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ABSTRACT 

The operation of large systems is affected by both 
natural and intentional threats. Many modern system analysis 
methods use binary logic models to represent system 
operations. However, these models are limited as they can 
only represent two operational states: full operation mode or 
complete failure. In order to represent intermediate system 
states, such as partial failures, multiple-valued logic models 
(MDDs) must be used. Because threats that result in system 
degradation often have a conditional nature, these conditional 
probabilities must be computed in an efficient manner.  An 
improved technique based upon the notion of conditional 
probability table cell indices is described and shown to allow 
for efficient scalability.   

INTRODUCTION  

An important part of system analysis is the 
determination of risks for system threats.  Common risks 
include system vulnerabilities that can be exploited by an 
external attacker, such as Stuxnet (Karnouskos, 2011) and 
Heartbleed (Tsoutsos & Maniatakos, 2014).  Various tree-
like data structures have been developed to represent possible 
system threats, such as fault trees (Vesely, Goldberg, 
Roberts, & Haasi, 1981) or attack trees (Schneier, 1999).   

A common structure for fault representation is the binary 
decision diagram (BDD), which is a rooted directed acyclic 
graph (DAG) that can be used to represent large switching 
functions in an efficient manner (Bryant, 1986).  Figure 1 
shows a BDD for the function f(A, B) = A and B.  In this 
diagram, if both A and B have a logic value of 1, then the 
output value for f(A, B) is 1.  Otherwise, the output value is 
0. 

The BDD structure has been applied to many areas 
including the representation of fault trees (Rauzy, Gauthier, 
& Leduc, 2007)(Xing & Dai, 2009)(Yevkin, 2009)(Mahdi & 
Nadji, 2013). Furthermore, efficient software is readily 
available to manipulate BDDs and a variety of heuristics and 
strategies have been adapted for use with fault trees (Rauzy 
et al., 2007)(Yao Cai, Zhengjiang Liu, & Zhaolin Wu, 2009).  
However, these structures are based on a binary model 

whereby a system either operates in a fully functional or a 
complete failure mode.  Modeling different operational 
modes other than the binary case of failure or normal 
operation are critical in analyzing large systems in the 
presence of threats. 

To address this limitation we need to expand our models 
to handle more than 2 logic states.  For example, we may 
want to represent the following states of a system: (2) fully 
operational, (1) partially operational, and (0) non-
operational.  This system has 3 states, so it is represented by 
a ternary system (radix 3).  In general, systems with radix > 2 
are called multiple-valued logic (MVL) systems. For 
example, we can expand the binary AND function into a 
radix-3 MIN function as shown in Table 1. 

In the case of MVL, an extension to the BDD construct 
has been developed and implemented called the Multiple-
Valued Decision Diagram (MDD) (Miller & Thornton, 
2007).  Similar to the BDD, the MDD is also a DAG and it 
contains a maximum of p terminal nodes, where each 
terminal node is labeled by a distinct logic value in the range 
[0, p-1].   Figure 2 shows an example of an MDD for the 
radix-3 function f = MIN(A, B) of Table 1. 

 

 
Fig. 1  BDD for function f = A and B 

 



 

  

 
Table 1 Truth table for 2-input MIN function 

 

Fig. 2  MDD for radix-3 MIN function 
Most practical systems have many interdependent 

components, so the conditional probabilities of input states 
must be considered during system analysis.  While 
conditional probability analysis for binary systems has been 
widely studied, there has been limited research in this area 
for multiple-valued logic systems with radices > 2. Previous 
work in this area has been done by (Manikas, Feinstein, & 
Thornton, 2012)(Nagayama, Sasao, Butler, Thornton, & 
Manikas, 2014)(Thornton, Manikas, Szygenda, & 
Nagayama, 2014)(Yuchang Mo, Liudong Xing, & Amari, 
2014) for application to multiple-valued logic decision 
diagrams for system threat analysis.  These methods typically 
represent system operation using MDD's and apply graph 
traversal methods to calculate the probabilities of system 
output states.  While these approaches are effective for 
handling small systems, they can become unwieldy as system 
size grows. In particular, it can be difficult to analyze the 
conditional probabilities of systems using the MDD model as 
the number of system inputs increases. 

This paper describes an alternate approach to calculating 
system output state probabilities, given the conditional 
probabilities of input states for a given system.  The 
approach described in this paper expands on the traditional 
conditional probability theory (which focuses on binary 
systems) to multiple-valued logic systems.   

