
Cyber Threat Trees for Large System Threat

Cataloging and Analysis*

P. Ongsakorn, K. Turney, M. Thornton, S. Nair, S. Szygenda, and T. Manikas

High Assurance Computing and Networking Laboratories

Department of Computer Science and Engineering

Southern Methodist University
Dallas, TX, USA

{pongsak, kturney, mitch, nair, szygenda, manikas}@lyle.smu.edu

Abstract—The implementation of cyber threat

countermeasures requires identification of points in a system
where redundancy or other modifications are needed. Because
large systems have many possible threats that may be
interdependent, it is crucial that such threats be cataloged in a
manner that allows for efficient representation and ease of
analysis to identify the most critical threats. To address this
problem, we model large system threats by conceptually
representing them as a Cyber Threat Tree implemented as a
directed graph known as a Multiple-Valued Decision Diagram
(MDD). The cyber threat tree structure improves upon both the
classical fault tree and attack tree structures by expanding the
representation of possible system threats. This cyber threat tree
model is incorporated into an existing MDD software package to
help identify and catalog possible system threats. We have also
developed a new formal language, CyTML, which is used to
represent cyber threat trees.

Index Terms—Cyber Attacks, System Threats, Tree Models.

I. INTRODUCTION

Cyber attacks on various infrastructures and large systems around
the world are gaining increasing attention. The implementation of
cyber threat countermeasures requires identification of those points in
the system where redundancy or other modifications are needed.
Because large systems have many possible threats that may be
interdependent, it is crucial that such threats be cataloged in a manner
that allows for efficient representation and ease of analysis to identify
the most critical threats.

In analyzing the effect of large system threats, there is a need to
efficiently catalog those threats so that further analyses can be
performed to extract common characteristics among the threats and to
devise suitable countermeasures. A very large system can have an
enormous number of potential threat scenarios and a simple list of
these is insufficient for analysis and classification. To address this
need, we propose an extension to the well-known fault tree
representation and further describe efficient data structures that allow
for a convenient organization of the threats that is both canonic and
amenable to automated analysis.

We also use the concepts of discrete multiple-valued logic (MVL),
in particular the Post algebras which provide much more
expressiveness than the binary Boolean algebras that traditional fault
and trees are based upon. The fact that the MVL descriptions are
more expressive has implications in the type of data structures used to
represent the cyber threat trees as well as the analysis methods
employed. We use and adapt of the Multiple-Valued Decision

Diagram (MDD) for the purpose of threat cataloging. The MDD not
only allows for compact representation of extremely large numbers of
threats but is also canonic in a mathematical sense and allows for easy
identification of common characteristics among subsets of threats that
may not be readily apparent to a human who is reading a simple threat
list.

Our approach utilizes a threat representation structure called a
Cyber Threat Tree. This idea was motivated from the ideas of fault
trees, which were originally devised by Bell laboratories. Cyber threat
trees have important differences from the fault trees in that many
threat events are not statistically independent and that, unlike the fault
tree model, we do not model threats as faults. In the fault tree model,
a fault either exists or does not; hence, it is based on a binary Boolean
logic switching function. Cyber threats have a probability of
occurring that may result in total system failure, partial system
degradation, or no effect. For this reason, we do not use a switching
function based on a binary algebra, rather we use a multiple valued
algebra so that various states of the threats can be modeled as well as
their interdependence with one another.

The organization of this paper is that we will first provide
background material on relevant topics that are used in the formulation
of cyber threat trees such as a review of fault and attack trees. Next,
we will introduce the new cyber threat tree and describe the new
features that differentiate it from other structures. A simple example
will be used to demonstrate the use of the cyber threat tree. The
following section of the paper will deal with the implementation and
representation of cyber threat trees using decision diagrams and a new
formal language developed for this purpose known as CyTML. Next,
we will address how cyber threat trees can be used for analysis
purposes and then we conclude.

