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Abstract 
In this work, we study multiobjective thermal-aware 

floorplanning in the fixed-outline context. Our baseline 
implementation demonstrates a 14% average 
interconnect improvement over Parquet for ami49, and 
can additionally optimize peak on-chip temperature. 
To circumvent the expense of Compact Thermal 
Models, we develop a novel approach to power-density 
aware floorplanning, but rigorously evaluate final 
layouts using a standard methodology based on the 
Hotspot tool. With these techniques, our multiobjective 
floorplanner COOLER, reduces peak temperature on 
MCNC circuits by 15.3°C, which is similar to the 
15.1°C reduction achieved by Hotfloorplan. However, 
our tool is 11-146 times faster than Hotfloorplan. We 
also show that solutions found by Hotfloorplan lie on 
the Pareto front generated by COOLER. 
 
1. Introduction 
 

Automated floorplanning performs placement of 
on-chip blocks to facilitate early estimation, as well as 
to improve circuit performance and yield. These blocks 
typically include circuit modules generated by 
partitioning, as well as embedded memories, IP blocks, 
and analog devices. The Classical Floorplanning 
Problem (CFP) seeks to optimize area and 
interconnect, but has recently undergone several 
paradigm shifts due to major changes in micro-
architecture design flows. The increasing scale and 
complexity of Integrated Circuits, as well as time-to-
market pressures in commercial IC design, necessitate 
a top-down hierarchical approach [1]. Such an 
approach can be enabled by fixed-outline floorplanning 
of circuit modules if module outlines are viewed as 
outlines of nested floorplans. However, in 
computational terms, fixed-outline floorplanning is 
considerably harder than the corresponding CFP [2]. 
Another major shift in floorplan design technology is 
the introduction of maximum on-chip temperature as a 
key optimization objective. This has become crucial in 
view of the increasing power dissipation in portable 
and stationary electronics, due to considerable leakage 

current at the 65nm technology node and below, as 
well as increasing clock frequencies. If this trend 
continues unchecked, power density may reach 10,000 
W/cm2 by the year 2015 [3]. 

 
  Operating temperature may increase due to greater 

local power density, triggering several harmful effects, 
such as electromigration and exponential increase in 
leakage, which decreases mean time-to-failure and 
increases the probability of thermal runaways. 
Additionally, the dependence of carrier mobility and 
interconnect resistivity on temperature causes the 
current-driving capability of transistors to decrease and 
the interconnect delay to increase as chips get hotter. 
As maximum on-chip temperature (T) increases, burn-
in tests used to weed out devices with latent defects are 
becoming more and more time-consuming [4]. This is 
because the difference between maximum burn-in 
temperature (limited by thermal runaway) and 
maximum on-chip temperature is decreasing steadily, 
making it difficult to simulate accelerated use. Thermal 
optimization is particularly important for future ICs 
with memory stacked on top of random logic and for 
true-3D ICs, since in both cases air cooling is less 
effective. As the peak on-chip temperature increases, 
the costs of packaging and cooling grow at the rate of 
$1/W above 40W [5]. Without proper design 
methodology, this burgeoning overhead alone may 
hamper future device scaling. 

 
In light of thermal challenges, we consider the 

following Modern Floorplanning Problem (MFP): 
Given a set of blocks },...,,{ 21 NBBB=Π with fixed 

areas, a set of nets },...,,{ 21 mNNN=η specifying the 
block interconnections and average power dissipation 
values },...,,{ 21 NPPPP =  of the modules, find the set 
of non-dominated W+T optimized packings of Π  that 
fit in a fixed outline specified by

outlineoutline HW × . A 
non-dominated set (also termed a Pareto-optimal set) 
by definition excludes solutions whose all parameters 
are either inferior or identical to those of another 
solution.  
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Figure 1. Dependency of the final optimal 
solution in a conventional floorplanner on the 
slope of the fitness line. 

