EE 8372 Cryptography \& Data Security

Homework 4
 13 February 2020

Professor Dunham
Due: 20 February 2020

Review Paar Text: Chapter 3 \& 4.
Suggested Reading in Menezes, Oorschot and Vanstone: Chapter 2, section 4, 5, and 6.

1. Find all the irreducible polynomials in $Z_{2}[x]$ of degree 5 . Note that $Z_{2}[x]$ represents all finite degree polynomials in powers of x, that $x^{3}+x+1$ and $x^{3}+x^{2}+1$ all the of the irreducible polynomials of degree 3 , and that $x^{4}+x+1, x^{4}+x^{3}+1$ and $x^{4}+x^{3}+x^{2}+x+1$ are all of the irreducible polynomials of degree 4 .
2. Construct the finite field $Z_{2}[x] /\left(x^{4}+x+1\right)$ which is isomorphic to $\operatorname{GF}\left(2^{4}\right)$. Let α be a root of the primitive polynomial $x^{4}+x+1$. Develop a table showing the relationship between the multiplicative representation and the additive representation for each element of this finite field. Hint: Consider multiplying the additive representation of an element by x. This is equivalent to the multiplicative calculation $\alpha^{k} * \alpha=\alpha^{k+1}$. If the degree of the resultant polynomial is less than 4 , this is the additive field representation. Otherwise the degree of the resultant polynomial is 4 and you will need to subtract (add) the polynomial $x^{4}+x+1$ to lower the degree to 3 or less.
3. Let \mathbf{A} be a non-singular matrix over $\mathrm{GF}(2)$. Consider the affine transformation $f(\mathbf{b})=\mathbf{A b}+\mathbf{c}$ where $\mathbf{c} \neq \mathbf{0}$. Determine the inverse transformation and show that it is an affine transformation.
4. The following matrix over GF(2) is used in the SubBytes Transformation in the AES:

$$
\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1
\end{array}\right] .
$$

Find the inverse matrix over $\operatorname{GF}(2)$. Hint: Observe that this is a circulant matrix - each row/column is a cyclic (end around) shift of the first row/column. It is well known that the inverse matrix is also a circulant matrix. Hence it suffices to solve for the first row/column of the inverse matrix. This yields 8 equations over $\operatorname{GF}(2)$ in 8 unknowns which are readily solved. Other matrix inversion techniques will also work provided that you perform integer only calculations and that you restrict the integer solution to $\mathrm{GF}(2)$.