II. FAULT AND ATTACK TREES

Classical fault tree analysis [13] was developed to represent
possible ways a system could fail as a result of component or
subsystem failures. This approach essentially uses Boolean logic
operations to represent how such failures are interrelated and could
result in a system failure. Fault trees are represented as networks of
Boolean logic operators where a fault is considered to either have
occurred or not occurred. Fig. 1 contains an example of a simple fault
tree where the circular nodes represent the event of a single
component failure and the logic operators (AND/OR gates) show how
the events combine to result in a subsystem failure. Referring to Fig.
1, if one or more of events 1, 2, or 3 occur, subsystem A will fail.
Alternatively, both events 4 and 5 must occur for subsystem A to fail.

*Funded by Office of Naval Research - ONR Project N000140910784

Subsystem A

21 3 4 5

Fig. 1 Simple Fault Tree Example

Attack trees [8] are similar to fault trees but focus only on the
security of a system and are an enumeration of possible attacks. The
root of an attack tree represents a successful attack and the leaf nodes
represent ways of achieving the planned attack. Like fault trees, attack
trees also rely on binary-valued algebras.

III. CYBER THREAT TREES

Cyber Threat Trees are a superset of fault and attack trees since
they are based on multiple-valued or radix-p valued algebras over a
finite and discrete set of values. When the radix p=2, the cyber threat
tree reduces to a fault or attack tree depending on the nature of the
disruptive events. Generally, cyber threat trees have p>2: these
additional logic states allow for more complicated interactions to be
modeled.

Modeling different operational modes other than just the binary
case of failure or normal operation are critical in analyzing large
systems in the presence of threats. As an example, in the 2003
blackout of the US power grid, many complex interactions caused a
blackout to occur in a large portion of the northeastern US; however, it
would be incorrect to state that the entire US power grid failed. This
type of system analysis and prediction must utilize a model such as the
cyber threat tree since using an attack or fault tree would result in
proclaiming either entire system failure or a normal system operational
state.

Fig. 2 shows a small example Cyber Threat Tree that models part
of the power grid related to a power outage with operational states and
probabilities. On the right side of the tree, the power transmission
lines are represented: if one of them is cut the power can still be
delivered but if both of them are cut then no power can be delivered
and there will be power outages. On the left side are the power
generation plants and their operational states. We assigned numerical
state numbers by the order of operational capability. The power plant
operational state has numerical state “2” while the degraded and
offline states have numerical values of “1” and “0” respectively. The
same concept applies for the power transmission line states. Because
we are not modeling power lines to have a degraded state, their
operational states are either “2,” the non-operational state, or is “0,”
the fully operational state.

The reliability characteristics of each power plant and the assigned
states of power outage are given in TABLE I and TABLE II. To
determine the MVL switching function combining the various states, a
risk assessment phase is performed where a system expert answers a
series of questions that results in the truth table of function f given in
TABLE V. This table is then synthesized into a network of MVL
logic operations represented by Cyber Threat Tree in Fig. 3.

Hydro

Plant

Wind

Plant

Coal

Plant
Tx

Line 1

Tx

Line 2

Min

Max

Switching Function Modeling

Power Generation Plant

Interactions

City’s Power

Condition

Fig. 2 Cyber Threat Tree for Small Power T&D Network

For example, if the coal power plant is Offline (0), the
hydrodynamic power plant is in a Degraded state (1), and the wind
power plant is Offline (0), then a Complete Outage (0) of the power
generation subsystem occurs since the total power generated by the
subsystem is 1500 MW. On the contrary, if the wind power plant is
operating in Degraded state (1), a Partial Outage (1) occurs, since the
total subsystem power is now 1600 MW.

TABLE I. POWER PLANT CHARACTERISTICS

State
Coal Hydro Wind

Output Probability Output Probability Output Probability

(2) Operational 1000 0.98 2000 0.99 200 0.6

(1) Degraded 600 0.018 1500 0.009 100 0.3

(0) Offline 0 0.002 0 0.001 0 0.1

TABLE II. POWER OUTAGE CONDITION

Outage State Power (MW)

(2) No Outage >= 2400

(1) Partial Outage 1600 - 2399

(0) Complete Outage <1600

Since the cyber threat tree is based on a Multiple-Valued Logic
(MVL) algebra, the symbols that are commonly used to represent
logical OR (disjunction) and AND (conjunction) are still used as a
matter of convention; however, the corresponding algebraic operations
are generalized. The binary conjunction operator represents the MIN
function while disjunction represents the MAX function. The MIN
function yields the numerical minimal logic value among all function
variables while the MAX function yields the numerical maximum
value among all inputs. The truth table of these functions is shown in
TABLE III. MIN and MAX are not sufficient to represent all possible
multiple-valued switching functions; however, the inclusion of the
three literal-selection gates allow for a functionally complete MVL
algebra to be formed [6].

