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Abstract—The implementation of cyber threat 

countermeasures requires identification of points in a system 
where redundancy or other modifications are needed.  Because 
large systems have many possible threats that may be 
interdependent, it is crucial that such threats be cataloged in a 
manner that allows for efficient representation and ease of 
analysis to identify the most critical threats.  To address this 
problem, we model large system threats by conceptually 
representing them as a Cyber Threat Tree implemented as a 
directed graph known as a Multiple-Valued Decision Diagram 
(MDD).  The cyber threat tree structure improves upon both the 
classical fault tree and attack tree structures by expanding the 
representation of possible system threats.  This cyber threat tree 
model is incorporated into an existing MDD software package to 
help identify and catalog possible system threats.  We have also 
developed a new formal language, CyTML, which is used to 
represent cyber threat trees. 

 
Index Terms—Cyber Attacks, System Threats, Tree Models.  

 

I. INTRODUCTION 

Cyber attacks on various infrastructures and large systems around 
the world are gaining increasing attention.  The implementation of 
cyber threat countermeasures requires identification of those points in 
the system where redundancy or other modifications are needed.  
Because large systems have many possible threats that may be 
interdependent, it is crucial that such threats be cataloged in a manner 
that allows for efficient representation and ease of analysis to identify 
the most critical threats.   

In analyzing the effect of large system threats, there is a need to 
efficiently catalog those threats so that further analyses can be 
performed to extract common characteristics among the threats and to 
devise suitable countermeasures.  A very large system can have an 
enormous number of potential threat scenarios and a simple list of 
these is insufficient for analysis and classification.  To address this 
need, we propose an extension to the well-known fault tree 
representation and further describe efficient data structures that allow 
for a convenient organization of the threats that is both canonic and 
amenable to automated analysis. 

We also use the concepts of discrete multiple-valued logic (MVL), 
in particular the Post algebras which provide much more 
expressiveness than the binary Boolean algebras that traditional fault 
and trees are based upon.  The fact that the MVL descriptions are 
more expressive has implications in the type of data structures used to 
represent the cyber threat trees as well as the analysis methods 
employed.  We use and adapt of the Multiple-Valued Decision 

Diagram (MDD) for the purpose of threat cataloging.  The MDD not 
only allows for compact representation of extremely large numbers of 
threats but is also canonic in a mathematical sense and allows for easy 
identification of common characteristics among subsets of threats that 
may not be readily apparent to a human who is reading a simple threat 
list. 

Our approach utilizes a threat representation structure called a 
Cyber Threat Tree.  This idea was motivated from the ideas of fault 
trees, which were originally devised by Bell laboratories.  Cyber threat 
trees have important differences from the fault trees in that many 
threat events are not statistically independent and that, unlike the fault 
tree model, we do not model threats as faults.  In the fault tree model, 
a fault either exists or does not; hence, it is based on a binary Boolean 
logic switching function.  Cyber threats have a probability of 
occurring that may result in total system failure, partial system 
degradation, or no effect.  For this reason, we do not use a switching 
function based on a binary algebra, rather we use a multiple valued 
algebra so that various states of the threats can be modeled as well as 
their interdependence with one another. 

The organization of this paper is that we will first provide 
background material on relevant topics that are used in the formulation 
of cyber threat trees such as a review of fault and attack trees.  Next, 
we will introduce the new cyber threat tree and describe the new 
features that differentiate it from other structures.  A simple example 
will be used to demonstrate the use of the cyber threat tree.  The 
following section of the paper will deal with the implementation and 
representation of cyber threat trees using decision diagrams and a new 
formal language developed for this purpose known as CyTML.  Next, 
we will address how cyber threat trees can be used for analysis 
purposes and then we conclude. 

 

II. FAULT AND ATTACK TREES 

Classical fault tree analysis [13] was developed to represent 
possible ways a system could fail as a result of component or 
subsystem failures. This approach essentially uses Boolean logic 
operations to represent how such failures are interrelated and could 
result in a system failure.  Fault trees are represented as networks of 
Boolean logic operators where a fault is considered to either have 
occurred or not occurred.  Fig. 1 contains an example of a simple fault 
tree where the circular nodes represent the event of a single 
component failure and the logic operators (AND/OR gates) show how 
the events combine to result in a subsystem failure.  Referring to Fig. 
1, if one or more of events 1, 2, or 3 occur, subsystem A will fail. 
Alternatively, both events 4 and 5 must occur for subsystem A to fail. 

