
Using Multiple-Valued Logic Decision Diagrams to
Model System Threat Probabilities

Theodore W. Manikas, Mitchell A. Thornton
Department of Computer Science and Engineering

Southern Methodist University
Dallas, Texas, USA

{manikas, mitch}@lyle.smu.edu

David Y. Feinstein
Innoventions, Inc.

1045 Bissonnet Street
Houston, TX , USA

david@innoventions.com

Abstract—System security continues to be of increasing
importance. To effectively address both natural and intentional
threats to large systems, the threats must be cataloged and
analyzed. Extremely large and complex systems can have an
accordingly large number of threat scenarios. Simply listing the
threats and devising countermeasures for each is ineffective and
not efficient. We describe a threat cataloging methodology
whereby a large number of threats can be efficiently cataloged
and analyzed for common features. This allows countermeasures
to be formulated that address a large number of threats that
share common features. The methodology utilizes Multiple-
Valued Logic for describing the state of a large system and a
multiple-valued decision diagram (MDD) for the threat catalog
and analysis.

Large System Security, Threat cataloging, MDD

I. INTRODUCTION
In recent years, more emphasis has been placed on design

for security, security assessment, disaster recovery, disaster
tolerance, in addition to the ongoing efforts in the established
areas in fault tolerance. All of these areas require the
identification and analysis of faults or threats. Most fault
models and analysis methods assume that a fault causes a
system to either function or fail and are thus modeled with
binary conditions.

Recent events have demonstrated our vulnerability to
disasters, both natural and man-made. This motivates the need
to incorporate disaster tolerance into large system designs.
Disaster tolerance is a superset of the more established
approaches commonly referred to as fault tolerance. Models
for disaster tolerance differ from those for fault tolerance since
they assume that failures can occur due to single or massive
numbers of individual faults occurring simultaneously or in a
rapidly cascading manner. Traditional fault tolerance models
single points of failure. Therefore, a disaster-tolerant system
can withstand a catastrophic failure and still function with
some degree of normality [8, 15].

Threats on a system can include both accidental and
intentional effects. Examples of accidental events include
random component failures, natural disasters, and fires.
Examples of intentional effects include sabotage and cyber
threats. A variety of tree structures have been developed to
represent possible system threats. These tree structures are

commonly called fault trees or attack trees. Fault trees were
originally developed to identify the effects of component
failures on a system [16] while attack trees traditionally
focused on the effects of cyber security breaches [14]. There
have been recent variants of these trees, and sometimes these
trees have been used interchangeably [2, 5, 6, 7, 11]. However,
these trees all have one thing in common: they are binary-
valued trees, connected with AND and OR operators. This
limits the effectiveness of how they can represent possible
system-wide attacks. Modeling different operational modes
other than just the binary case of failure or normal operation
are critical in analyzing large systems in the presence of
threats. As an example, in the 2003 blackout of the US power
grid, many complex interactions caused a blackout to occur in a
large portion of the northeastern US; however, it would be
incorrect to state that the entire US power grid failed. In order
to effectively catalog system threats, it is necessary to
determine the probabilities of these threats based on various
system stimuli, including input conditions and their
probabilities.

As part of our preliminary research on large-scale system
threat assessment, we developed threat tree models [12]. Threat
trees are a superset of fault and attack trees since they are based
on multiple-valued (MV) or radix-p valued algebras over a
finite and discrete set of values [10]. When the radix p=2, the
threat tree reduces to a fault or attack tree depending on the
nature of the disruptive events. Generally, threat trees have
p>2: these additional logic states allow for more complicated
interactions to be modeled. In particular, these additional states
can represent partial failures or degraded performance in a
system, which are critical in analyzing large systems in the
presence of threats.

The structure of this paper is the following: First,
background information on decision diagram models is
provided. Next, an approach is presented using decision
diagram models to determine system threat probabilities.
Finally, a system example is used to illustrate these concepts.

II. DECISION DIAGRAMS
Fig. 1 shows an example of a simple binary fault tree where

the circular nodes represent the event of a single component
failure and the logic operators (AND/OR gates) show how the
events combine to result in a subsystem failure. Referring to

2011 41st IEEE International Symposium on Multiple-Valued Logic

0195-623X/11 $26.00 © 2011 IEEE

DOI 10.1109/ISMVL.2011.12

263

Fig. 1, if one or more of events 1, 2, or 3 occur, subsystem A
will fail. Alternatively, both events 4 and 5 must occur for
subsystem A to fail. For practical systems, it is likely that a
large number of components will need to be analyzed. As the
system size grows (in terms of number of components and/or
number of logic states), the system analysis process quickly
becomes unwieldy. Therefore, an alternate system
representation is required to make the analysis process more
efficient.