TABLE III. TRUTH TABLE OF 3-VALUED 2-VARIABLS MIN AND MAX

x1 x2 MIN(x1, x2) MAX(x1, x2)
0 0 0 0

0 1 0 1

0 2 0 2

1 0 0 1

1 1 1 1

1 2 1 2

2 0 0 2

2 1 1 2

2 2 2 2

The literal selection-gate, denoted as Ji, is a unary operation whose
output is 0 if the input logic value is not i and the output is the
maximum logic value (in this case “2” for 3-valued logic) when the
input is value i. The truth table of the literal selection function for 3-
valued logic is shown in TABLE IV.

TABLE IV. TRUTH TABLE OF 3-VALUED LITERAL SELECTION

x J0(x) J1(x) J2(x)

0 2 0 0

1 0 2 0

2 0 0 2

In order to determine the relationship among the power generation
plants, a risk assessment phase is utilized where a series of questions is
answered by a system expert. The answers to these questions are
processed and ultimately result in the specification of the MVL
switching function relating the effects of the various generation plants.
While this relationship will be captured and expressed as a switching
function in graphical form, we show the results here as a truth table in
TABLE V for illustration. It is then synthesized into a network of
MIN, MAX, and J-gates resulting in the tree shown in Fig. 3.

Once the state of each power generation plant propagates through
the MVL logic network, the output will result in the overall status of
the power network according to the characteristic of each power plant.

IV. DECISION DIAGRAMS

There are a large number of cyber threats present in the large
distributed systems of interest, thus the cyber threat tree structure
becomes unwieldy to manipulate due to its large size. Decision
diagrams are rooted directed acyclic graphs that can be used to
represent large switching functions in an efficient manner. For binary-
valued logic, the binary decision diagram (BDD) is a well-known
structure [2] that has been applied to many areas including the
representation of fault trees [7]. Furthermore, efficient software is
readily available to manipulate BDDs.

BDD is a directed acyclic graph (DAG) with two distinct types of

vertices, terminal and non-terminal, and initial node. The terminal
vertex is a vertex with no outgoing edge and carrying an attribute of 0
or 1. The non-terminal vertex is a vertex with two outgoing edges. The
vertex is annotated with a Boolean variable and two edges are
annotated with Boolean constant 0 or 1. An initial node is the root

vertex. For example, function 11011101 fxfxfxfxf 

can be represented by the BDD in Fig. 4.

Min

Max

TX Line1 TX Line2

Max

Min MinMin

Max

J1J0 J2

Coal

Plant

City’s Power Condition

Max Max

Min

1

J1J2

Hydro

Plant

Min

1

Min

Min

1

Max

J2J1

Wind

Plant

Fig. 3 MVL Synthesized Cyber Threat Tree

x1

f0 f1

0 1

f

Fig. 4 BDD represents function
11011101 fxfxfxfxf 

In the case of MVL, an extension to the BDD construct has been
developed and implemented called the Multiple-Valued Decision
Diagram (MDD) [5]. An experimental MDD software package has
been implemented and is used and modified according to our
application of cyber threat trees in this project. Because the cyber
threat tree is initially specified as an interconnection of MVL gate
operations, it is necessary to automatically transform the structure to
the MDD without explicitly building the cyber threat tree. Methods
similar to those described in [4] are employed for this purpose.

The MDD is desirable due to the compact representation of the
switching function it represents. Additionally, the structure is highly
beneficial for our application here since efficient algorithms have been
developed to compute overall probabilities and related spectral
transforms of the switching function [10][11][12]. While MDDs have
been suggested in the past for use in dependability analysis of classical
fault tolerant systems [16], this is the first time they have been applied
to the new concept of a cyber threat tree. The approach in [16] limited
the MDD to be strictly 3-valued and did not consider the underlying
specific switching algebra. Here, we allow any arbitrary radix to be
used, we associate logic values with reliability or other probabilistic
values, and we allow for the use of mixed-radix algebraic operations
within the same cyber threat tree. We also have formulated cyber
threat trees in conjunction with a specific MVL switching algebra
often referred to as the Post algebra [6].