 

 

*Funded by Office of Naval Research - ONR Project N000140910784 



Subsystem A

21 3 4 5
 

Fig. 1 Simple Fault Tree Example 

 

Attack trees [8] are similar to fault trees but focus only on the 
security of a system and are an enumeration of possible attacks.  The 
root of an attack tree represents a successful attack and the leaf nodes 
represent ways of achieving the planned attack.  Like fault trees, attack 
trees also rely on binary-valued algebras. 

 

III. CYBER THREAT TREES 

Cyber Threat Trees are a superset of fault and attack trees since 
they are based on multiple-valued or radix-p valued algebras over a 
finite and discrete set of values.  When the radix p=2, the cyber threat 
tree reduces to a fault or attack tree depending on the nature of the 
disruptive events.  Generally, cyber threat trees have p>2: these 
additional logic states allow for more complicated interactions to be 
modeled. 

Modeling different operational modes other than just the binary 
case of failure or normal operation are critical in analyzing large 
systems in the presence of threats.  As an example, in the 2003 
blackout of the US power grid, many complex interactions caused a 
blackout to occur in a large portion of the northeastern US; however, it 
would be incorrect to state that the entire US power grid failed.  This 
type of system analysis and prediction must utilize a model such as the 
cyber threat tree since using an attack or fault tree would result in 
proclaiming either entire system failure or a normal system operational 
state. 

Fig. 2 shows a small example Cyber Threat Tree that models part 
of the power grid related to a power outage with operational states and 
probabilities.  On the right side of the tree, the power transmission 
lines are represented: if one of them is cut the power can still be 
delivered but if both of them are cut then no power can be delivered 
and there will be power outages.  On the left side are the power 
generation plants and their operational states.  We assigned numerical 
state numbers by the order of operational capability.  The power plant 
operational state has numerical state “2” while the degraded and 
offline states have numerical values of “1” and “0” respectively.  The 
same concept applies for the power transmission line states.  Because 
we are not modeling power lines to have a degraded state, their 
operational states are either “2,” the non-operational state, or is “0,” 
the fully operational state. 

The reliability characteristics of each power plant and the assigned 
states of power outage are given in TABLE I and TABLE II.  To 
determine the MVL switching function combining the various states, a 
risk assessment phase is performed where a system expert answers a 
series of questions that results in the truth table of function f given in 
TABLE V.  This table is then synthesized into a network of MVL 
logic operations represented by Cyber Threat Tree in Fig. 3. 
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Fig. 2 Cyber Threat Tree for Small Power T&D Network 

 

For example, if the coal power plant is Offline (0), the 
hydrodynamic power plant is in a Degraded state (1), and the wind 
power plant is Offline (0), then a Complete Outage (0) of the power 
generation subsystem occurs since the total power generated by the 
subsystem is 1500 MW. On the contrary, if the wind power plant is 
operating in Degraded state (1), a Partial Outage (1) occurs, since the 
total subsystem power is now 1600 MW. 

 

TABLE I. POWER PLANT CHARACTERISTICS 

State 
Coal Hydro Wind 

Output Probability Output Probability Output Probability 

(2) Operational 1000 0.98 2000 0.99 200 0.6 

(1) Degraded 600 0.018 1500 0.009 100 0.3 

(0) Offline 0 0.002 0 0.001 0 0.1 

 

TABLE II.  POWER OUTAGE CONDITION 

Outage State Power (MW) 

(2) No Outage >= 2400 

(1) Partial Outage 1600 - 2399 

(0) Complete Outage <1600 

 

Since the cyber threat tree is based on a Multiple-Valued Logic 
(MVL) algebra, the symbols that are commonly used to represent 
logical OR (disjunction) and AND (conjunction) are still used as a 
matter of convention; however, the corresponding algebraic operations 
are generalized.  The binary conjunction operator represents the MIN 
function while disjunction represents the MAX function.  The MIN 
function yields the numerical minimal logic value among all function 
variables while the MAX function yields the numerical maximum 
value among all inputs.  The truth table of these functions is shown in 
TABLE III.  MIN and MAX are not sufficient to represent all possible 
multiple-valued switching functions; however, the inclusion of the 
three literal-selection gates allow for a functionally complete MVL 
algebra to be formed [6].    

