EE 8372 CRYPTOGRAPHY & DATA SECURITY

Homework 10 7 April 2020

Professor Dunham Due: 14 April 2020

Review Text: Chapter 9.

- 1. For each of the following elliptic curves, determine if they are singular or non-singular.
 - (a) $E: y^2 = x^3 + x + 1 \pmod{\mathbb{Z}_3}$.
 - (b) $E: y^2 = x^3 + x + 2 \pmod{\mathbb{Z}_7}$.
 - (c) $E: y^2 = x^3 + x + 3 \pmod{\mathbb{Z}_{23}}$.
- 2. Consider the elliptic curve $E: y^2 = x^3 + x + 6 \pmod{\mathbb{Z}_7}$.
 - (a) Compute all points on *E* over \mathbb{Z}_7 .
 - (b) What is the order of the group? *Hint:* Do not miss the point at infinity.
 - (c) Perform the addition (2,3) + (6,2).
 - (d) Perform the addition (2,3) + (2,3).
 - (e) Perform the addition (2,3) + (2,4).
 - (f) Given the element $\alpha = (2,3)$, determine the order of α . Is α a primitive element?
 - (g) Will all points on *E* be primitive with the exception of the point at infinity?
 - (h) What is the group structure of the elliptic curve?
- 3. Consider the elliptic curve $E: y^2 = x^3 + 3x \pmod{\mathbb{Z}_7}$.
 - (a) Compute all points on *E* over \mathbb{Z}_7 .
 - (b) What is the order of the group? *Hint:* Do not miss the point at infinity.
 - (c) Perform the addition (1,2) + (5,0).
 - (d) Perform the addition (1,2) + (1,2).
 - (e) Perform the addition (1,2) + (3,6).
 - (f) Given the element $\alpha = (1, 2)$, determine the order of α . Is α a primitive element?
 - (g) Find the order of the other elements in E.
 - (h) What is the group structure of the elliptic curve?