm using kurtosis-based and other contrast
functions.

1 Introduction

In complex-valued blind source separation (BSS), one possesses a set of measured
signal vectors

x(k) = As(k) + ν(k), (1)

where A is an arbitrary complex-valued (m × m) mixing matrix, such that
A = AR + jAI , s(k) = [s1(k) · · · sm(k)]T is a complex-valued signal of sources,
and si(k) = sR,i(k) + jsI,i(k), where j =

√
−1, and ν(k) contains circular

Gaussian uncorrelated noise. In most treatments of the complex-valued BSS
task, the {si(k)} are assumed to be statistically-independent, and A is full rank.
The goal is to obtain a separating matrix B such that

y(k) = Bx(k) (2)

contains estimates of the source signals. In independent component analysis
(ICA), the linear model in (1) may not hold, yet the goal is to produce signal
features in y(k) that are as independent as possible.

One of the most-popular procedures for complex-valued BSS is the complex
circular FastICA algorithm in [1]. This algorithm first prewhitens the mixtures
x(k) to obtain v(k) = Px(k) such that E{v(k)vH (k)} = I, after which the
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rows of a unitary separation matrix W are adapted sequentially such that
y(k) = Wv(k) contains the separated sources. For mixtures of sources that
are proper, such that E{s2

i (k)} = 0 for all i, this algorithm appears to separate
such complex mixtures given enough snapshots N for an appropriate choice of
algorithm nonlinearity. Several algorithm nonlinearities are suggested as possible
candidates, although little work has been performed to determine the suitability
of these choices for general complex-valued source signals. More recently, several
researchers have explored the structure of the complex-valued BSS task for mix-
tures of non-circular sources, such that E{s2

i (k)} �= 0 [2]–[4]. In what follows, we
limit our discussion to the complex-circular source distribution case, as several
practical applications involve mixtures of complex-circular sources.

In this paper, we extend our recent work on employing the Huber M -estimator
cost function from robust statistics as a FastICA algorithm contrast [5] to the
complex-valued BSS task for mixtures of proper sources (E{s2

i (k)} = 0). We pro-
vide the complete form of the local stability condition for the complex-circular
FastICA algorithm omitted in [1]. We then propose a single-parameter nonlin-
earity for the algorithm and show through both theory and simulations that the
algorithm’s performance is largely independent of the cost function’s threshold
parameter for many source distributions, making it a robust choice for separat-
ing complex-valued mixtures with unknown circularly-symmetric source p.d.f.’s.
Simulations comparing various contrast choices for the complex circular FastICA
algorithm show that ours based on the Huber M -estimator cost often works bet-
ter than others based on kurtosis maximization or heuristic choice.

2 Complex Circular FastICA Algorithm

We first give the general form of the single-unit FastICA algorithm for extract-
ing one non-Gaussian-distributed proper source from an m-dimensional complex
linear mixture [1] and study its local stability properties. The algorithm assumes
that the source mixtures have been prewhitened by a linear transformation P
where v(k) = Px(k) contains uncorrelated entries, such that the sample covari-
ance of v(k) is the identity matrix. For the vector wt = [w1t · · · wmt]T , the
complex circular FastICA update is

yt(k) = wT
t v(k) (3)

w̃t = E{yt(k)g(|yt(k)|2)v∗(k)} − E{g(|yt(k)|2) + |yt(k)|2g′(|yt(k)|2)}wt (4)

wt+1 =
w̃t

√

w̃H
t w̃t

, (5)

where yt(k) is the estimated source at time k and algorithm iteration t, g(u)
is a real-valued nonlinearity, g′(u) = dg(u)/du, and the expectations in (4) are
computed using N -sample averages. This algorithm is formulated in [1] as the
solution to the following optimization problem:

maximize
∣

∣E{G(|yt(k)|2)} − E{G(|n|2)}
∣

∣

2
(6)

such that E{|yt(k)|2} = 1, (7)
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where n has a circularly-symmetric unit-variance Gaussian distribution and G(u)
is a real-valued even-symmetric but otherwise “arbitrary non-linear contrast
function” [1] producing g(u) = dG(u)/du. The criterion in (6) is described as the
square of a simple estimate of the negentropy of yt(k). Several cost functions are
suggested as possible choices for G(u), including G(u) =

√
a1 + u for a1 ≈ 0.1 ,

G(u) = log (a2 + u) for a2 ≈ 0.1, and the kurtosis-based G(u) = 0.5u2, although
no verification of (9) for the first two choices of G(u) and any well-known non-
Gaussian distributions has been given.