TABLE V. FUNCTION f REPRESENTING POWER PLANT INTERACTION

Coal Hydro Wind f

0 0 0 0

0 0 1 0

0 0 2 0

0 1 0 0

0 1 1 1

0 1 2 1

0 2 0 1

0 2 1 1

0 2 2 1

1 0 0 0

1 0 1 0

1 0 2 0

1 1 0 1

1 1 1 1

1 1 2 1

1 2 0 2

1 2 1 2

1 2 2 2

2 0 0 0

2 0 1 0

2 0 2 0

2 1 0 2

2 1 1 2

2 1 2 2

2 2 0 2

2 2 1 2

2 2 2 2

For a p-valued switching function, an MDD is a directed acyclic
graph (DAG) with up to p terminal vertices labeled 0,1,…,p-1. Each
non-terminal vertex has p outgoing edges. Fig. 5 shows an example of
a three-valued (p=3) MDD representing g, a MIN function of two
variables x1 and x2, where the logic gate diagram is shown on the left
and the corresponding MDD is on the right, the output value can be
derived by traversing the graph.

V. CYTML – CYBER THREAT MARKUP LANGUAGE

Cyber threats are captured through a risk assessment process
performed on the system of interest. In order to automatically convert
the results of the initial risk assessment phase into a cyber threat tree,
we created a new formal specification language called the Cyber
Threat Markup Language (CyTML). CyTML fulfills the need for a
standardized way to represent cyber threat trees and has applications
for efficient threat cataloging and analysis in general. Since the
Extensible Markup Language (XML) [14] is quickly becoming the de
facto way to define new standards, we chose to base CyTML on XML.

0 1

0
1

2

2
x1

x2

1,2

x2

0
0

2
1

Min

x1 x2

g

g

Fig. 5 Example MDD for 3-valued Logic

Within CyTML there are 6 different types of nodes: effect, logic,
threat, cause, data and state. CyTML uses effect as the root node of
the threat tree. The effect is generally used to model potential threats.
Each direct child of an effect node, which is a threat, is connected to
the effect through a logic gate. Each threat node represents one way in
which effect may be accomplished. Threats, in turn, may be
accomplished through their cause children nodes. Each cause node
may also contain other cause nodes to create the entire threat tree.
Causes may be combined beneath logic nodes, which have type
attributes that may either be MIN, MAX, or J-gates. Additionally,
every node type except the logic type contains a data node as its first
child node. The data node contains all relevant information about its
parent effect, threat, or cause; such information includes title and
description. State describes the states that the node can be in and
probability of each state. Fig. 6 shows part of the CyTML
corresponding to Cyber Threat Tree in Fig. 3.

Fig. 6 Part of the corresponding CyTML

Since CyTML is XML based, there are a variety of tools available
to create and manipulate it. This wide availability allows for easy
collaboration between separate groups and platforms. Additionally,
CyTML is very dynamic in the aspect that teams that are experts on
different systems may develop specific threat trees within their
expertise and then combine these threats to make one unified cyber
threat tree.

VI. CYBER THREAT ANALYSIS USING MDDS

Initially, the risk assessment phase is performed that ultimately
results in the creation of the MDD representing the cyber threat tree.
Next, the tree is analyzed to determine the most critical threats. This
knowledge can then be used by system designers to add redundancy to
key components or subsystems to counter the threat. This approach
also allows for a tradeoff between system cost and degree of disaster
tolerance. Repeated iterations of the approach increase disaster
tolerance, but also increase cost due to additional system components
being added. Because the overall probability of system failure is easily
computed from the MDD, thresholds can be established that determine
when the system has reached the desired level of disaster tolerance.

