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Abstract—System security continues to be of increasing 
importance.  To effectively address both natural and intentional 
threats to large systems, the threats must be cataloged and 
analyzed.  Extremely large and complex systems can have an 
accordingly large number of threat scenarios.  Simply listing the 
threats and devising countermeasures for each is ineffective and 
not efficient.  We describe a threat cataloging methodology 
whereby a large number of threats can be efficiently cataloged 
and analyzed for common features.  This allows countermeasures 
to be formulated that address a large number of threats that 
share common features.  The methodology utilizes Multiple-
Valued Logic for describing the state of a large system and a 
multiple-valued decision diagram (MDD) for the threat catalog 
and analysis. 

Large System Security, Threat cataloging, MDD 

I. INTRODUCTION 
In recent years, more emphasis has been placed on design 

for security, security assessment, disaster recovery, disaster 
tolerance, in addition to the ongoing efforts in the established 
areas in fault tolerance.  All of these areas require the 
identification and analysis of faults or threats.   Most fault 
models and analysis methods assume that a fault causes a 
system to either function or fail and are thus modeled with 
binary conditions. 

Recent events have demonstrated our vulnerability to 
disasters, both natural and man-made.   This motivates the need 
to incorporate disaster tolerance into large system designs.   
Disaster tolerance is a superset of the more established 
approaches commonly referred to as fault tolerance.  Models 
for disaster tolerance differ from those for fault tolerance since 
they assume that failures can occur due to single or massive 
numbers of individual faults occurring simultaneously or in a 
rapidly cascading manner. Traditional fault tolerance models 
single points of failure. Therefore, a disaster-tolerant system 
can withstand a catastrophic failure and still function with 
some degree of normality [8, 15].  

Threats on a system can include both accidental and 
intentional effects.  Examples of accidental events include 
random component failures, natural disasters, and fires.  
Examples of intentional effects include sabotage and cyber 
threats.  A variety of tree structures have been developed to 
represent possible system threats.  These tree structures are 

commonly called fault trees or attack trees.  Fault trees were 
originally developed to identify the effects of component 
failures on a system [16] while attack trees traditionally 
focused on the effects of cyber security breaches [14].   There 
have been recent variants of these trees, and sometimes these 
trees have been used interchangeably [2, 5, 6, 7, 11].  However, 
these trees all have one thing in common: they are binary-
valued trees, connected with AND and OR operators.  This 
limits the effectiveness of how they can represent possible 
system-wide attacks.   Modeling different operational modes 
other than just the binary case of failure or normal operation 
are critical in analyzing large systems in the presence of 
threats.  As an example, in the 2003 blackout of the US power 
grid, many complex interactions caused a blackout to occur in a 
large portion of the northeastern US; however, it would be 
incorrect to state that the entire US power grid failed.   In order 
to effectively catalog system threats, it is necessary to 
determine the probabilities of these threats based on various 
system stimuli, including input conditions and their 
probabilities. 

As part of our preliminary research on large-scale system 
threat assessment, we developed threat tree models [12]. Threat 
trees are a superset of fault and attack trees since they are based 
on multiple-valued (MV) or radix-p valued algebras over a 
finite and discrete set of values [10].  When the radix p=2, the 
threat tree reduces to a fault or attack tree depending on the 
nature of the disruptive events.  Generally, threat trees have 
p>2: these additional logic states allow for more complicated 
interactions to be modeled.  In particular, these additional states 
can represent partial failures or degraded performance in a 
system, which are critical in analyzing large systems in the 
presence of threats.   

The structure of this paper is the following: First, 
background information on decision diagram models is 
provided. Next, an approach is presented using decision 
diagram models to determine system threat probabilities.  
Finally, a system example is used to illustrate these concepts. 

II. DECISION DIAGRAMS 
Fig. 1 shows an example of a simple binary fault tree where 

the circular nodes represent the event of a single component 
failure and the logic operators (AND/OR gates) show how the 
events combine to result in a subsystem failure. Referring to 
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Fig. 1, if one or more of events 1, 2, or 3 occur, subsystem A 
will fail. Alternatively, both events 4 and 5 must occur for 
subsystem A to fail.  For practical systems, it is likely that a 
large number of components will need to be analyzed. As the 
system size grows (in terms of number of components and/or 
number of logic states), the system analysis process quickly 
becomes unwieldy.  Therefore, an alternate system 
representation is required to make the analysis process more 
efficient. 

Decision diagrams are well-suited for compact 
representation of a large number of threats and due to their 
canonical structure, efficient algorithms are formulated that 
analyze threats and identify those that pose the greatest threat 
to the system.  Decision diagrams are rooted directed acyclic 
graphs (DAG) that can be used to represent large switching 
functions in an efficient manner.  For binary-valued logic, the 
binary decision diagram (BDD) is a well-known structure [3] 
that has been applied to many areas including the 
representation of fault trees [13].  Furthermore, efficient 
software is readily available to manipulate BDDs.   

