EE 8372 Cryptography \& Data Security

Homework 8
 24 March 2020

Professor Dunham
Due: 31 March 2020

Review Text: Chapter 3, section 3.4; Chapter 7, sections 7.1-7.4 and 7.6; and Chapter 8, subsections 8.1.3 and 8.2.4.
Suggested Reading in Menezes, Oorschot and Vanstone: Chapter 2, section 4, 5, and 6; Chapter 3 , sections1, 2, 3, 6, 7 and 8; Chapter 4, sections 1, 2, 3 and 4 ; Chapter 8 , sections 1 and 2; and Chapter 9, sections 1, 2, 3 and 4.
Read Lightly FIPS 180-2, Secure Hash Standard (SHS), 2008 October 17.

1. Compute $7777{ }^{45} \bmod (77773)$ by using repeated squaring (show all steps).
2. The ciphertext 9472 was obtained from the RSA algorithm using modulus $p n=11413=$ 101×113 and $e=7467$. Find the plaintext.
3. In order to increase security, Bob chooses modulus $p n$ and two encryption exponents e_{1} and e_{2}. He asks Alice to encrypt her message m to him by first computing $c_{1} \equiv m^{e_{1}}(\bmod p n)$, then encrypting $c_{2} \equiv c_{1}^{e_{2}}(\bmod p n)$. Alice then sends c_{2} to Bob. Does this double encryption increase security over single encryption? Why or why not?
4. This problem looks at some aspects of prime numbers.
(a) Let p be an n-bit number (the number has exactly n bits and the highest bit must be a 1). What are the minimum and maximum possible values of p ?
(b) What is a reasonable estimate for the number of n-bit prime numbers?
(c) Approximately how many 1024-bit numbers are prime? Hint: This is a LARGE number, use scientific notation to represent your answer.
(d) The current NIST standard (NIST 800-131A Revision 1) recommendation for the modulus $(p n)$ of a RSA algorithm is that it be a minimum of 2048 -bits. Assuming that p is a 1024-bit prime number, what is the probability than an odd 1024-bit random number is prime?
(e) Is an exhaustive search attack feasible for finding a 1024-bit prime number used in a 2048-bit or larger RSA modulus?
5. Using the Miller-Rabin random primality testing algorithm, determine which of the following hex numbers are prime with error probability less than 10^{-8}. All the numbers in the problem are 30 -bit or smaller numbers. You can program the Miller-Rabin algorithm in your favorite programming language using 64-bit integers and use integer arithmetic operations and modulo reductions. Hint: It is suggested that you use the UNIX program bc (a C style interactive language) as well as the primality-testing.bc software package. Information on the program bc as well as several programming examples are available on the course web site.
(a) $0 \times 108 \mathrm{C} 1$
(b) $0 \times 6 \mathrm{CE} 45$
(c) $0 \times 17 \mathrm{C} 79 \mathrm{D}$
(d) $0 \times 1 \mathrm{~B} 206 \mathrm{~B}$
(e) $0 x A 98 \mathrm{AC} 6 \mathrm{D}$
(f) $0 \times 7 \mathrm{CAB} 1 \mathrm{C} 23$

Optional: If you are interested in testing some larger numbers, use your Miller-Rabin random primality testing algorithm to determine if the following numbers are composite or tests prime with an error probability of less than 10^{-8}.
(a) 0x97340264E77E568659
(b) 0x5AD789FB37AADE289F
(c) $0 x 7 \mathrm{D} 25 \mathrm{FB} 921140550 \mathrm{EBFB} 0 \mathrm{D} 84 \mathrm{~B}$
(d) $0 x 34 \mathrm{BA} 3709 \mathrm{DF} 728 \mathrm{~A} 732 \mathrm{FDB} 1787$
(e) 0x62A6F3AFC5E548D4EC00DEB0873FDE7386C10994190130A7
(f) $0 x \mathrm{D} 37 \mathrm{ADA} 29632 \mathrm{ADDE} 177 \mathrm{CE} 24 \mathrm{E} 4671 \mathrm{D} 5 \mathrm{~F} 59 \mathrm{DEDB} 7 \mathrm{E} 193 \mathrm{EA} 8 \mathrm{~B} 117$

Comments: Both the Miller-Rabin and the Solovay-Strassen random primality testing algorithms can fail for a set of composite numbers called pseudoprimes - composite numbers that pass all test as a prime number. While this is an unlikely event, it can occur. It is generally recommend that a fast primality testing algorithm such as the Miller-Rabin or SolovayStrassen be used to identify a prime candidate and then use a different class of random primality testing algorithms such as the Lucas primality test described in the NIST standard FIPS 186-4 to provide add additional confidence in the primality of a prime candidate. Finally, since determining primality is in the class P, one could use one of the deterministic primality algorithms to make a final confirmation.