 
To compare MFP and CFP, recall that CFP is 

typically  solved by minimizing the objective function: 
WirelengthAreafCFP ** βα +=               (1) 

where α  and β  are weights determining the relative 
importance of the objectives. Graphically this means 
that the constant-fitness line (with slope βα /−=m ) is 
shifted towards the origin as far as possible to locate an 
optimal solution, as illustrated in Figure 1. Now 
consider the problem in which the designer wants to 
optimize wirelength subject to the constraint

maxAA ≤ . 
From the Pareto-optimal set in Figure 1, solution point 
4 can be quickly identified as optimal. However, the 
conventional, single-objective approach would require 
a sweep through many m values to find this solution. A 
large || m  ensures that the optimal solution will 
satisfy the area constraint, but will generate a poor 
wirelength solution (example: points 1, 2, and 3). 
However, a fitness line with low || m may not satisfy 
the area constraint, as illustrated by points 5 and 6. In 
practice, the number of Pareto-optimal solution points 
close to

maxAA =  may be so large that even 
dynamically updating the weights in discrete steps 
might not reliably find the required solution.  MFP 
inherits all difficulties of the CFP, in the sense that it 
optimizes wirelength and temperature subject to the 
fixed-outline constraint, but is much harder because the 
two optimizations are performed simultaneously.  

 
The naïve approach to mapping out the Pareto front 

by varying the weights in Eqn. (1) is inefficient as it 
requires multiple starts of the single-objective 
annealer. Genetic Algorithms (GA) promise better 
efficiency in multiobjective optimization by tracking 
multiple solutions with varying fitness values, and can 
also employ annealing-style moves in the form of 
mutations. Therefore we develop such a genetic  

 

 
 
 
 
 
 
 
 
 
 

 
Figure 2. Possible variations in floorplan 
aspect ratio while satisfying the outline 
constraint. 

 
algorithm and empirically compare it with a popular 
single-objective floorplanner based on simulated 
annealing (SA). 

 
The rest of the paper is organized as follows, Section 2 
covers necessary background and related work. Section 
3 introduces our multiobjective floorplanning and fast 
thermal optimization technique for the MFP. Section 4 
discusses empirical validation, and Section 5 concludes 
our work. 

                                                          
2. Background and previous work 
 

Modern floorplanning has generated much interest 
among researchers since the year 2000, and several 
sophisticated methods have been proposed to deal with 
the manifold complexities of the MFP. 

 
2.1. Previous work 

 
Previous techniques for fixed-outline floorplanning 

rely on single-objective optimization. In [2], the fixed-
outline constraint was achieved by invoking a specially 
designed subroutine from time to time in course of 
floorplanning. The subroutine compared the aspect 
ratio of the floorplan with that of the prescribed outline 
and initiated slack-based moves to repair aspect ratio 
distortions. In [6] fixed-outline floorplanning was 
achieved by introducing an aspect-ratio difference term 
in the fitness function and dynamically updating the 
weights. [2, 6] assume that the aspect ratios of the 
outline and the optimal floorplan would be the same. 
Figure 2 shows that the floorplan aspect ratio can be 
significantly different from outline aspect ratio and yet 
satisfy the fixed-outline constraint. This flexibility in 
aspect ratio can be exploited for better interconnect 
optimization. An evolutionary technique for fixed-
outline area-packing was proposed in [7] but it does 
not consider interconnect optimization.  

     Floorplans 

      Outline 
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  The need for thermal-aware microarchitecture 
design has been established in [8]. The computational 
cost of embedding a highly accurate temperature 
simulator (using FEM, FDM or Green’s function 
method) within a floorplanner can be prohibitively 
high. Thus Compact Thermal Model (CTM) is used for 
temperature simulations during floorplanning. Tsai et 
al. [9] proposed a CTM that can be used to estimate 
temperature profile from a distribution of power 
dissipating sources on chip. Thermal floorplanners [10] 
and [11] use Hotspot within SA and GA procedures 
respectively, but are very slow, especially on large 
circuits, as CTM-based temperature simulation 
dominates runtime. In contrast, the runtime of CFP is 
dominated by interconnect evaluation [12]. Alternative 
approaches to thermal optimization based on power 
analysis, including the matrix synthesis approach in 
[13], have failed to reduce maximum on-chip 
temperature. Skadron et al. [8] found very small 
correlation between the total power dissipation in a 
block and its temperature.  

