EE 8372 Cryptography \& Data Security

Homework 2

30 January 2020

Professor Dunham
Due: 6 February 2020

Suggested Reading in Menezes, Oorschot and Vanstone: Chapter 10, Sections 1-3 and 5. Suggested Reading in Medard: Lectures 1 and 2 (through Data Processing Theorem). Suggested Reading in MacKay: Sections 2.1-2.7 (2.3 optional), 4.1, 5.1-5.5.

1. Establish the following relationships:
(a) $H(X \mid Y) \geq 0$.
(b) $H(Y, Z \mid X)=H(Y \mid X)+H(Z \mid Y X)$.
(c) Show that $H(Y \mid X)=H(Y)$ if X and Y are independent.
2. Given a discrete random variable X, define a new random variable $Y=g(X)$ where g is a deterministic function. Show that $H(Y) \leq H(X)$. Under what conditions will the equality hold.
3. Let X and Y be real-valued random variables and let $Z=X+Y$.
(a) Show that $H(Z \mid X)=H(Y \mid X)$.
(b) If X and Y are independent, show that $H(Y) \leq H(Z)$ and that $H(X) \leq H(Z)$.
(c) Give an example where $H(X)>H(Z)$ and $H(Y)>H(Z)$. Hint: It suffices to consider a random variable that only takes on the values of 0 and 1 .
4. Let X be a random variable that has a geometric probability mass function with parameter α (as discussed in Handout \#04). Determine $H(X)$ as a function of the parameter α.