In [1], the authors give the following necessary condition for the above al-
gorithm to be locally-stable at a separating solution, where si possesses the
distribution of the source extracted in yt(k):

(E{g(|si|2) + |si|2g′(|si|2) − |si|2g(|si|2)}) �= 0. (8)

This condition is not sufficient, however, for local stability of the algorithm,
as the curvature of the cost function has not been considered in [1]. Although
omitted for brevity, we can show that the necessary and sufficient local stability
conditions for the algorithm about a separating solution are

[E{g(|si|2) + |si|2g′(|si|2) − |si|2g(|si|2)}]
×[E{G(|si|2)} − E{G(|n|2)}] < 0. (9)

This result can be compared to that for the real-valued FastICA algorithm in
[6], which shows a somewhat-different relationship. Thus, it is necessary and
sufficient for the two real-valued quantities on the left-hand-side of the inequality
in (9) to be non-zero and have different signs for the complex circular FastICA
algorithm to be locally-stable.

3 A Huber M-Estimator Cost Function for the Complex
Circular FastICA Algorithm

In [5], a novel single-parameter cost function based on the Huber M -estimator
cost in robust statistics [7] was proposed for the real-valued FastICA algorithm.
Unlike most other cost functions, the one chosen in [5] has certain nice practical
and analytical properties. In particular, it is possible to show that there always
exists a nonlinearity parameter for the cost function such that two sufficient
conditions for local stability of the algorithm are met. We now extend this work
to design a novel cost function for the complex-circular FastICA algorithm.

As the algorithm in [1] implicitly assumes mixtures of proper source signals,
we propose to choose G(|yt(k)|2) such that the amplitude of yt(k) is maximized
according to the Huber M -estimator cost. Thus, we have

G(u) =

⎧

⎨

⎩

u

2
u < θ2

θu1/2 − θ2

2
u ≥ θ2

(10)
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where θ > 0 is a threshold parameter designed to trade off the parameter es-
timation quality with the estimate’s robustness to outliers and lack of prior
distributional knowledge. The corresponding algorithm nonlinearities are

g(u) ≡ ∂G(u)
∂u

=

⎧

⎪

⎨

⎪

⎩

1
2

u < θ2

θ

2
u−1/2 u ≥ θ2

(11)

g′(u) ≡ dg(u)
du

=

{

0 u < θ2

−θ

4
u−3/2 u ≥ θ2.

(12)

After some simplification, we can implement the circular complex FastICA up-
date using the above nonlinearities as

w̃t = 2E{yt(k)hθ(|yt(k)|)v∗(k)} − E{tθ(|yt(k)|) + hθ(|yt(k)|)}wt (13)

hθ(u) =

{

1 u < θ
θ

u
u ≥ θ

, tθ(u) =
{

1 u < θ
0 u ≥ θ.

(14)

The functions hθ(u) and tθ(u) depend on the threshold parameter θ, and the
choice of this nonlinearity will be considered in the next section. Table 1 lists a
short MATLAB script for implementing the multiple-unit version of this algo-
rithm, in which the QR decomposition is used for signal deflation.

Table 1. Complex circular FastICA algorithm with Huber M -estimator cost

%--------------------------------------------------------------------
[N,m]=size(x); R = (1/N)*(x’*x); v = x/chol(0.5*(R+R’)); W = eye(m);
for i=1:iter

y = v*W;
absy = abs(y);

t = (absy<theta);
h = t + theta*(1-t)./absy;

W = 2*(v’*(y.*h)) - W*diag(sum(t+h));
[W,T] = qr(W);

end

%--------------------------------------------------------------------

4 On the Local Stability of the Huber M-Estimator Cost
for FastICA

Given the new stability condition in (9), what can be said about the circularly-
symmetric Huber M -estimator cost function when it is used in the complex
FastICA algorithm? The following two theorems, proven in the Appendix, illus-
trate two properties about this cost. These theorems make statements about the
p.d.f. of u = |si|2, the squared amplitude of the extracted source. The theorems
are non-trivial extensions of the theorems presented in [5].
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Theorem 1: Let g(u) and g′(u) have the forms in (11) and (12), respectively.
Then, so long as the random variable u is not exponentially-distributed, there
always exists a value of θ such that