 
To this end, our study reveals a high correlation 

between the steady-state temperature at the center of a 
block and the gradient of power density reduction 
computed at its periphery. We thus introduce power-
density aware thermal floorplanning and study its role 
in reducing the maximum on-chip temperature as well 
as improving the runtime of existing thermal-aware 
floorplanners. 

 
2.2. Sequence pair floorplan representation 
 

Over the years a variety of floorplan data-structures 
such as Slicing Tree, Sequence Pair (SP), Bounded 
Slicing Grid, O-tree and B* tree have been proposed. 
Our implementation is based on the Sequence Pair (SP) 
[14] floorplan representation, since this has been used 
by previous fixed-outline floorplanners [2]. In SP 
representation, a pair of permutation of },...,2,1{ N is 
used to encode the floorplan. Depending on the relative 
order of elements in these pairs, certain topological 
constraints are imposed. For example: 

,..),..,(.., ji BB & ,..),..,(.., ji BB ⇒ jB is right of
iB   (2) 

,..),..,(.., ji BB  & ,..),..,(.., ij BB  ⇒ jB is below
iB      (3) 

Given a sequence pair, block locations can be found in 
)( 2nO  time,   and even faster in ))(log( nnO  or 

)))(log(log( nnO  time, using more recent algorithms. 
However, it has been shown in [2] that for 100<n , the 

)( 2nO time algorithm by Tang et al. [15] outperforms 
more sophisticated algorithms. Therefore we adopted 
this algorithm in our work. 

2.3. Hotspot 
 
Hotspot is a temperature simulator. The thermal 

model in Hotspot is based on the well-known duality 
between electric and thermal quantities. The average 
power dissipation within a block is modeled by a 
current source and the lateral heat flow from a block is 
modeled by thermal resistors connected to another 
block or the ambient. The values of resistors and 
capacitors are calculated from the relative positioning 
of the blocks, assuming typical values for sink 
dimension, conductivity etc. For steady-state analysis, 
the capacitors are open-circuited. The temperature at 
the center of each block is then computed by solving 
the nodal equations of the equivalent RC circuit. 
 
3. Multiobjective optimization  
 

To solve the MFP via multiobjective optimization, 
we consider an objective function which is a 3D vector 
of the form: 

>=< 321 ,, fffF                             (4) 
Where Φ=1f and Θ=2f  are the wirelength objective 
and thermal objective respectively. The function 3f  is 
either the outline objective ( Ω ) or the area objective 
( Α ), depending on the mode of operation of the 
floorplanner. The following definitions are useful in 
understanding the multiobjective approach: 
 
DEFINITION 1: A floorplan a is said to dominate a 
floorplan b (also written as ba f ) if and only if all 
elements in the objective vector of a are greater than or 
equal to the corresponding elements in the objective 
vector of b and at least one element in the objective 
vector of a is strictly greater than the corresponding 
element in the objective vector of b. Mathematically, 
we say ba f iff: 

)()( bfaf ii ≥  3,2,1=i               

:}3,2,1{∈∃∧ j )()( bfaf jj >          (5) 

 
DEFINITION 2: A floorplan a is said to cover a 
floorplan b if and only if a dominates b or their 
objective vectors are identical. Mathematically, we say 
a covers b iff: 

ba f or )()( bFaF =                     (6) 
 

DEFINITION 3: A floorplan a is called Pareto-optimal 
if and only if a is not dominated by any other 
floorplan. The set of all non-dominated floorplans 
constitutes the so-called Pareto-optimal set. 
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3.1. Genetic algorithm 
 

