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An important part of the integrated circuit design process is the channel routing stage, which

determines how to interconnect components that are arranged in sets of rows. The channel
routing problem has been shown to be NP-complete, thus this problem is often solved using

genetic algorithms. The traditional objective for most channel routers is to minimize total area

required to complete routing. However, another important objective is to minimize signal
propagation delays in the circuit. This paper describes the development of a genetic channel

routing algorithm that uses a Pareto-optimal approach to accommodate both objectives. When

compared to the traditional channel routing approach, the new channel router produced layouts

with decreased signal delay, while still minimizing routing area.
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1. Introduction

The integrated circuit design process transforms a system speci¯cation into a manu-

factured chip. An important part of the design process is the routing stage, which

determines how to interconnect components on the chip, subject to certain constraints.

Typically, the circuit components (cells) are arranged in sets of rows, separated by

channels. In this case, the cells are interconnected with wires in the channels using a

channel router. The signal inputs and outputs on each cell are called terminals, while

each set of common terminals that are to be connected together is called a net. A netlist

de¯nes all the nets and their terminal connections for a given circuit.

Routing channels are assumed to be horizontal, with ¯xed connections (cell

terminals) on the top and bottom of the channel, and open right and left ends.

A channel can be formally described as two sequences of size C (channel length) that
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describe the top (T Þ and bottom (BÞ connections in the channel: T ¼ ft1; t2; . . . ; tCg
and B ¼ fb1; b2; . . . ; bCg. For each sequence, ti is the net connected to the top of

column i; while bi is the net connected to the bottom of column i: The netlist for a

channel can be formally described as a sequence of size M (number of nets) that

describes all the nets (NÞ to be routed in the channel: N ¼ fn1;n2; . . . ;nMg.
A routing channel example from Ref. 1 is shown in Fig. 1. This channel has 12

columns (C ¼ 12) and 10 nets (M ¼ 10). The netlist N ¼ f1; 2; 3; 4; 5; 6; 7; 8; 9; 10g.
The top channel connections T ¼ f0; 1; 4; 5; 1; 6; 7; 0; 4; 9; 10; 10g and the bottom

channel connections B ¼ f2; 3; 5; 3; 5; 2; 6; 8; 9; 8; 7; 9g. A net name of \0" indicates

that no net is connected to the speci¯ed channel terminal. The given sequence

indicates that column 1 has a terminal connection to net 2 at the bottom of the

channel, and no terminal connection at the top. Column 2 has a terminal connection

to net 1 at the top of the channel, and terminal connection to net 3 at the bottom.

Traditional channel routing assumes two routing layers, with all horizontal wire

segments routed on one layer and all vertical wire segments routed on the second

layer, to avoid unintended electrical connections (shorts) between nets. Layers on the

same net are connected using vias. The traditional goal of channel routers is to

minimize the channel area, which means minimizing the channel height. This goal

translates into minimizing the total number of horizontal tracks: each track contains

one or more horizontal segments.

1.1. Channel routing constraints

There are two primary constraints that a®ect routing: horizontal and vertical con-

straints. A horizontal constraint exists between two nets j and k (j 6¼ kÞ if their

horizontal ranges overlap. For our working example (Fig. 1), net 1 has the horizontal

range (2, 5) since its leftmost terminal connection is in column 2 and its rightmost

terminal connection is in column 5. Similarly, net 4 has the horizontal range (3, 9).

If nets 1 and 4 were routed in the same horizontal track, the horizontal wire

segments for nets 1 and 4 would overlap and short. Therefore, a horizontal constraint

exists between nets 1 and 4. For a given netlist and channel, horizontal constraints

Fig. 1. Routing channel example.
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can be represented by a horizontal constraint graph HðV ;EÞ, an undirected graph

where V = [set of all nets in the netlist] and E = [horizontal constraints between

nets]. The horizontal constraint graph for Fig. 1 is shown in Fig. 2.

