ECE 2350 Circuit Analysis I

Homework 10 Revised

7 April 2020

Professor Dunham
Due: 14 April 2020

Review Lecture Notes.

1. Find the phasor representation of the following functions:
(a) $v(t)=57 \cos \left(4 t+17^{\circ}\right)$.
(b) $i(t)=7 \sin \left(3 t-27^{\circ}\right)$.
(c) $v(t)=20 \sin (10 t)-15 \cos \left(10 t+36^{\circ}\right)$.
2. Find the magnitude, phase and phasor representations of the following complex numbers:
(a) $4+8 j$.
(b) $\frac{4+j}{2+3 j}$.
(c) $\frac{(1+2 j)(2-j)}{2 j(3+2 j)}$.
3. In the circuit shown below, find the steady-state value of the current given:
(a) $\omega=10^{5} \mathrm{rad} / \mathrm{s}$.
(b) $\omega=10^{6} \mathrm{rad} / \mathrm{s}$.
(c) $\omega=10^{7} \mathrm{rad} / \mathrm{s}$.

4. In the circuit shown below, find the steady-state value of the current given $\omega=2 \times 10^{6} \mathrm{rad} / \mathrm{s}$.

5. In the circuit shown below, find the steady-state value of the current given $\omega=4 \mathrm{rad} / \mathrm{s}$.

6. A resistor R , inductor L and capacitor C are connected in parallel to an alternating voltage source of 160 V at a frequence of 250 Hz . A current of 2 A flows through the resistor and a current of 0.8 A flows through the inductor. The total current is 2.5 A . Find the values of R, L and C .