Decision diagrams are well-suited for compact
representation of a large number of threats and due to their
canonical structure, efficient algorithms are formulated that
analyze threats and identify those that pose the greatest threat
to the system. Decision diagrams are rooted directed acyclic
graphs (DAG) that can be used to represent large switching
functions in an efficient manner. For binary-valued logic, the
binary decision diagram (BDD) is a well-known structure [3]
that has been applied to many areas including the
representation of fault trees [13]. Furthermore, efficient
software is readily available to manipulate BDDs.

In the case of Multiple-Valued Logic (MVL), an extension
to the BDD construct has been developed and implemented
called the Multiple-Valued Decision Diagram (MDD).
Consider a totally-specified p-valued function with n inputs,
f(x0, x1, …, xn) where each dependent variable x� ∈ {0,1, ⋯ p −
1}. f(x) can be efficiently represented by an MDD. As is
similar to BDD, the MDD is also a DAG and it contains a
maximum of p terminal nodes, where each terminal node is
labeled by a distinct logic value in the range [0, p-1]. Every
non-terminal node is labeled by an input variable and has p
outgoing edges, where each edge corresponds to each logic
value. MDD can be minimized using various techniques that
were developed for BDD, thus allowing the representation of
exceptionally large number of such functions [9].

III. DETERMINING SYSTEM OUTPUT PROBABILITIES
For binary tree structures (fault and attack trees), BDD’s

have been applied to simplify the modeling threats on complex
systems [1, 4, 5, 17, 18]. The common approach to determine
probabilities on binary tree structures is to apply probability
equations, such as those described in [6]. Assume we have n
inputs, each with probability Pin(xi){1}, i ∈ [1, n], where Pin(xi)
{1}= probability that input xi is 1. If the inputs are mutually
independent, then the output probability (probability that the
output is 1) of an n-input AND gate is the sum of all the edges
pointing to the terminal-1 vertex.

As an example, assume we have a 2-input AND gate with
the following input probabilities: Pin(x0)= 0.5, Pin(x1) = 0.75.
Then, Pout {1}= (0.5)(0.75) = 0.375.

While the separate application of probability equations has
been commonly used for previous fault tree assessment
methods, this approach can become inefficient for systems with
large number of nodes. Since the decision diagram contains

Figure 2. Binary AND BDD with probabilities.

edges with logic value weights, a more efficient approach
would be to incorporate probabilities as edge weights, then
calculate output probabilities by traversing the graph edges.

Using this approach, we can expand on the previous
example as follows:

Input x0: Px0[x0=0] = 0.5, Px0[x0=1] = 0.5

Input x1: Px1[x1=0] = 0.25, Px1[x1=1] = 0.75

For the 2-input AND gate, Pout{1} = Px0[x0=1] Px1[x1=1]
= (0.5)(0.75) = 0.375. Since this is a binary system, Pout{0} = 1
– Pout{1} = 1 – 0.375 = 0.625.

We can also determine the output probabilities using a
BDD with probabilities incorporated into the edge weights.
The BDD for this gate is shown in Fig. 2. The edge weights
have the notation “V/P”, where V = input value and P =
probability of that input value. The output state probabilities
Pout[f=1] and Pout[f=0] are calculated by traversing the edges of
the BDD. This is done along all the paths from the root node to
the output state nodes (0 and 1). The probabilities along each
path are multiplied, and paths leading to the same output state
node are added:

Pout[f=0] = 0.5 + (0.25)(0.5) = 0.625

Pout[f=1] = (0.5)(0.75) = 0.375

Since an MDD is an extension of a BDD, it should also
hold that we can determine threat probabilities by applying the
specified state probabilities as weights to the MDD edges and
traversing the tree. Table I shows a system with three

Figure 1. Fault tree example.

264

operational states and two components with given input
probabilities. The system has the following truth table (Table
II), which becomes the MDD shown in Fig. 3. Note that
branch (1,2) from A to output state (2) adds the probabilities of
the two events: 0.25 + 0.5 = 0.75. We get the following
output probabilities by traversing the MDD. This is done along
all the paths from the root node to the output state nodes (0, 1,
and 2). The probabilities along each path are multiplied, and
paths leading to the same output state node are added together:

Pout[f=0] = (0.2)(0.25) = 0.05

Pout[f=1] = (0.2)(0.5) + (0.3)(0.25) = 0.175

Pout[f=2] = (0.2)(0.25) + (0.3)(0.75) + 0.5 = 0.775
TABLE I. RADIX-3 SYSTEM EXAMPLE.

