Integrated Circuit (IC)

• Definition:
 – Silicon Semiconductor, called a chip, containing the electronic component for constructing digital gates.
 – The chip is mounted in a ceramic or plastic container, and connections are welded to external pins to form an IC

• Level of Integration
 – Small-Scale Integration (SSI) Circuit: fewer than 10 gates
 – Medium-Scale Integration (MSI) Circuit: 10-100 gates
 – Large-Scale Integration (LSI) Circuit: Thousands of gates
 – Very large-Scale Integration (VLSI) Circuit: Hundreds of Thousand of gates

Integrated Circuit (IC)

• Digital Circuit Families
 – Classification based on the specific circuit technology
 – Basic gates are NAND, NOR and Inverter gates

• Most Popular Technologies
 – TTL (Transistor-Transistor Logic)
 • 7400, 74S86
 – ECL (Emitted-Coupled Logic)
 • High speed and also high power consumption
 – MOS (Metal-Oxide Semiconductor)
 • High density
 – CMOS (Complementary Metal-Oxide Semiconductor)
 • Low power consumption
Integrated Circuit (IC)

- Several Terms
 - Fan-out
 - Specify the number of standard loads that the output of the typical gates can drive without impairing its normal operation.
 - Fan-in
 - The number of inputs available in a gate
 - Power dissipation
 - Power consumed by the gate that must be available from the power supply.
 - Propagation delay
 - The average transition delay time for a signal to propagate from input to output
 - Noise margin
 - The Maximum external noise voltage added to an input signal that does not cause an undesirable change in the circuit output

Compute-Aided Design (CAD)

- or Electrical Design Automation (EDA)
 - Design is too large to be handled manually
 - Different level of tools exist
 - FloorPlan, Placement and Route
 - Synthesis
 - Simulation
 - Hardware Description language
 - Verilog
 - VHDL
 - System Verilog
 - Different between software and hardware
HARDWARE DESCRIPTION LANGUAGES (HDLs)

- **Textual Representation of Digital Circuit**
 - Yet Another Way (truth tables, equations, circuit diagrams, etc.)

- **Why Have HDLs?**
 - Documentation
 - First common HDL (VHDL) Documentation Language
 - Simulation
 - First common HDL for Simulation (Verilog)
 - Synthesis
 - Both VHDL and Verilog used for this
 - Currently, more emphasis on SystemC, SystemVerilog

HARDWARE DESCRIPTION LANGUAGES (HDLs)

- **Why are HDLs Important?**
 - Easy way to Describe Large Circuits
 - Large Teams of Designers can Work Concurrently
 - Using Software Engineering Techniques
 - The Specification can be Simulated
 - The Specification can be Synthesized
 - HDLs Support Multiple Levels of Abstraction
Definitions

• Specification
 – Description of the Desired Functionality

• Simulation
 – Given a Model and Inputs, Predict the Output

• Synthesis
 – Transform One Model into Another

Why Another Language?

• Sequential Languages
 – Programming Languages are Sequential
 – Each Statement is Executed in Order of Appearance

• Hardware is a Parallel Instance
 – Model in Terms of Events
 – More Natural Way to Describe and Simulate

• HDLs can be tricky because:
 – We are used to Sequential Execution
 – Different “bugs” Occur due to Parallel Behavior
 – Parallel Behavior Modeled Using Event Driven Methods