Figure 3 illustrates the horizontal constraints for nets 8 and 9. Note that net 9 has

a horizontal constraint with nets 8 and 10, but net 8 does not have a horizontal

constraint with net 10. Therefore, the horizontal segments for nets 8 and 10 could

theoretically be assigned to the same horizontal track. However, we also need to

check if any vertical constraints exist between these nets.

A vertical constraint exists between two nets j and k (j 6¼ kÞ if their vertical

ranges overlap. For our working example (Fig. 1), column 3 has top net connection 4

and bottom net connection 5. This means that the horizontal track containing net 4

must be routed above the horizontal track containing net 5; otherwise the vertical

wire segments will overlap and short.

Fig. 2. Horizontal constraint graph for Fig. 1.

Fig. 3. Horizontal constraints for nets 8, 9 and 10.
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Note that column 4 has top net connection 5 and bottom net connection 3, so net

5 must be routed above net 3. Vertical constraints are transitive: since net 4 must be

routed above net 5, it must also be routed above net 3.

A vertical constraint graph is a directed graph that indicates routing precedence

from top to bottom. An ancestor vertex must be routed above its descendent ver-

tices. The vertical constraint graph for Fig. 1 is shown in Fig. 4.

Figure 5 illustrates the vertical constraints for nets 8, 9 and 10. Note that net 10

must be routed above net 9, while net 9 must be routed above net 8. Since vertical

constraints are transitive, nets 8 and 10 cannot be assigned to the same horizontal

track.

2. Multiple-Objective Genetic Algorithm for Channel Routing

Early attempts to solve the channel routing have used deterministic methods (see

Refs. 1 and 2 for more details). However, the channel routing problem has been

shown to be NP-complete.3 Therefore, recent channel routing methods have used

Fig. 4. Vertical constraint graph for Fig. 1.

Fig. 5. Vertical constraints for nets 8, 9 and 10.
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genetic algorithms (see Refs. 4�10 for more details). The traditional objective for

most channel routers is to minimize channel height, which minimizes the total area

required to route all interconnection wires. Minimizing channel height is accom-

plished by minimizing the total number of horizontal tracks required to complete the

routing.

However, another important objective is to minimize signal propagation delays in

the circuit. Signal propagation delay is directly proportional to the square of the

interconnection wire length.11 Delay also depends on wire width; however, wire

widths are ¯xed in the channel routing problem, so wire length is the predominate

variable in delay. Therefore the genetic algorithm for the channel router must

optimize for two objectives: minimal number of tracks and minimal total wire length.

For many multiple-objective problems, there is no single optimal solution, but rather

a set of alternative solutions. These solutions, called Pareto-optimal solutions, are

optimal in the sense that they dominate other solutions in the search space. That is,

the Pareto-optimal solutions are superior to the other solutions when all objectives

are considered (see Refs. 12�14 for more details). Therefore, we developed a

multiple-objective genetic algorithm for channel routing that uses the Pareto-

optimal approach.

Given the sequences T ;B, and the netlist N for a speci¯c channel, the horizontal

and vertical constraints are identi¯ed using the methods described in the previous

section. Next, the genetic algorithm is applied to determine the track assignment of

the nets:

Begin

Generate initial population P of size 200

While (not termination condition) do

Evaluate fitness of P

For 100 iterations do

Select parents R1,R2 from P

Create offspring X by crossover on parents

With probability 0.15, mutate offspring

Replace weaker parent with offspring

Evaluate fitness of offspring

End for

End while

Final solution ¼ individual with \best" fitness

End

2.1. Population generation

The population size is 200 individuals, and the initial population is randomly gen-

erated. The chromosome structure, based on Refs. 8 and 10, is an integer string

fx1x2 � � �xMg for M nets. Each integer xi ¼ j means that net i is assigned to track j,
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where j 2 ½1;T � for T tracks. The chromosome locus is the net number, while the

chromosome allele is the track number. For example, the chromosome f2 3 1g means

that net 1 is assigned to track 2, net 2 is assigned to track 3, and net 3 is assigned to

track 1.