E{g(u)} + E{ug′(u)} − E{ug(u)} �= 0. (15)

Theorem 2: Let G(u) have the form in (10). Then, so long as the random
variable u is not exponentially-distributed, there always exists a value of θ such
that

E{G(u)} − E{G(|n|2)} �= 0. (16)

Note that if si is unit-variance circular Gaussian, the p.d.f. of u = |si|2 is ex-
ponential (p(u) = e−u for u ≥ 0). Taken together, these two theorems do not
ensure (9) for all non-Gaussian proper source distributions. They suggest, how-
ever, that the design range for θ could be significant for many distributions.
We substantiate this claim through the analysis below and by simulations in
the next section. These results are significant because, to our knowledge, few if
any statements about the stability of a specific non-kurtosis-based cost function
within the complex FastICA algorithm have been given in the scientific litera-
ture. Moreover, it is unlikely that such results could be easily found given the
complexity of the integrals for other g(y) choices (e.g. g(y) = 0.5(a1 + y)−1/2 for
a1 ≈ 1).

We have evaluated the range of θ values for which (9) is satisfied for five
well-known zero-mean, unit-power, non-Gaussian distributions: 4-QAM-{±1}+
j{±1}, 16-QAM-{± 1√

10
± 3√

10
}+ j{± 1√

10
± 3√

10
}, 64-QAM-{± 1√

42
± 3√

42
±

5√
42

± 7√
42

} + j{± 1√
42

± 3√
42

± 5√
42

± 7√
42

}, the uniform amplitude cir-

cular distribution such that |si| is equally probable for 0 ≤ |si| ≤
√

2 and
is zero otherwise, and the exponential amplitude distribution in which |si| is
exponentially-distribution with E{|si|2} = 1. For all of these five distributions,
the Huber M -estimator cost produces an algorithm that is locally-stable for θ
in the range [0, |smax|), where smax is the maximum possible value of si(k) ad-
mitted by the source p.d.f. Thus, any positive value of θ that places part of the
nonlinear portion of g(u) within the range of |si(k)|2 often results in a locally-
convergent algorithm. Again, this evaluation does not guarantee that the chosen
cost function will always work, but it suggests that one does not need to design
specific values of θ to achieve separation.

In practice, one may not know what θ value to choose to obtain separation
of a particular source mixture. As was suggested in [5] in the real-valued case,
we recommend that one randomize the value of θ over a range of positive values
during coefficient adaptation. The main observed effect using such randomization
is a slight slowdown in convergence speed.

5 Simulations

We now explore the performance of the FastICA algorithm with various cost
function via simulations. In these simulations, m = 15-source mixtures were
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Fig. 1. E{γ} vs. number of snapshots N for the various algorithms in the simulation
example

generated consisting of three 4-QAM, three 16-QAM, three 64-QAM, three uni-
form and three exponential amplitude circular-distributed independent sources,
and a random mixing matrix. The multi-unit FastICA procedure was applied to
this data for numbers of snapshots ranging from N = 100 to N = 5000 and for
different θ values. The performance factor computed is the separation cost

γ =
1

2m

⎛

⎝

m
∑

i=1

m
∑

l=1

|cil|2

max
1≤i≤m

|cil|2
+

|cil|2

max
1≤l≤m

|cli|2

⎞

⎠−1 (17)

with C = WPA as obtained at convergence of the algorithm. One hundred
iterations were averaged to obtain each data point shown.

Fig. 1 compares the performance of FastICA with the Huber cost function
and θ = 0.9 and with the Huber cost function and a uniformly-randomized θ in
the range 0.5 ≤ θ ≤ 1 at each iteration with three other versions of FastICA
– using G(y) =

√
a1 + y or g(y) = 1

2
√

a1+y
for a1 ≈ 0.1, G(y) = log (a2 + y)

or g(y) = 1
a2+y for a2 ≈ 0.1, and the kurtosis-based choice G(y) = 0.5y2 or

g(y) = y. As can be seen, the Huber cost function-based versions outperform the
algorithms based on previously-proposed contrast functions. More significantly,
our algorithm version with a randomized threshold parameter θ provides good
separation performance across all sample sizes; performance deviations were less
than ±1dB from the algorithm with a fixed θ = 0.9 value.