    Our multiobjective solver implements a Genetic 
Algorithm (GA). Figure 3 shows the basic flowchart of 
the multiobjective GA. In a Simple Genetic Algorithm, 
there is a single evolving population. To generate the 
Pareto-optimal solution set, an external non-dominated 
population has to be maintained. At each step of the 
GA, non-dominated members from the evolving 
population P are stored in the external population P′ . 
However, members which are non-dominated in P may 
be covered or might cover previously stored members 
in P′ . Thus, each time members are copied to the 
external population, the covered members have to be 
removed to ensure Pareto-optimality of the external 
population. Parent selection is done from the union set 
of the external and evolving population using the 
Binary Tournament Selection scheme. Next Partially 
Mapped Crossover and Swap Mutation are applied to 
the selected parents and a new population is generated. 
The fitness assignment has been done according to the 
well-known Strength Pareto Evolutionary Approach 
(SPEA) that ensures that members in the external 
population have higher probability of being selected in 
the mating pool.  

 
    The procedure for fitness assignment in SPEA is a 
two-step process. At first, each member in the external 
population is assigned a fitness value (strength) given 
by: 

1+
=

N
n

fi
                                     (7) 

where n denotes the number of individuals in P that are 
covered by i and N is the size of P. Once the fitness has 
been assigned to the members in the external 
population, fitness is assigned to each member in the 
evolving population according to the following 
equation:  

∑+=
jii

ij ff
f,

1                                 (8) 

 
3.2. Fixed-outline mode 

 
For fixed-outline floorplanning, the function f3 in 

the objective vector is driven by the outline-objective 
( Ω ) defined below: 

 
[ ])(exp3 HV VVf +−=Ω=                                   (9) 

)()( outlinechipoutlinechipV HHUHHV −−=            (10) 

  )()( outlinechipoutlinechipH WWUWWV −−=              (11) 

 
where VV and VH are measures of the violation of the 
outline constraint in the vertical and horizontal 

directions respectively and )(xU  is the step function 
defined as: 1)( =xU  when 0>x  and 0)( =xU  
when 0≤x . If the maximum allowable percentage 
whitespace ω  and outline aspect ratio ρ  are provided, 
then the width and height of the outline can be easily 
computed from:  
 

2/1]/)100/1[( ρω AWoutline +=                    (12) 
2/1])100/1[( ρω AH outline +=                      (13) 

 
 

 

 

 

 

 

 

 

 

 

 

 

                  

 

 

Figure 3. Multiobjective genetic algorithm.  

 
Theorem 1: 1=Ω  is a necessary and sufficient 
condition for satisfying the fixed outline constraint. 
Proof: 

oultinechip WW ≤ and
oultinechip HH ≤  

)( outlinechip WW −⇔ )( outlinechip WWU − 0= and 

)( outlinechip HH − )( outlinechip HHU − 0= ⇔ 1=Ω  

 
Note that 1=Ω  does not necessitate that the 

floorplan and outline aspect ratios be identical. The 
fixed-outline floorplanner works in two phases. In the 
first phase, the external non-dominated population is 
not pruned. During this phase the GA explores the 
solution space uniformly. In the second phase, a 
selective pruning mechanism is applied on the external 
population to weed out solutions with low Ω , 
whenever the size of the external population increases 
a preset value (~5).  

 
Random Initialization 

Compute Φ , Θ , and Ω or Α for 
each population member 

Create external population and  
copy non-dominated members 

Remove covered members from 
external population 

End? Stop yes 
no 

Assign fitness to members in 
the external population 

Selection of the mating pool from 
union set of the two populations 

Crossover and Mutation 
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3.3. Outline-free mode 

 
For outline-free floorplanning, the function f3 in the 

objective vector is driven by the area-objective ( Α ) 
defined below: 

   ∑ =
=Α=

N

i chipi ABAf
13 )(                           (14) 

where A(Bi) is the area of block i and Achip is the area of 
the chip represented by the sequence pair. 
 
3.4. Wirelength optimization 
 

The half-perimeter of the bounding box of a net 
serves as a good approximation for the total wirelength 
in that net. The Half Perimeter Wire Length (HPWL) is 
used to define the wirelength-objective ( Φ ) as follows: 

[ ]∑ ∈
−+−=Φ

ηi
iiii yyxx )()( minmaxminmax

         (15) 

Where ),( maxmax
ii yx  and ),( minmin

ii yx denote the 
coordinates of the top-right and bottom-left corners of 
the bounding box of net i. 