In the case of Multiple-Valued Logic (MVL), an extension 
to the BDD construct has been developed and implemented 
called the Multiple-Valued Decision Diagram (MDD).  
Consider a totally-specified p-valued function with n inputs, 
f(x0, x1, …, xn) where each dependent variable x�  ∈ {0,1, ⋯ p −
1}.  f(x) can be efficiently represented by an MDD.   As is 
similar to BDD, the MDD is also a DAG and it contains a 
maximum of p terminal nodes, where each terminal node is 
labeled by a distinct logic value in the range [0, p-1].  Every 
non-terminal node is labeled by an input variable and has p 
outgoing edges, where each edge corresponds to each logic 
value.  MDD can be minimized using various techniques that 
were developed for BDD, thus allowing the representation of 
exceptionally large number of such functions [9].    

III. DETERMINING SYSTEM OUTPUT PROBABILITIES 
For binary tree structures (fault and attack trees), BDD’s 

have been applied to simplify the modeling threats on complex 
systems [1, 4, 5, 17, 18].  The common approach to determine 
probabilities on binary tree structures is to apply probability 
equations, such as those described in [6].   Assume we have n 
inputs, each with probability Pin(xi){1}, i ∈ [1, n], where Pin(xi) 
{1}= probability that input xi  is 1. If the inputs are mutually 
independent, then the output probability (probability that the 
output is 1) of an n-input AND gate is the sum of all the edges 
pointing to the terminal-1 vertex. 

As an example, assume we have a 2-input AND gate with 
the following input probabilities:  Pin(x0)= 0.5, Pin(x1) = 0.75.  
Then, Pout {1}= (0.5)(0.75) = 0.375. 

While the separate application of probability equations has 
been commonly used for previous fault tree assessment 
methods, this approach can become inefficient for systems with 
large number of nodes.  Since the decision diagram contains  

 
Figure 2. Binary AND BDD with probabilities. 

edges with logic value weights, a more efficient approach 
would be to incorporate probabilities as edge weights, then 
calculate output probabilities by traversing the graph edges. 

Using this approach, we can expand on the previous 
example as follows: 

Input x0:  Px0[ x0=0] = 0.5, Px0[ x0=1] = 0.5 

Input x1:  Px1[ x1=0] = 0.25, Px1[ x1=1] = 0.75 

For the 2-input AND gate, Pout{1} = Px0[ x0=1] Px1[ x1=1]  
= (0.5)(0.75) = 0.375.  Since this is a binary system, Pout{0} = 1 
– Pout{1} = 1 – 0.375 = 0.625.    

We can also determine the output probabilities using a 
BDD with probabilities incorporated into the edge weights.  
The BDD for this gate is shown in Fig. 2.   The edge weights 
have the notation “V/P”, where V = input value and P = 
probability of that input value.  The output state probabilities 
Pout[f=1] and Pout[f=0] are calculated by traversing the edges of 
the BDD.  This is done along all the paths from the root node to 
the output state nodes (0 and 1). The probabilities along each 
path are multiplied, and paths leading to the same output state 
node are added: 

Pout[f=0] = 0.5 + (0.25)(0.5) = 0.625 

Pout[f=1] = (0.5)(0.75) = 0.375 

Since an MDD is an extension of a BDD, it should also 
hold that we can determine threat probabilities by applying the 
specified state probabilities as weights to the MDD edges and 
traversing the tree.  Table I shows a system with three 

 

Figure 1. Fault tree example. 
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operational states and two components with given input 
probabilities.  The system has the following truth table (Table 
II), which becomes the MDD shown in Fig. 3.  Note that 
branch (1,2) from A to output state (2) adds the probabilities of 
the two events:  0.25 + 0.5 = 0.75.   We get the following 
output probabilities by traversing the MDD.  This is done along 
all the paths from the root node to the output state nodes (0, 1, 
and 2). The probabilities along each path are multiplied, and 
paths leading to the same output state node are added together: 

Pout[f=0] = (0.2)(0.25) = 0.05 

Pout[f=1] = (0.2)(0.5) + (0.3)(0.25) = 0.175 

Pout[f=2] = (0.2)(0.25) + (0.3)(0.75) + 0.5 = 0.775 
TABLE I. RADIX-3 SYSTEM EXAMPLE. 

 
TABLE II. TRUTH TABLE.FOR RADIX-3 EXAMPLE 

A B f 

0 0 0 

0 1 1 

0 2 2 

1 0 1 

1 1 2 

1 2 2 

2 X 2 
 

 

Figure 3. MDD for radix-3 example. 