CONDITIONAL PROBABILITIES FOR BINARY 
SYSTEMS 

The traditional approach to calculating conditional 
probabilities assumes a binary logic system: each event is 

either true or false. For example, we may have two events 
x1(j) and x0(i), where P(x1(j)) is the probability that x1(j) has 
logic value j (0 or 1), and P(x0(i)) is the probability that x0(i) 
has logic value i (0 or 1).  From general probability theory 
(Douglas Montgomery & Runger, 2003), the conditional 
probability of event x0(i) given the occurrence of event x1(j) 
is P(x0(i)|x1(j)) as shown in Eq. 1. 
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Table 2 Conditional probabilities for a radix-2, 2-input 

system 

 
 
Table 3 Cell table indices for a radix-2, 2-input system 

 
Table 4 Conditional probabilities for 2-input binary 

system 

 
The conditional probabilities are determined as shown in 

Table 2, where: 
• P(x1 ⋂ x0) = probability that both x1 and x0 occur. 
• P(x1) = total probability that x1 occurs = P(x1 ⋂ x0') 

+ P(x1 ⋂ x0). 
The index i of each table cell where the values 

intersection is found by i = 2x1 + x0.  For example, the table 
cell for P(x1(1) ⋂ x0(0)) is i = 2(1) + 0 = 2. The 
corresponding table cell indices are shown in Table 3.  

Now assume we have a 2-input binary system that 
implements the AND function and has the conditional 
probabilities shown in Table 4.  Using the approach of 
(Manikas, Feinstein, & Thornton, 2012), we can determine 
the probabilities of obtaining output value 0 (Eq. 2) and 
output value 1 (Eq. 3). 
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However, we can also calculate these output 

probabilities using the values of the cell node probabilities.  
Note that for the AND function, cell nodes 0, 1, and 2 map to 
output value 0, while cell node 1 maps to output value 1.  
Therefore, the output probabilities can be calculated by 
summing the probability values of the cell nodes that map to 
the particular output node.  For the AND function, this would 
produce the output probabilities as shown in Eq. 4 and Eq. 5. 
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Note that this approach gives the same output 

probability results as the method of (Manikas et al., 2012), 
but with simpler calculations. Therefore, this approach is 
more computationally efficient. 

CONDITIONAL PROBABILITIES FOR TERNARY 
SYSTEMS 

We can further expand our system to a radix-3 (ternary), 
3-input system.  The corresponding table cell indices are 
shown in Table 5 for x2=0, Table 6 for x2=1, and Table 7 for 
x2=2. 

Now, assume that we have a SCADA (Supervisory 
Control And Data Acquisition) system (Rautmare, 2011) that 
has three components: a nuclear reactor, a wastewater 
treatment system, and oil refinery. Also assume that these 
systems have three possible levels of operation: fully 
operational, partially operational, or non-operational.  We 
can model this system as a radix-3, 3-input system.  The 
inputs are the operation states of the nuclear reactor (x2), the 
wastewater treatment system (x1), and the oil refinery (x0).  
The operation levels are (2) fully operational, (1) partially 
operational, and (0) non-operational. 

 
Table 5 Cell table indices for a radix-3, 3-input system: 

x2 = 0 

 
 
 
 
 
 

Table 6 Cell table indices for a radix-3, 3-input system: 
x2 = 1 

 
Table 7 Cell table indices for a radix-3, 3-input system: 

x2 = 2 

 

Table 8 Conditional probabilities for SCADA system 
inputs: x2 = 0 

 
Table 9 Conditional probabilities for SCADA system 

inputs: x2 = 1 

 
Table 10 Conditional probabilities for SCADA system 

inputs: x2 = 2 

 
In addition, we will assume that we know the 

conditional probabilities for the inputs of this SCADA 
system for a given system threat, such as Stuxnet. The 
conditional probabilities indicate the relationship between 
operating states for the SCADA system components during 
an attack. Table 8 shows the conditional probabilities for 
x2=0, while Table 9 shows these values for x2=1 and Table 10 
shows the values for x2=2.  The operation of the SCADA 
system is shown in the MDD of Fig. 3 and in the truth table 
of Table 11.  Note that the probabilities for each row of 
Table 11 correspond to the probabilities of each cell in 
Tables 8, 9, and 10. 



 

  

Figure 3  MDD for the SCADA system operation 
 

Table 11 Truth table for SCADA system operation 

 
We can then determine the output probabilities of the 

SCADA system by summing the cell node probability values 
that correspond to each output value of F.  First, we calculate 

P(0) by summing the probabilities for the rows where F = 0 
(Eq. 6).  Similarly, P(1) is calculated by summing the 
probabilities for the rows where F =1 (Eq. 7), and P(2) is 
calculated by summing the probabilities for the rows where 
F=2.  The results indicate that for our given attack scenario, 
the SCADA system is most likely to operate in a partially 
operational or degraded state (logic level 1). 
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CONCLUSION 

For systems whose threat scenarios can be modeled by 
multiple-valued logic and conditional probabilities, we have 
developed an analysis approach to determine the probability 
of system outcomes for the given threat.  Previous methods 
required excessive path traversals to compute conditional 
probability values.  The new method described here is based 
on the notion of a conditional table cell and its location. 
Thus, the resulting computations when implemented over 
MDDs results in an improved method that requires less 
computation and allows the technique to become more 
scalable for large systems.   
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