2.2. Fitness evaluation

For a given chromosome, the represented solution may not be feasible: there may be

horizontal and/or vertical constraints if the nets are assigned to the tracks speci¯ed

in the chromosome. Therefore, a chromosome's feasibility must be determined during

¯tness evaluation.

2.2.1. Feasibility check

First, we need to identify all tracks that have more than one net assigned; if a track

has only one net, then there are no constraint issues. For each multiple-net track,

check for horizontal constraints, then vertical constraints, between the nets assigned

to the track. If there are no constraints for any of the net assignments, then the

solution is feasible.

2.2.2. Fitness function

The objectives of the channel router are to minimize the number of horizontal tracks

and minimize the total interconnection wire length of the ¯nal solution. For the

channel routing problem, the lengths of the horizontal segments will be ¯xed, as they

depend on the ¯xed terminal connections of the cells. However, the lengths of the

vertical segments will change, depending on the particular track assignment of the

corresponding horizontal segment of the net. Therefore, the objective of minimizing

total interconnection wire length becomes the objective of minimizing the total

vertical segment wire length.

A Pareto-optimal approach15 is used to compare possible solutions. Let v =

fv1 ; v2g be a feasible solution vector for a given individual of the genetic algorithm,

where v1 = total number of horizontal tracks used by the solution and v2 = total

vertical segment wire length for the solution. Then, for two solution vectors x

and y, x dominates y if 8i : xi � yi and 9j : xj < yj.

For example, if x¼ f5, 80g and y¼ f5, 100g, then solution x dominates solution

y. Both x and y use 5 tracks; however, x has shorter total wire length than y.

Therefore, solution x is \¯tter" than solution y.

2.3. Parent selection

After ¯tness evaluation, the population is ranked: the individuals are sorted based on

their ¯tness values. The individual with the highest ¯tness value is ranked 1, and the

lowest is ranked jP j(population size).
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Two individuals are randomly selected from the population to be parents, using

binary tournament selection.16 A random number r (0 < r < 1) is generated. If r < k

(a selected bias parameter), then the ¯tter parent is selected. Otherwise, the less ¯t

parent is selected. For our genetic algorithm, k ¼ 0:75, so the bias is toward the ¯tter

parent.

2.4. Crossover

The parents produce an o®spring during crossover. The crossover rate is 0.5, which

means that during each generation (population size * crossover rate), o®springs are

created. Therefore, 100 sets of parents are selected, and each set of parents produces

an o®spring.

Crossover is performed using a \pointwise" approach.8 First, a crossover point

(index p) is randomly selected, where p 2 ½1;M �. The o®spring chromosome contains

alleles [1, p] of the ¯rst parent, and alleles [pþ 1;M] of the second parent.

For example, given the following parents:

Parent 1: f8 6 3 4 9 5 7 3 1 4g
Parent 2: f5 4 9 8 6 6 1 9 1 8g
If the crossover point p ¼ 4, then the resulting o®spring is: f8 6 3 4 6 6 1 9 1 8g.

2.5. Mutation

The o®spring may also undergo mutation, with a probability of 15% (mutation

rate ¼ 0.15). The approach of Ref. 8 was used, which is to randomly select various

loci on the o®spring and change their alleles to valid track numbers. For the previous

o®spring example: f8 6 3 4 6 6 1 9 1 8g.
Assume that loci 3, 5, 9 are randomly selected to be changed. We replace them

with a random value in the range [1, #nets]:

f8 6 7 4 10 6 1 9 5 8g.

2.6. Termination

The genetic algorithm terminates if there has been no change in the \best solution"

after 1000 generations.

3. Results

The channel routing genetic algorithm was developed in Cþþ and run in UNIX on

channel data sets provided in Refs. 1 and 5. First, the channel router was run only

considering the objective of minimizing number of tracks (the traditional approach).