IV. ALGORITHM FOR OUTPUT PROBABILITY CALCULATIONS 
Using the concepts described in the previous sections, we 
developed the algorithm shown in Fig. 4 to calculate system 
output probabilities for a given MDD.  Initially, the output 
probabilities are set to zero.  The algorithm starts at the root 
vertex of the MDD, then traverses the MDD using a depth-first 
search.  A standard depth-first search on a graph with V 
vertices and E edges has a complexity of O(V+E) [19]. Each 

edge is traversed, and the corresponding probabilities are 
multiplied to form a working probability value until a terminal 
node is reached.  At this point, the output probability 
corresponding to the terminal node is updated by adding the 
working probability value.   When all vertices have been 
traversed, the output probabilities have been updated to their 
final values. 

 
Figure 4.  Algorithm for output probability calculations. 

V. EXAMPLE 
Using the previously mentioned 2003 US power grid failure 
example, assume that we can represent a simple power grid by 
three operational states: fully operational, partially operational, 
and non-operational.  This is a radix-3 system, so it cannot be 
represented by the traditional attack tree structure.  However, it 
can be represented by our threat tree structure: state 2 = fully 
operational, state 1 = partially operational (degraded) and state 
0 = non-operational.  Also assume that the simple power grid 
system has three generation plants: coal, hydro, and wind.  The 
total power available on the power grid is the sum of the power 
output produced by the coal, hydro and wind plants.   Table III 
shows the threshold power values for fully operational, 
degraded, and non-operational states for the generation plants 
and total power grid.   Using this information, an MVL truth 
table for this system is created (Table IV), where f represents 
the total power grid operational state.  Note that “X” indicates a 
“don’t-care” state, where the value can be either 0, 1, or 2. For 
example, row 4 in Table IV identifies the system state where 
the coal plant is non-operational (state 0: output = 0), the hydro 
plant is partially operational (state 1: output = 1500 MW) and 
the wind plant is fully operational (state 2: output = 200 MV).  
The total power grid output for this system state is 1700 MW, 
so the power grid is partially operational (f = 1).   
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The MDD for our example power grid system is shown in 
Fig. 5. The path along the MDD that corresponds to Row 4 in 
Table IV is indicated by the dashed arrows in Fig. 5. 

 
TABLE IV. TRUTH TABLE FOR POWER GRID EXAMPLE 
Coal Hydro Wind f 

0 0 X 0 

0 1 0 0 

0 1 1 1 

0 1 2 1 

0 2 X 1 

1 0 X 0 

1 1 X 1 

1 2 X 2 

2 0 X 0 

2 1 X 2 

2 2 X 2 
 

 

Revisiting the earlier power grid example, we can now 
calculate the output probabilities for this radix-3 system.  Note 
that the input probabilities from Table III are denoted in the 
MDD of Fig. 5.  Applying the algorithm of Fig. 4, we obtain 
the following output probabilities: 

Pout[f=0] = (0.002)(0.009)(0.1) + (0.002)(0.001) + 
(0.018)(0.001) + (0.98)(0.001) = 0.001002 

Pout[f=1] = (0.002)(0.009)(0.3) + (0.002)(0.009)(0.6) + 
(0.018)(0.009) + (0.002)(0.99) = 0.002158 

Pout[f=2] = (0.98)(0.009) + (0.018)(0.99) + (0.98)(0.99) = 
0.99684 

The output probability results indicate that this system has a 
high probability of being fully functional in the presence of 
threat conditions.  The specific output probabilities can also be 
used to classify the particular threats to the system.  

Note that the MDD allows for good scaling when the 
problem sizes increase. Analysis may be further refined by 
extending the system radix above 3 and using the same MDD 
methodology. 

 

Figure 5. MDD for power grid example. 

 

VI. CONCLUSION 
The determination of system threat probabilities is an 

important component of system classification and threat 
cataloging.  We have shown how to model system threat 
probabilities using edge weights on MDD’s, which is a more 
efficient approach than the current method of developing 
separate probability equations for each possible output threat 
scenario.  It allows easier determination of overall system state 
probabilities and it can accommodate complex systems with 
the efficient scalability of modern MDD packages. The 
framework discussed in this paper can be further applied to risk 
analysis which is useful in the determination of the initial 
system element probability values. 

In terms of augmenting large systems to make them more 
disaster tolerant, we intend to develop further analysis methods 
based on threat trees. Because threat trees inherently combine 
common subtree structures, we note that a tree representing a 
collection of threats automatically yields common 
characteristics of subsets of threat by combining common 
subpaths. Such common subpaths correspond to similar 
characteristics among subsets of threats and they may be used 
to determine which parts of the system to augment in order to 
address a maximum number of threats. Finally, another area for 
further research is how to model threat probabilities that are not 
mutually exclusive, such as conditional probabilities, and 
determine how to incorporate these into the MDD structure. 
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