TABLE II. TRUTH TABLE.FOR RADIX-3 EXAMPLE

A B f

0 0 0

0 1 1

0 2 2

1 0 1

1 1 2

1 2 2

2 X 2

Figure 3. MDD for radix-3 example.

IV. ALGORITHM FOR OUTPUT PROBABILITY CALCULATIONS
Using the concepts described in the previous sections, we
developed the algorithm shown in Fig. 4 to calculate system
output probabilities for a given MDD. Initially, the output
probabilities are set to zero. The algorithm starts at the root
vertex of the MDD, then traverses the MDD using a depth-first
search. A standard depth-first search on a graph with V
vertices and E edges has a complexity of O(V+E) [19]. Each

edge is traversed, and the corresponding probabilities are
multiplied to form a working probability value until a terminal
node is reached. At this point, the output probability
corresponding to the terminal node is updated by adding the
working probability value. When all vertices have been
traversed, the output probabilities have been updated to their
final values.

Figure 4. Algorithm for output probability calculations.

V. EXAMPLE
Using the previously mentioned 2003 US power grid failure
example, assume that we can represent a simple power grid by
three operational states: fully operational, partially operational,
and non-operational. This is a radix-3 system, so it cannot be
represented by the traditional attack tree structure. However, it
can be represented by our threat tree structure: state 2 = fully
operational, state 1 = partially operational (degraded) and state
0 = non-operational. Also assume that the simple power grid
system has three generation plants: coal, hydro, and wind. The
total power available on the power grid is the sum of the power
output produced by the coal, hydro and wind plants. Table III
shows the threshold power values for fully operational,
degraded, and non-operational states for the generation plants
and total power grid. Using this information, an MVL truth
table for this system is created (Table IV), where f represents
the total power grid operational state. Note that “X” indicates a
“don’t-care” state, where the value can be either 0, 1, or 2. For
example, row 4 in Table IV identifies the system state where
the coal plant is non-operational (state 0: output = 0), the hydro
plant is partially operational (state 1: output = 1500 MW) and
the wind plant is fully operational (state 2: output = 200 MV).
The total power grid output for this system state is 1700 MW,
so the power grid is partially operational (f = 1).

265

The MDD for our example power grid system is shown in
Fig. 5. The path along the MDD that corresponds to Row 4 in
Table IV is indicated by the dashed arrows in Fig. 5.

TABLE IV. TRUTH TABLE FOR POWER GRID EXAMPLE
Coal Hydro Wind f

0 0 X 0

0 1 0 0

0 1 1 1

0 1 2 1

0 2 X 1

1 0 X 0

1 1 X 1

1 2 X 2

2 0 X 0

2 1 X 2

2 2 X 2

Revisiting the earlier power grid example, we can now
calculate the output probabilities for this radix-3 system. Note
that the input probabilities from Table III are denoted in the
MDD of Fig. 5. Applying the algorithm of Fig. 4, we obtain
the following output probabilities:

Pout[f=0] = (0.002)(0.009)(0.1) + (0.002)(0.001) +
(0.018)(0.001) + (0.98)(0.001) = 0.001002

Pout[f=1] = (0.002)(0.009)(0.3) + (0.002)(0.009)(0.6) +
(0.018)(0.009) + (0.002)(0.99) = 0.002158

Pout[f=2] = (0.98)(0.009) + (0.018)(0.99) + (0.98)(0.99) =
0.99684

The output probability results indicate that this system has a
high probability of being fully functional in the presence of
threat conditions. The specific output probabilities can also be
used to classify the particular threats to the system.

Note that the MDD allows for good scaling when the
problem sizes increase. Analysis may be further refined by
extending the system radix above 3 and using the same MDD
methodology.

Figure 5. MDD for power grid example.

VI. CONCLUSION
The determination of system threat probabilities is an

important component of system classification and threat
cataloging. We have shown how to model system threat
probabilities using edge weights on MDD’s, which is a more
efficient approach than the current method of developing
separate probability equations for each possible output threat
scenario. It allows easier determination of overall system state
probabilities and it can accommodate complex systems with
the efficient scalability of modern MDD packages. The
framework discussed in this paper can be further applied to risk
analysis which is useful in the determination of the initial
system element probability values.

In terms of augmenting large systems to make them more
disaster tolerant, we intend to develop further analysis methods
based on threat trees. Because threat trees inherently combine
common subtree structures, we note that a tree representing a
collection of threats automatically yields common
characteristics of subsets of threat by combining common
subpaths. Such common subpaths correspond to similar
characteristics among subsets of threats and they may be used
to determine which parts of the system to augment in order to
address a maximum number of threats. Finally, another area for
further research is how to model threat probabilities that are not
mutually exclusive, such as conditional probabilities, and
determine how to incorporate these into the MDD structure.