Methods developed in [11] that map the MVL switching function
of the MDD to Cayley graphs can be used to generate the Chrestenson
spectrum. In turn, the Chrestenson spectrum can then be used to
compute various probability values [10] as well as direct computation
of probabilities through MDD traversal algorithms. The Chrestenson
spectrum is a generalization of the set of orthogonal Walsh Hadamard
functions over the binary fields which is commonly use for binary
switching function analysis. These functions can be used as a basis for
the discrete orthogonal transform of a p-valued function. With MDD
we can use these techniques to automatically detect correlations and
common characteristics among a set of threats. The general flow
diagram for this process is shown in Fig. 7.

Start

Threat assesment

Build MDDs

Perform MDD Analysis

End

CyTML Representation

Report critical threats

Satisfied with the
result?

Add redundancy,
Increase DT

No

Yes

Fig. 7 Cyber Threat Analysis Loop using Cyber Threat Trees

Fig. 8 MDD of Shaded Part of Fig. 3

The risk assessment phase allows for system experts to answer a
series of questions that are used to build the CyTML specification of
the cyber threat tree. To build the MDD, the CyTML is parsed in

using libxml [17], and then an automated synthesis process adapted
from [4] is employed.

Once the MDD has been created, we can calculate the probability
of each state by traversing the MDD and calculating the sum of the
probability of all the paths from root to each terminal state. [10] This
can be accomplished through direct traversals or through the
employment of spectral methods based on the Chrestenson transform
as described previously. In the following example, we use the more
intuitive approach of direct MDD traversal methods for the sake of
clarity in describing the methodology.

Fig. 8 shows the MDD of the shaded part of the cyber threat tree
in Fig. 3, we can see the calculation of the probability of power plant
subsystem in Operational (2) state in Equation 1. The probability of
the power plant subsystem operates in Degraded (1) state can be
calculated as seen in Equation 2, while the probability of system in
Offline (0) state is calculated in Equation 3. The notion PSw in the
equations means probability of system operating in state w, while Px,y,z
denotes probabilities of coal power plant in state x, hydrodynamic
power plant in state y and wind power plant in state z. Take PS2 as an
example, the probability of the power generation subsystem in No
Outage (2) state can be calculated by traversing the MDD in Fig. 8,
there are three paths from root node f that terminated at terminal node
“2” thus the PS2 equals sum of the probability of (coal1, hydro2), (coal2,
hydro1) and (coal2, hydro2) as can be seen in Equation 1.

99684.0

9702.000882.001782.0

)]99.098.0()009.098.0()99.0018.0[(

,2,2,1,2,2,12







  PPPPS

 (1)

As for the probability of the power generation subsystem in

Partial Outage (1) state, there are four paths from root node f that
terminated at terminal node “1” thus the PS1 equals sum of the
probability of (coal0, hydro1, wind1), (coal0, hydro1, wind2) , (coal0,
hydro2) and (coal1, hydro1) as can be seen in Equation 2.

0021582.0

000162.000198.00000108.00000054.0

)]009.0018.0()99.0002.0(

)60.0009.0002.0()30.0009.0002.0[(

,1,1,2,02,1,01,1,01









  PPPPPS

(2)

Lastly, for the probability of the power generation subsystem in
Complete Outage (0) state, there are four paths from root node f that
terminated at terminal node “1” thus the PS0 equals sum of the
probability of (coal0, hydro0), (coal0, hydro1, wind0) , (coal1, hydro0)
and (coal2, hydro0) as can be seen in Equation 3.

0010018.0

00098.0

000018.00000018.0000002.0

)]001.098.0()001.0018.0(

)10.0009.0002.0()001.0002.0[(

,0,2,0,10,1,0,0,00











  PPPPPS

(3)

VII. CONCLUSION

A method for efficiently cataloging a large number of cyber
threats for a large system has been developed based on the new
concept of the cyber threat tree. Additionally, we describe an
automated procedure allowing the cyber threat tree to be converted
into an MDD structure. The MDD structure is advantageous for this
application since it is a compact representation of the threat catalogue
and also allows for a convenient means to automatically reason over
the cyber threat catalogue. The analysis phase allows for the
identification of the most critical threats in an efficient and automated
manner, which in turn can be used to identify critical components, or
subsystems that can be strengthened to enhance disaster tolerance. To
support this approach, we have described a new formal specification
language, CyTML for the representation of cyber threat trees.

