EE 8372 Cryptography \& Data Security

Homework 10

7 April 2020

Professor Dunham
Due: 14 April 2020

Review Text: Chapter 9.

1. For each of the following elliptic curves, determine if they are singular or non-singular.
(a) $E: y^{2}=x^{3}+x+1\left(\bmod \mathbb{Z}_{3}\right)$.
(b) $E: y^{2}=x^{3}+x+2\left(\bmod \mathbb{Z}_{7}\right)$.
(c) $E: y^{2}=x^{3}+x+3\left(\bmod \mathbb{Z}_{23}\right)$.
2. Consider the elliptic curve $E: y^{2}=x^{3}+x+6\left(\bmod \mathbb{Z}_{7}\right)$.
(a) Compute all points on E over \mathbb{Z}_{7}.
(b) What is the order of the group? Hint: Do not miss the point at infinity.
(c) Perform the addition $(2,3)+(6,2)$.
(d) Perform the addition $(2,3)+(2,3)$.
(e) Perform the addition $(2,3)+(2,4)$.
(f) Given the element $\alpha=(2,3)$, determine the order of α. Is α a primitive element?
(g) Will all points on E be primitive with the exception of the point at infinity?
(h) What is the group structure of the elliptic curve?
3. Consider the elliptic curve $E: y^{2}=x^{3}+3 x\left(\bmod \mathbb{Z}_{7}\right)$.
(a) Compute all points on E over \mathbb{Z}_{7}.
(b) What is the order of the group? Hint: Do not miss the point at infinity.
(c) Perform the addition $(1,2)+(5,0)$.
(d) Perform the addition $(1,2)+(1,2)$.
(e) Perform the addition $(1,2)+(3,6)$.
(f) Given the element $\alpha=(1,2)$, determine the order of α. Is α a primitive element?
(g) Find the order of the other elements in E.
(h) What is the group structure of the elliptic curve?