 



TABLE III. TRUTH TABLE OF 3-VALUED 2-VARIABLS MIN AND MAX 

x1 x2 MIN(x1, x2) MAX(x1, x2) 
0 0 0 0 

0 1 0 1 

0 2 0 2 

1 0 0 1 

1 1 1 1 

1 2 1 2 

2 0 0 2 

2 1 1 2 

2 2 2 2 

 

The literal selection-gate, denoted as Ji, is a unary operation whose 
output is 0 if the input logic value is not i and the output is the 
maximum logic value (in this case “2” for 3-valued logic) when the 
input is value i.  The truth table of the literal selection function for 3-
valued logic is shown in TABLE IV. 

 

TABLE IV. TRUTH TABLE OF 3-VALUED LITERAL SELECTION  

x J0(x) J1(x) J2(x) 

0 2 0 0 

1 0 2 0 

2 0 0 2 

 

In order to determine the relationship among the power generation 
plants, a risk assessment phase is utilized where a series of questions is 
answered by a system expert. The answers to these questions are 
processed and ultimately result in the specification of the MVL 
switching function relating the effects of the various generation plants.  
While this relationship will be captured and expressed as a switching 
function in graphical form, we show the results here as a truth table in 
TABLE V for illustration. It is then synthesized into a network of 
MIN, MAX, and J-gates resulting in the tree shown in Fig. 3.  

Once the state of each power generation plant propagates through 
the MVL logic network, the output will result in the overall status of 
the power network according to the characteristic of each power plant. 

 

IV. DECISION DIAGRAMS 

There are a large number of cyber threats present in the large 
distributed systems of interest, thus the cyber threat tree structure 
becomes unwieldy to manipulate due to its large size.  Decision 
diagrams are rooted directed acyclic graphs that can be used to 
represent large switching functions in an efficient manner.  For binary-
valued logic, the binary decision diagram (BDD) is a well-known 
structure [2] that has been applied to many areas including the 
representation of fault trees [7].  Furthermore, efficient software is 
readily available to manipulate BDDs. 

BDD is a directed acyclic graph (DAG) with two distinct types of 

vertices, terminal and non-terminal, and initial node. The terminal 
vertex is a vertex with no outgoing edge and carrying an attribute of 0 
or 1. The non-terminal vertex is a vertex with two outgoing edges. The 
vertex is annotated with a Boolean variable and two edges are 
annotated with Boolean constant 0 or 1. An initial node is the root 

vertex. For example, function 11011101 fxfxfxfxf   

can be represented by the BDD in Fig. 4. 
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Fig. 3 MVL Synthesized Cyber Threat Tree  
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Fig. 4 BDD represents function 
11011101 fxfxfxfxf   

In the case of MVL, an extension to the BDD construct has been 
developed and implemented called the Multiple-Valued Decision 
Diagram (MDD) [5].  An experimental MDD software package has 
been implemented and is used and modified according to our 
application of cyber threat trees in this project.  Because the cyber 
threat tree is initially specified as an interconnection of MVL gate 
operations, it is necessary to automatically transform the structure to 
the MDD without explicitly building the cyber threat tree.  Methods 
similar to those described in [4] are employed for this purpose. 



The MDD is desirable due to the compact representation of the 
switching function it represents.  Additionally, the structure is highly 
beneficial for our application here since efficient algorithms have been 
developed to compute overall probabilities and related spectral 
transforms of the switching function [10][11][12].  While MDDs have 
been suggested in the past for use in dependability analysis of classical 
fault tolerant systems [16], this is the first time they have been applied 
to the new concept of a cyber threat tree.  The approach in [16] limited 
the MDD to be strictly 3-valued and did not consider the underlying 
specific switching algebra.  Here, we allow any arbitrary radix to be 
used, we associate logic values with reliability or other probabilistic 
values, and we allow for the use of mixed-radix algebraic operations 
within the same cyber threat tree.  We also have formulated cyber 
threat trees in conjunction with a specific MVL switching algebra 
often referred to as the Post algebra [6]. 

TABLE V. FUNCTION f REPRESENTING POWER PLANT INTERACTION 

Coal Hydro Wind f 

0 0 0 0 

0 0 1 0 

0 0 2 0 

0 1 0 0 

0 1 1 1 

0 1 2 1 

0 2 0 1 

0 2 1 1 

0 2 2 1 

1 0 0 0 

1 0 1 0 

1 0 2 0 

1 1 0 1 

1 1 1 1 

1 1 2 1 

1 2 0 2 

1 2 1 2 

1 2 2 2 

2 0 0 0 

2 0 1 0 

2 0 2 0 

2 1 0 2 

2 1 1 2 

2 1 2 2 

2 2 0 2 

2 2 1 2 

2 2 2 2 

 

For a p-valued switching function, an MDD is a directed acyclic 
graph (DAG) with up to p terminal vertices labeled 0,1,…,p-1. Each 
non-terminal vertex has p outgoing edges.  Fig. 5 shows an example of 
a three-valued (p=3) MDD representing g, a MIN function of two 
variables x1 and x2, where the logic gate diagram is shown on the left 
and the corresponding MDD is on the right, the output value can be 
derived by traversing the graph. 