Fig. 2 illustrates the performance sensitivity of the FastICA algorithm with
Huber M -estimator cost to the value of θ for these signal mixtures. As can be
seen, the algorithm performs well for values of θ satisfying 0.1 ≤ θ ≤ 1, and its
performance degrades gracefully for higher θ values.
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Fig. 2. E{γ} vs. θ for the FastICA algorithm with Huber M -estimator cost in the
simulation example

6 Conclusions

In many blind source separation and independent component analysis algo-
rithms, the cost function used to measure signal independence is a design param-
eter. In this paper, we have considered Huber’s single-parameter M -estimator
cost function for use within the complex-valued FastICA algorithm for proper
source mixtures. The algorithm obtained is computationally-simple, and the pro-
cedure works well for a wide range of threshold parameters θ. The reasons for
the algorithm’s robust behavior for a wide range of the threshold parameter is
indicated through a stability analysis.
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7 Appendix

Proof of Theorem 1: Assume without loss of generality that u is unit variance.
Consider the terms on the left-hand-side of (15) for the nonlinearities in (11) and
(12), and define f1(θ) = 2(E{g(u)} + E{ug′(u)} − E{ug(u)}). Then, we obtain

f1(θ) =
∫ ∞

θ2
u−1/2(u3/2 − θu − u1/2 +

θ

2
)p(u)du. (18)

For Eq. (15) not to hold, f1(θ) = 0 for all possible values of θ. Suppose that the
slightly-more-general condition

f1(θ) = c1θ + c2 (19)

is true, where c1 and c2 are unknown constants. Such a condition justified when
p(u) is smooth, as f1(θ) an then be modeled by a polynomial approximation -
see the comment below. Then,

∂f1(θ)
∂θ

= p(θ2)θ +
∫ ∞

θ2
(
1
2
u−1/2 − u1/2)p(u)du = c1 (20)

∂2f1(θ)
∂θ2 = p′(θ2) + p(θ2) = 0, (21)

which yields the relationship

p′(u) = −p(u). (22)

The only distribution p(u) satisfying (22) is the exponential distribution, i.e.
p(u) = e−u for u ≥ 0. Thus, the theorem follows. Note that if si is circular
Gaussian-distributed, |si|2 has an exponential distribution, although other dis-
tributions for si could lead to an exponential distribution for |si|2.

Proof of Theorem 2: Substituting (10) into the left-hand-side of (16), defining
f2(θ) = 2E{G(u) − G(|n|2)}, and simplifying yields the expression

f2(θ) = −
∫ ∞

θ2
(u1/2 − θ)2[p(u) − pn(u)]du, (23)

where pn(u) = e−u for u ≥ 0. For Eq. (16) not to hold, f2(θ) = 0 for all possible
values of θ. Suppose that the slightly-more-general condition

f2(θ) = c1θ + c2 (24)

is true, where c1 and c2 are unknown constants. Then,

∂f2(θ)
∂θ

= 2
∫ ∞

θ2
(u1/2 − θ)[p(u) − pn(u)]du = c1 (25)

∂2f2(θ)
∂θ2 = −2

∫ ∞

θ2
[p(u) − pn(u)]du = 0. (26)
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For (24) to hold for all θ > 0, we must have

p(u) = pn(u), (27)

which results in c1 = 0, c2 = 0, and finally f2(θ) = 0. Thus, the theorem follows.
Comment : In both of the above proofs, fi(θ) is a continuous function of θ

given a continuous smooth amplitude-squared distribution p(u). Thus, we can
express fi(θ) as a polynomial function of θ with coefficients ci. Now, for the
condition fi(θ) = 0, we must have all ci = 0. Clearly, it is impossible that c0 = 0
and all ci not equal to 0 for i > 0 and the condition fi(θ) = 0, because any
change in θ would make fi(θ) not equal to zero. Hence, fi(θ) defines only one
function and therefore only one distribution p(u) has fi(θ) = 0. In both of the
above proofs, the exponential distribution yields fi(θ) = 0.
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