We are also currently working on optimizing the synthesis of
MVL logic gate network; this will speed up the MDD creation of a
large system.

ACKNOWLEDGMENT

The authors want to thank Dr. D. Michael Miller for providing the
MDD software package.

REFERENCES

[1] Bossche, A., “Fault Tree Analysis and Synthesis,” Ph.D. Thesis, Dept. of
Electrical Engineering, Technical University of Delft, 1988.

[2] Bryant, R. E., “Symbolic manipulation of Boolean functions using a
graphical representation,” Proceedings of the 22nd ACM/IEEE Design

Automation Conference (Las Vegas, Nevada, United States). DAC '85.
ACM, New York, NY, pp. 688-694. 1985.

[3] Drechsler, R., “Evaluation of static variable ordering heuristics for MDD

construction [multi-valued decision diagrams],” Proceedings 32nd IEEE
International Symposium on Multiple-valued Logic, pp. 254-260, May

2002.

[4] Drechsler, R., Thornton, M.A. and Wessels, D., “MDD-based synthesis
of multi-valued logic networks,” Proceedings of the 30th IEEE

International Symposium on Multiple-valued Logic, pp. 41-46, May
2000.

[5] Miller, D.M. and Drechsler, R., “Implementing a multiple-valued

decision diagram package,” Proceedings of the 28th IEEE International
Symposium on Multiple-valued Logic, pp. 52-57, May 1998.

[6] Miller, D.M. and Thornton, M.A., Multiple-Valued Logic: Concepts

and Representations, Morgan & Claypool Publishers, ISBN 1-5982-
9190-4, 2008.

[7] Remenyte, R. and Andrews, J.D., “A simple component connection

approach for fault tree conversion to binary decision diagram,”
Proceedings of The First International Conference on Availability,

Reliability and Security, April 2006.

[8] Schneier, B., “Attack Trees: Modeling Security Threats,” Dr. Dobb’s

Journal, December 1999. Available at: http://www.counterpane.com/
attacktrees-ddj-ft.html.

[9] Stankovic, M., Stojkovic, S., and Moraga, C., “Linearization of Ternary

Decision Diagrams by Using the Polynomial Chrestenson Spectrum,”
Multiple-Valued Logic, 2007. ISMVL 2007. 37th International

Symposium on , pp.411, 13-16 May 2007

[10] Thornton, M.A., Drechsler, R. and Miller, D.M., Spectral Techniques

in VLSI CAD, Kluwer Academic Publishers, Boston, MA, ISBN 0-

7923-7433-9, July 2001.

[11] Thornton, M.A. and Miller D.M., “Computation of Discrete Function
Chrestenson Spectrum Using Cayley Color Graphs,” Journal of

Multiple-Valued Logic and Soft Computing, vol. 0, no. 2, pp. 189-202,
2004.

[12] Thornton, M.A., “Mixed-radix MVL Function Spectral and Decision

Diagram Representation,” Automation and Remote Control, vol. 65,
issue 6, pp. 1007-1017, 2004.

[13] Vesely, W.E., Goldberg, F.F., Roberts, N.H. and Haasl, D.F., “Fault tree

handbook,” NUREG-0492, U.S. Nuclear Regulatory Commission, Jan.
1981.

[14] W3C World Wide Web Consortium, “Extensible Markup Language
(XML),” Available at: http://www.w3.org/XML/.

[15] W3C World Wide Web Consortium, “XML Schema,” Available at:

http://www.w3.org/XML/Schema.

[16] Xing, L. and Dugan, J.B., “Dependability Analysis Using Multiple-
Valued Decision Diagrams,” Proceedings of The 6th International

Probabilistic Safety Assessment and Management, June 2002.

[17] “The XML C parser and toolkit of Gnome – libxml,” Available at:
http://xmlsoft.org/.

http://www.counterpane.com/attacktrees-ddj-ft.html
http://www.counterpane.com/attacktrees-ddj-ft.html
http://www.w3.org/XML/
http://www.w3.org/XML/Schema
http://xmlsoft.org/