 

 
Figure 4. Imaginary rectangular boundary 
surrounding a floorplan module for computing 
gradient of power-density reduction. 
 
3.5. Thermal  objectives and optimization 

 
In this section, we introduce power-density aware 

floorplanning for thermal optimization. Our intention 
is to model maximum on-chip temperature (Tmax) using 
a power-density based metric. Since information about 
the block power-density is readily available, such an 
approach is computationally efficient. To understand 
the relation between power-density and temperature, 
consider the equation for steady-state temperature in a 
3D substrate: 

0),,(2

2

2

2

2

2

=+







∂
∂

+
∂
∂

+
∂
∂

zyxQ
z
T

y
T

x
T

k (16)    

Subject to the boundary condition: 

),,( zyxfTh
n
T

k ii
i

=+
∂
∂             (17) 

where T is the temperature as a function of position; k 
and ρ  are thermal conductivity (W/m°C) and density 
(Kg/m3) of the material respectively, hi is the heat 
transfer coefficient of the packaging components 
(W/m2°C), Q is the power-density (W/m3), 

in∂∂ /  
represents the differentiation along the outward normal 
drawn at the boundary surface, and if  is an arbitrary 
function. 

 
If the power-density Q is uniformly distributed 

across the spatial coordinates and the initial and 
boundary conditions are identical for all points, then 
from symmetry of the differential terms in (16) it can 
concluded that the temperature distribution will also be 
uniform. The assumption of uniform initial and 
boundary condition is justified because any thermal-
aware methodology, including CTMs must be 
Boundary and Initial Condition Independent [8]. 
Because power densities are localized and it is not 
possible to make any changes to the circuitry within a 
block, perfectly uniform power density or temperature 
distribution cannot be achieved by redistributing the 
blocks. However, it is possible to identify modules 
with high power density as potential candidates for 
developing hotspots and surround them by whitespace 
or modules with low power density to cool down 
potential hotspots. In order to carry out a mathematical 
analysis of the problem, let us define the following 
terms: 
H: Ordered set of high power-density modules 
(modules having power densities greater than the 80 
percentile value) sorted in descending order. 

iλ : Set of all blocks adjacent to block i Hi ∈∀  

Wij: Shared boundary-length between Hi ∈ and ij λ∈  
Pi: Surface power density of block i 

Wi, Li: Width and length of module i respectively.  

Let us construct an imaginary rectangle of 
length xL ∆+ 2 and width xW ∆+ 2 around block i as 
shown in Figure 4.The effective power density within 
the imaginary rectangle is given by:  

)2)(2(

)( 2

xLxW

xOxPWLWP
P

ii

jijiii

eff
ij

∆+∆+

∆+∆+
=

∑
∈λ              (18) 

The rate at which power density diminishes with x∆  
can be calculated from (18) and is given by:  

∑
∈

−=
∆

−
=

∆
∆

ij
ijji

ii

effi WPP
LWx

PP

x
P

λ

)(
1             (19) 



 6

begin 
Input: Sequence Pair, Module Dimensions, Power Density 
Output: Θ  
1: ←H vector of high power-density blocks in descending order 
2: for all Hi ∈  

3:     ←iλ set of blocks adjacent to i , 1←Scale  

4:      for all ij λ∈  

5:            )*/)(( ScaleLWWPP iiijji −+Θ←Θ    

6:     SScaleScale *←  
End 
Figure 5. Algorithm for calculating the 
thermal objective. 

 
Figure 6. Fixed-outline W+T optimized 
layouts of ami49 with 20.0=ω  and 

.3,2,1=ρ  

Table 1. Correlation coefficients between 
thermal objective Θ  and maximum and 
mean on-chip temperature. 