Next, the channel router was run considering both objectives (minimizing number of

tracks and minimizing total wire length). The results are shown in Table 1. For

multiple-objective optimization methods, there may be trade-o®s between objectives
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to obtain a \near-optimal" solution. However, as seen in Table 1, optimizing for both

objectives reduces total wire length, without increasing the channel height. The wire

length units depend on the technology scaling factor �. For example, given a typical

contemporary value of � ¼ 90 nm, then a wire length of 50 units ¼ (50)(90 nm) ¼
4500 nm ¼ 4.5�m.

The data set chan1 of Ref. 1 is our working example of Fig. 1. Figure 6 shows the

¯nal routing layout when the genetic algorithm only considers channel height, while

Fig. 7 shows the layout when optimizing for both channel height and total wire

Table 1. Comparison of single objective versus multiple objectives for channel routing.

Channel height Channel height and wire length

Netlist #Tracks Total wire length #Tracks Total wire length

chan1 (Ref. 1) 5 84 5 41

ch1 (Ref. 5) 6 50 6 35
ch2 (Ref. 5) 6 66 6 44

ch3 (Ref. 5) 6 66 6 46

ch4 (Ref. 5) 7 80 6 40

Fig. 6. Channel routing solution for chan1, optimizing for number of tracks only.

Fig. 7. Channel routing solution for chan1, optimizing for number of tracks and total wire length.
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length. Both solutions required ¯ve horizontal tracks to complete all interconnec-

tions. For Fig. 7, note that the horizontal tracks for nets 8 and 9 are assigned to lower

tracks than for Fig. 6. This reduces the overall interconnection wire length.

Similar results occur for the data set ch1 of Ref. 5. Figure 8 shows the ¯nal routing

layout when the genetic algorithm only considers channel height, while Fig. 9 shows

the layout when optimizing for both channel height and total wire length. Both

solutions required six horizontal tracks to complete all interconnections. However,

the layout of Fig. 9 assigns net 2 to the uppermost horizontal track, as net 2 only has

connections to the top of the channel. As with chan1, the overall interconnection wire

length is reduced when it is considered as an objective in the algorithm. For data sets

ch2, ch3 and ch4, the ¯nal routing layouts are shown in Figs. 10�15.

Fig. 8. Channel routing solution for ch1, optimizing for number of tracks only.

Fig. 9. Channel routing solution for ch1, optimizing for number of tracks and total wire length.
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Fig. 10. Channel routing solution for ch2, optimizing for number of tracks only.

Fig. 11. Channel routing solution for ch2, optimizing for number of tracks and total wire length.

Fig. 12. Channel routing solution for ch3, optimizing for number of tracks only.
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Fig. 13. Channel routing solution for ch3, optimizing for number of tracks and total wire length.

Fig. 14. Channel routing solution for ch4, optimizing for number of tracks only.

Fig. 15. Channel routing solution for ch4, optimizing for number of tracks and total wire length.
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For genetic algorithms, a common approach to compare methods is to view the

number of iterations required to converge to a solution. This approach is used instead

of run-time, since number of iterations is machine independent. Table 2 shows the

total iterations required to converge to the solutions for each data set. Recall that the

genetic algorithm terminates if there is no change in the \best solution" after 1000

iterations. Therefore, the number of iterations to converge to the ¯nal solution ¼
total number of iterations � 1000. For data sets ch1, ch2 and ch3, the multiple-

objective approach took more iterations than the single-objective approach. How-

ever, the opposite was true for data sets chan1 and ch4.

4. Conclusion

The multiple-objective genetic channel routing algorithm was shown to produce

interconnection solutions that had the same or better channel heights, but reduced

total wire lengths, when compared to the traditional single-objective approach.

Recall that minimizing channel height results in reduced routing area, while mini-

mizing wire lengths results in reduced signal propagation delays, which are two

important objectives for integrated circuit design. Future research includes testing

for other objectives, such as minimizing signal crosstalk. Crosstalk occurs when there

are long parallel lengths of wires close to each other, so an objective would need to be

added into the genetic algorithm ¯tness function to minimize parallel wire lengths.
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