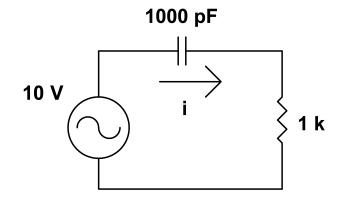
ECE 2350 CIRCUIT ANALYSIS I

Homework 10 Revised 7 April 2020

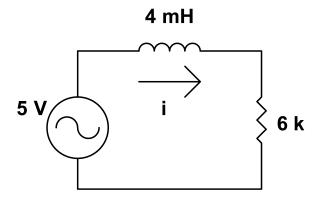
Professor Dunham Due: 14 April 2020

Review Lecture Notes.

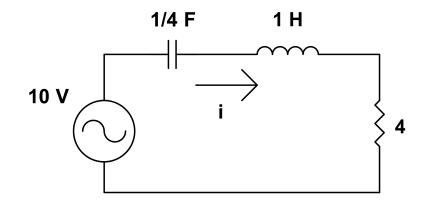
- 1. Find the phasor representation of the following functions:
 - (a) $v(t) = 57\cos(4t + 17^\circ)$.
 - (b) $i(t) = 7\sin(3t 27^\circ)$.
 - (c) $v(t) = 20\sin(10t) 15\cos(10t + 36^\circ)$.
- 2. Find the magnitude, phase and phasor representations of the following complex numbers:

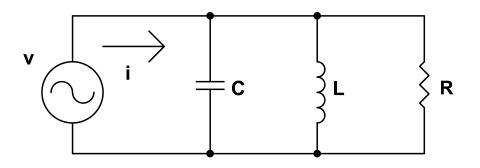

(a)
$$4+8j$$
.
(b) $\frac{4+j}{2+3j}$.
(c) $\frac{(1+2j)(2-j)}{2j(3+2j)}$.

3. In the circuit shown below, find the steady-state value of the current given:


(a)
$$\omega = 10^3$$
 rad/s.

(b)
$$\omega = 10^6$$
 rad/s


(c)
$$\omega = 10^7$$
 rad/s.


4. In the circuit shown below, find the steady-state value of the current given $\omega = 2 \times 10^6 \text{ rad/s}$.

5. In the circuit shown below, find the steady-state value of the current given $\omega = 4 \text{ rad/s}$.

6. A resistor R, inductor L and capacitor C are connected in parallel to an alternating voltage source of 160 V at a frequence of 250 Hz. A current of 2 A flows through the resistor and a current of 0.8 A flows through the inductor. The total current is 2.5 A. Find the values of R, L and C.