BENCHMARKS Θ  VS TMAX Θ  VS TMEAN 
apte 0.94 0.67 
xerox 0.92 0.91 

hp 0.96 0.87 
ami33 0.83 0.71 
ami49 0.85 0.89 
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Figure 7. Comparison of runtimes for A+T  
optimization using Hotfloorplan (HFP), A+T 
optimization using COOLER(CLR) and A+W 
optimization using Parquet (PQT).

The idea is to determine a layout which minimizes the 
effective power densities around modules with high 
power density. This is equivalent to maximizing the 
gradient of power-density reduction Hi ∈∀ . In order to 
reduce Tmax, xP ∆∆ /  for the first element in H (i.e. the 
highest power-density block) must be maximized. 
Next, xP ∆∆ /  for the second element in H is 
maximized keeping the relative location of the highest 
power-density block and its neighbours unaltered. 
Thus, it will not be correct to develop a scalar thermal-
objective simply by summing up xP ∆∆ /  from different 
blocks in H. This is because, the block with second 
highest power density may have a much greater 
perimeter, in which case maximizing ∑ ∆∆ xP /  would 

result in surrounding it with blocks of low power 
density. This will neglect the block with highest power 
density and hence would fail to reduce Tmax. To 
overcome this problem, we define the thermal 
objective Θ  as follows: 

∑∑
∈∈

−













=Θ

ij
ijji

iiHi
i

WPP
LWS λ

)(
11           (20) 

where S is the scaling factor (~10). The entire 
procedure is summarized in Figure 5. From 
experimental results we find that Θ  as defined in (20) 
has high degree of correlation with maximum and 
mean temperature across the chip. The correlation 
coefficients are given in Table 1. 

4. Simulation Results 
 

All results were computed on an Intel Pentium IV 
laptop running at 1.8 GHz with a 1GB RAM.  In the 
absence of details on power dissipation for MCNC 
benchmarks, power densities were randomly assigned 
in the range from 1mW/mm2 to 1W/mm2. At first we 
run Parquet in fixed-outline mode on the largest 
MCNC benchmark (ami49). We also run COOLER 
under the same conditions and compare the HPWL for 
different aspect ratios and percentage whitespace in 
Table 2. Block rotations in Parquet were disabled to 
make fair comparison with COOLER. It is observed 
that our approach improves the average HPWL by 
14.39%. Figure 6 shows fixed outline W+T optimized 
layouts of ami49 with different outline aspect ratios. 
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Table 2.  Comparison of average HPWL results (over 10 independent runs) produced by Parquet 
and COOLER for fixed-outline placements of ami49 without block rotation 

HPWL (mm) 
1=ρ  2=ρ  3=ρ  

 
maxWS 

(ω ) Parquet COOLER %diff Parquet COOLER %diff Parquet COOLER %diff 
15 1020.79 1019.11 0.16 993.13 1014.44 -2.1 1023.34 1007.39 1.58 
20 1013.05 862.06 17.52 1041.21 905.51 14.98 1088.36 870.49 25.03 
25 973.30 820.246 18.65 1011.6 875.99 15.48 1133.46 955.59 18.61 
30 1016.12 777.62 30.67 973.60 913.97 6.52 976.47 1023.53 -4.59 
35 1004.88 985.31 1.98 1024.43 845.71 21.13 1140.37 791.04 44.16 
40 998.11 943.03 5.84 1085.72 861.56 26.01 1045.14 889.17 17.54 

 

      
Figure 8. (a) Thermal-aware layout of apte 
generated by COOLER and (b) spatial 
distribution of temperature for the same 
layout. 
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Figure 9. Pareto-optimal solutions generated 
by COOLER (CLR) and solutions produced by 
Hotfloorplan (HFP) for MCNC benchmarks. 