VII. ACKNOWLEDGMENT
This research was partially supported by the U.S. Office of

Naval Research (ONR) project N000140910784.

REFERENCES
[1] L.M. Bartlett and J.D. Andrews, "Choosing a heuristic for the "fault tree

to binary decision diagram" conversion, using neural networks," IEEE
Trans. Reliability, vol.51, pp. 344- 349, Sept. 2002.

[2] S. Bistarelli, P. Peretti, and I. Trubitsyna, “Analyzing Security Scenarios
Using Defence Trees and Answer Set Programming”, Proc. 3rd Int.
Workshop on Security and Trust Management (STM 2007), 22 February
2008, pp. 121-129.

TABLE III. OPERATIONAL STATES FOR POWER GRID
EXAMPLE.

266

[3] R.E. Bryant, "Graph-Based Algorithms for Boolean Function
Manipulation", IEEE Trans.Computers, vol. C-35, pp. 677-691, Aug.
1986.

[4] Y.R. Chang, S.V. Amari, and S.Y. Kuo, "OBDD-based evaluation of
reliability and importance measures for multistate systems subject to
imperfect fault coverage," IEEE Trans. Dependable and Secure
Computing, vol.2, pp. 336- 347, Oct.-Dec. 2005.

[5] S. Contini, G.G.M. Cojazzi, and G. Renda, “On the use of non-coherent
fault trees in safety and security studies”, 17th European Safety and
Reliability Conf., Dec. 2008, pp. 1886-1895.

[6] I.N. Fovino, M. Masera, and A. De Cian, “Integrating cyber attacks
within fault trees”, 18th European Safety and Reliability Conf., Sept.
2009, pp. 1394-1402.

[7] L. Grunske and D. Joyce, “Quantitative risk-based security prediction
for component-based systems with explicitly modeled attack profiles”, J.
Systems and Software, vol. 81, pp. 1327-1345, Aug. 2008.

[8] M. A. Harper, C. M. Lawler, and M. A. and Thornton, “IT Application
Downtime, Executive Visibility and Disaster Tolerant Computing”.
Proc. Int. Conf. on Cybernetics and Information Technologies, Systems
and Applications (CITSA 2005), and Int. Conf. on Information Systems
Analysis and Synthesis (ISAS), 2005, pp. 165-170.

[9] D. M. Miller, and R Drechsler, “Implementing a multiple-valued
decision diagram package,” Proc. 28th IEEE Int. Symp. on Multiple-
valued Logic, 1998, pp. 52-57.

[10] D. M. Miller. and M. A. Thornton, Multiple Valued Logic: Concepts and
Representations, Morgan & Claypool Publishers, ISBN 10-1598291904,
2007.

[11] A. L. Opdahl and G. Sindre, “Experimental comparison of attack trees
and misuse cases for security threat identification”, Information and
Software Technology, vol. 51, pp. 916-932, May 2009.

[12] P. Ongsakorn, K. Turney, M. A. Thornton, S. Nair, S. A. Szygenda, and
T. W. Manikas, “Cyber Threat Trees for Large System Threat
Cataloging and Analysis,” Proc. IEEE Int. Systems Conf., 2010, pp.
610-615.

[13] R. Remenyte and J. D. Andrews, “A simple component connection
approach for fault tree conversion to binary decision diagram,” Proc. 1st
Int. Conf. on Availability, Reliability and Security, April 2006.

[14] B. Schneier., “Attack Trees: Modeling Security Threats,” Dr. Dobb’s
Journal, Dec. 1999.

[15] S. A. Szygenda and M.A. Thornton, “Disaster Tolerant Computing and
Communications”, Proc. Int. Conf. on Cybernetics and Information
Technologies, Systems and Applications (CITSA 2005), and Int. Conf. on
Information Systems Analysis and Synthesis (ISAS), 2005, pp. 171-173.

[16] W. E.Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl, “Fault tree
handbook,” NUREG-0492, U.S. Nuclear Regulatory Commission, Jan.
1981.

[17] L. Xing; and Y. Dai, "A New Decision-Diagram-Based Method for
Efficient Analysis on Multistate Systems," IEEE Trans. Dependable and
Secure Computing, vol.6, pp.161-174, July-Sept. 2009.

[18] O. Yevkin, "Truncation approach with the decomposition method for
system reliability analysis," Reliability and Maintainability Symp., 2009.
pp.430-435.

[19] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms.
1990: MIT Press.

.

267

