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Abstract: A thin, agile, multi-resolution, computational 
imaging sensor architecture, termed PANOPTES, that 
utilizes arrays of MEMS micro-mirrors to adaptively 
redirect the fields-of-view of multiple low-resolution sub-
imagers, is introduced.  An information theory-based super-
resolution algorithm restores the image..  
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Background / Motivation 
The desire for information superiority in matters of 

national security has created a requirement for pervasive 
optical sensors with flat form factors.  Traditional 
imaging systems contain a lens, and the quality of the 
resulting image is typically proportional to the physical 
size of the lens used.  Both the light gathering capability 
and the resolving power of the imaging sensor derive 
directly from the size of the optical elements in such 
systems.  This fact ultimately results in imaging devices 
that are bulky and cube-like – a constraint that has 
persisted since their invention.  The costs associated with 
the design, manufacture, and packaging of such 
physically unwieldy systems have made them a relatively 
scarce resource in many scenarios where their pervasive 
use would be beneficial. 

One only needs to consider recent developments in flat 
panel technologies to gauge the possibilities for a flat 
imaging sensor.  Flat displays are easier to place, take up 
less physical space, and are ultimately more useful 
because of their form factor.   

The creation of a flat imaging sensor requires a 
paradigm shift in imaging system approach coupled with 
a proper selection and integration of emerging 
technologies [1].  Traditional imaging sensors utilize a 
lens or mirror to form the image that is then sampled onto 
a detector array.  A thin optical sensor would be restricted 
to using smaller optical elements and therefore require 
additional computation to complete the image formation.  
Flat imaging sensors based on arrays of micro-optical 
elements have been proposed and prototyped [2].  These 
sensors place many imaging resources on each region to 
be imaged to provide the necessary data for additional 
computation to enhance the inherent resolution of the flat 
sensor.  One constraint of the approach in [2] is the fixed 
overlap of the imaging resources, requiring the design to 
be optimized for a specific resolution and field-of-view.  
Clearly, adaptive sensor elements would increase the 
utility of flat cameras. 

Technologies developed in the late 1990’s offer an 
opportunity to create a useful and flat micro-optical 
imaging sensor.  Micro-mirror arrays, similar to the ones 
used in many laptop projectors today, have been 
demonstrated in novel imaging and signal processing 
systems [3].  The precision and optical quality of these 
micro-mirror arrays make them attractive candidates for a 
flat micro-optical imaging sensor.  The use of analog 
steerable micro-mirror arrays makes it possible to direct 
imaging resources at will [4].  Envision a flat optical 
sensor that contains a multitude of low resolution micro-
optical sensors, each of which is being steered using 
precision micro-mirror arrays towards regions-of-
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interest—an attentive multi-resolution imager.  Multiple 
low-resolution sensors interrogate these regions-of-
interest, and the resulting data is digitally processed to 
extract high-resolution detail from the data.  Regions with 
no features of interest are imaged with relatively low 
resolution, and areas of interest are continually updated 
with increasing resolution – up to the optical resolution 
limit.  Such a system can approach the performance of a 
high-resolution bulk imaging device – and even 
potentially surpass it in situations where only a small 
portion of the image field is of interest. 

There are numerous possible applications for such flat 
imaging devices.  A UAV could be tiled with flat imaging 
sensors that survey the entire scene simultaneously.  A 
soldier’s helmet could contain many lightweight flat 
imaging sensors which report data not only to the soldier 
but to command operations as well, all without adding 
physical weight or hindering the user’s movements.  
Physical security assets could have hallways tiled with 
attentive flat sensors for which no one can determine if 
they are being observed.  Form factor is the single 
greatest obstacle to prevalent image gathering today, and 
the necessary technologies have emerged to 
fundamentally change the way we collect images. 