Table 3. Percentage whitespace, maximum 
and mean on-chip temperatures and runtime 
for A+T optimization using Hotfloorplan 

MCNC 
Benchmarks 

Percentage 
Whitespace 

Tmax 

(K) 
Tmean 

(K) 
Runtime 

(sec) 

apte 3.27 348.90 343.91 257 
xerox 7.83 337.5 329.01 399 

hp 13.14 349.6 348.01 501 
ami33 44.89 327.5 327.02 13526 
ami49 17.43 341.8 336.21 58838 

 
For thermal-aware floorplanning, we use Hotfloorplan 
[10] to obtain area and temperature (A+T) optimized 
layouts for MCNC benchmarks. The percentage 
whitespace, mean and maximum temperatures of the 
layouts are given in Table 3. Next, we use Parquet for 
obtaining area and wirelength (A+W) optimized 
layouts for the same circuits. The runtime for these two 
cases are compared in Figure 7.  It is found that for 
ami33 and ami49, A+T optimization using 
Hotfloorplan is around 10,000-20,000 times longer 
than A+W optimization using Parquet. This trend may 
become even more pronounced for larger circuits. We 
thus conclude that temperature simulation using CTM 
can become a performance bottleneck for placing large 
benchmarks. Results in Table 3 show clearly a cubic 
growth in runtime as the number of modules increase. 

It is also observed that reduction in peak temperature 
for ami33 and ami49 is accompanied by considerable 
increase in whitespace, which may not fit design 
specifications. On the other hand for apte and xerox, it 
is possible to bring down the temperature further by 
relaxing the area constraint. In short, a single run of 
Hotfloorplan does not give us a clear idea of the trade-
off surface or the Pareto-optimal solutions at our 
disposal. Next we used COOLER (in outline-free 
mode) to generate thermal-aware layouts for all MCNC 
benchmarks. One such layout for apte is shown in 
Figure 8(a). It was found that the runtime for A+T 
optimization using COOLER varies from 23 sec for 
apte to 401 sec for ami49. Thus our method is around 
11-146 times faster than Hotfloorplan for MCNC 
benchmarks. Figure 7 compares runtimes for COOLER 
and Hotfloorplan. This clearly demonstrates the 
superiority of our method over CTM-based 
floorplanners, especially when the number of modules 
is large. 

 
We use Hotspot [16] to analyze the spatial 

temperature distribution at the block level for the 
layouts produced by COOLER. The temperature 
distribution for the apte layout in Figure 8(a) is plotted 
in Figure 8(b). For each MCNC benchmark, COOLER 
produces a Pareto-optimal solution set. Tmax for each  
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Figure 10. Reduction in Tmax by COOLER 
(CLR) and Hotfloorplan (HFP) as compared to 
non-thermal floorplanner. 

 
layout in the Pareto-optimal set is extracted using 
Hotspot and plotted in Figure 9. The maximum 
temperature and deadspace percentage corresponding 
to the layouts generated by Hotfloorplan are also 
plotted on the same figure. It is observed that the 
solutions produced by Hotfloorplan lie on the Pareto 
front generated by COOLER.  

 
We thus conclude that COOLER is as effective in 

reducing Tmax as CTM-based temperature-aware 
floorplanners but runs much faster. Moreover, our 
method allows the designer to explore various design 
possibilities without having to modify the objective 
function in the source code. For example, Figure 9 
indicates that Tmax in apte can be reduced from 357K to 
347K by increasing the deadspace by 7%. In short, by 
using Multiobjective GA as opposed to conventional 
SA it is possible to get a complete picture of the trade-
off surface. Figure 10 shows that COOLER and 
Hotfloorplan are capable of reducing Tmax by 15.3°C 
and 15.1°C on an average over simple area optimized 
layouts. Finally, COOLER was run in an outline free 
mode and the Pareto-optimal solution set for A+W+T 
optimization was generated. Figure 11 shows the 
Pareto-optimal solutions for ami49 benchmark in the 
outline free mode.  
 
5. Conclusion 
In this paper, we proposed a novel multiobjective 
approach driven by a new outline objective function 
for better interconnect optimization in fixed-outline 
context. We also presented a maximum on-chip 
temperature reduction technique that improves the 
runtime of existing thermal floorplanners by several 
orders of magnitude. 

Figure 11. Non-dominated surface showing 
382 Pareto-optimal solution points for outline-
free A+W+T optimized floorplanning of ami49. 
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