Computational Sub-sampling Approach 
In order to clarify the use of computational imaging for 

sub-pixel resolution as used in [2] and used adaptively in 
the PANOPTES architecture, let us use a typical digital 
SLR as a candidate design for reducing the form factor by 
a factor of 10, and look at the ramifications.  The baseline 
camera has a focal length of 5 cm, lens aperture of 2.5 cm 
and a detector pixel size of 10 µm.  It follows that the 
instantaneous field-of-view (IFOV) of a single detector is 
10 µm/5 cm = 0.2 mrad.  If we aim to reduce the working 
distance of this baseline system by an order of magnitude 
we can consider using instead a lens of focal length 5 mm 
and aperture 2.5 mm.  However, we are unable to reduce 
the size of the pixels in the detector commensurately (to 1 
µm) due to both manufacturing constraints and light 
collection (SNR) constraints.  If we keep our 10 µm 
detector pixel size, then the new IFOV is 10 µm/5 mm = 
2.0 mrad.  We have lost an order of magnitude in angular 
resolution of the sensor.  Yet the diffraction limited spot 
size remains the same as the f# of the lenses are equal.  In 
fact, the diffraction limited spot size of the system 
remains ~5 times smaller than our detector size.  Herein 
lies the benefit of the computational sub-pixel processing 
approach.  By replicating the miniaturized optical system 
many times with precise offsets that are less than 
individual detector IFOVs, super-resolution signal 
processing techniques can be applied to reconstruct up to 
the diffraction limit of the optical systems [5].   Now 
instead of each detector having a non-overlapping IFOV 
of 0.2 mrad for a total field of view of 200 mrad (with a 
1000x1000 detector array) we have an array of 10x10 

sub-imagers (SI) each with 100x100 pixels and a 
corresponding field of view of 200mrad, but interleaved 
to sample the object space to allow a reconstruction 
algorithm to restore the image to 0.2 mrad resolution.  It 
should be noted that we are not proposing to perform 
super-resolution in an optical sense (near field effects), 
only in a signal processing sense to achieve the 
fundamental optically limited resolution.  In the 
PANOPTES archticture adaptive sub-pixel overlapping 
IFOVs will be created through the use of 2-D analog 
micro-mirror arrays. 

Discussion 
We introduce a novel flat image sensor concept termed 

PANOPTES (Processing Arrays of Nyquist-limited 
Observations to Produce a Thin Electro-optic Sensor).  It 
derives its name from Argos Panoptes – a mythological 
giant with 100 eyes who was all seeing (panoptes), and was 
thought to be the ultimate sentry.  Like this mythical 
character, the PANOPTES architecture seeks to extract all 
the relevant information from a scene, yet is capable of 
adapting to any scenario.  This objective can be achieved 
with an order-of-magnitude decrease in sensor thickness 
relative to a conventional camera with similar performance.  
The proposed architecture can be likened to an adaptable 
steerable field-of-view version of TOMBO [2]. 
Adaptability is paramount to the success of an imaging 
sensor attempting to meet this flat form factor goal and 
high image quality. 

Based on the information theory of imaging described in 
[6,7], the spatial information available within a scene is 
typically non-uniformly distributed.  Take, for example, 
Fig. 1, an aerial view of airplanes parked at an airport 
terminal.  Fig. 2 is a mapping of local entropy at lower 
resolution, corresponding to the local information content 
of the image in Fig. 1.  From Fig. 2, it is clear that there is a 
strong correlation between our subjective view of 
information-rich regions of the image and the spatial 
entropy, which can be exploited in designing an adaptive 
imaging sensor.  It is also evident from Fig. 2 that 
uniformly applying the limited imaging resources, as in a 
traditional camera, is wasteful.  What is needed is a strategy 
that optimizes the information efficiency (the number of 
bits of information per bit of data the sensor system outputs 
for a given scene) of the sensing device. The PANOPTES 
architecture adaptively applies imaging resources to match 
the information content of the scene and approaches the 
performance of a traditional imaging sensor while reducing 
the thickness of the sensor by an order-of-magnitude.   

This architecture achieves the required adaptability using 
micro-mirror technology originally developed for photonic 
switching.  Fig. 3 is a schematic depiction of the concept.  
It is a tiled architecture, where each tile consists of a small 
array of detectors, an optical quality 2-D analog micro-
mirror array, and a transparent superstrate containing the 
required micro-optical elements.  The scene is imaged onto 
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Fig. 1.  Aerial image of an airport terminal. 

 
Fig. 2.  Information content map to identify regions 
of interest for the sample airport image in Fig. 1. 

micro-mirror arraysdetector arrays micro-mirror arraysdetector arrays  
Fig. 3:  PANOPTES tiled approach. 

 

 
Fig 4:  Photo of Washington, DC. 

 
Fig. 5:  Output of a single SI. 

the relatively low-resolution detector array by a folded 
optical system that has the micro-mirror array at its pupil.  
Such configurations have been pursued in parallel with this 
effort by others [8] for steering single aperture, non-
computational, bulky imaging systems.  Locating the 
micro-mirror array at the pupil of the imaging system 
allows it to steer the field-of-view of the detector array.  

This adaptability permits each individual detector array to 
have a narrower field-of-view and therefore improves the 
angular resolution of individual detector elements.  
Improved physical angular resolution relaxes the demands 
put on the reconstruction algorithms.   

Information theory-based metrics drive PANOPTES to 
re-orient micro-mirror arrays to enhance the information 
rate obtainable from the visual scene over several signal 
frames using a feedback mechanism.  This enables new 
adaptive algorithms, ones in which the actual sensor adapts 
to acquire the desired data, instead of those that merely 
post-process the data according to the signal statistics.  
Additionally, the ability to create precise absolute 
geometric changes in sensor content via micro-mirror 
positioning allows a signal structure to be built that admits 
a simple, local computational structure that can easily be 
distributed across multiple digital processors. 
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Fig. 6:  Image reconstruction from Fig. 5. 
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Fig. 7:  PSNR of reconstruction vs. SI number. 

A preliminary reconstruction algorithm was developed as 
part of the conception and initial validation of the 
PANOPTES concept.  This algorithm fuses information 
from multiple sensors that collect over-lapped, but slightly 
shifted (by amounts corresponding partial pixels in the raw 
low-resolution imagery), low-resolution images.   Fig. 4 
shows an example input scene and Fig. 5 is an example 
low-resolution imagery that would be obtained from a sub-
imager.  The image patch at which the sub-imagers (SIs) 
are pointed is indicated by the square in Fig. 4 and the 
output of one of these SIs without any overlap is given in 
the inset.  The output of each SI is highly pixilated and 
does not contain sufficient information about the object. As 
shown in Fig. 6, we reconstructed the image from a 
collection of many such pixilated looks using a simple 
Wiener filter.  The PSNR of the reconstructed image with 
increasing number of blurred observations of the object is 
given in Fig. 7.  As expected, the quality of the 
reconstructed image increases with an increasing number of 
overlapped SIs.  The quality of the reconstructed image 
was as high as 41 dB.  Operating points of the system can 
be chosen based on performance curves that measure 
information content.  The minimum number of SIs required 
to apply to a particular part of the image to obtain the 
desired quality and information can be determined by 
analyses like that which produced Fig 7.  These will result 
in adaptive algorithms which drive SI resource allocation. 

Conclusion 
A key feature of the PANOPTES concept is its 

capability – using precisely controllable MEMs-mirror 
arrays in the sensor pupil plane to vary the position of the 
FOV of sub-imagers – to adjust the quality of the 
reconstructed image depending on it’s information content.  
To achieve this capability, novel adaptive algorithms are 
being developed to manage and adjust sensor positioning.  
These strategies will be truly adaptive in that measurements 
of the quality and resolution of the reconstructed image 
portions will be used to change the look directions of the 
optical sensors over a sequence of images.  As described, 
the PANOPTES architecture is an adaptive multi-
resolution attentive computational imaging sensor 
architecture that directs its resources based on the 
information content and distribution across the scene.   
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