 

V. CYTML – CYBER THREAT MARKUP LANGUAGE 

Cyber threats are captured through a risk assessment process 
performed on the system of interest.  In order to automatically convert 
the results of the initial risk assessment phase into a cyber threat tree, 
we created a new formal specification language called the Cyber 
Threat Markup Language (CyTML).  CyTML fulfills the need for a 
standardized way to represent cyber threat trees and has applications 
for efficient threat cataloging and analysis in general.  Since the 
Extensible Markup Language (XML) [14] is quickly becoming the de 
facto way to define new standards, we chose to base CyTML on XML. 
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Fig. 5 Example MDD for 3-valued Logic 

 

Within CyTML there are 6 different types of nodes: effect, logic, 
threat, cause, data and state.  CyTML uses effect as the root node of 
the threat tree. The effect is generally used to model potential threats.  
Each direct child of an effect node, which is a threat, is connected to 
the effect through a logic gate.  Each threat node represents one way in 
which effect may be accomplished. Threats, in turn, may be 
accomplished through their cause children nodes. Each cause node 
may also contain other cause nodes to create the entire threat tree. 
Causes may be combined beneath logic nodes, which have type 
attributes that may either be MIN, MAX, or J-gates.  Additionally, 
every node type except the logic type contains a data node as its first 
child node.  The data node contains all relevant information about its 
parent effect, threat, or cause; such information includes title and 
description.  State describes the states that the node can be in and 
probability of each state.  Fig. 6 shows part of the CyTML 
corresponding to Cyber Threat Tree in Fig. 3. 

 

 

Fig. 6 Part of the corresponding CyTML 

 



Since CyTML is XML based, there are a variety of tools available 
to create and manipulate it.  This wide availability allows for easy 
collaboration between separate groups and platforms.  Additionally, 
CyTML is very dynamic in the aspect that teams that are experts on 
different systems may develop specific threat trees within their 
expertise and then combine these threats to make one unified cyber 
threat tree.  

 

VI. CYBER THREAT ANALYSIS USING MDDS 

Initially, the risk assessment phase is performed that ultimately 
results in the creation of the MDD representing the cyber threat tree. 
Next, the tree is analyzed to determine the most critical threats. This 
knowledge can then be used by system designers to add redundancy to 
key components or subsystems to counter the threat.  This approach 
also allows for a tradeoff between system cost and degree of disaster 
tolerance.  Repeated iterations of the approach increase disaster 
tolerance, but also increase cost due to additional system components 
being added. Because the overall probability of system failure is easily 
computed from the MDD, thresholds can be established that determine 
when the system has reached the desired level of disaster tolerance.   

Methods developed in [11] that map the MVL switching function 
of the MDD to Cayley graphs can be used to generate the Chrestenson 
spectrum. In turn, the Chrestenson spectrum can then be used to 
compute various probability values [10] as well as direct computation 
of probabilities through MDD traversal algorithms.  The Chrestenson 
spectrum is a generalization of the set of orthogonal Walsh Hadamard 
functions over the binary fields which is commonly use for binary 
switching function analysis.  These functions can be used as a basis for 
the discrete orthogonal transform of a p-valued function.  With MDD 
we can use these techniques to automatically detect correlations and 
common characteristics among a set of threats.  The general flow 
diagram for this process is shown in Fig. 7. 
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Fig. 7 Cyber Threat Analysis Loop using Cyber Threat Trees 

 

 

Fig. 8 MDD of Shaded Part of Fig. 3 

 

The risk assessment phase allows for system experts to answer a 
series of questions that are used to build the CyTML specification of 
the cyber threat tree.  To build the MDD, the CyTML is parsed in 

using libxml [17], and then an automated synthesis process adapted 
from [4] is employed.  

Once the MDD has been created, we can calculate the probability 
of each state by traversing the MDD and calculating the sum of the 
probability of all the paths from root to each terminal state. [10]  This 
can be accomplished through direct traversals or through the 
employment of spectral methods based on the Chrestenson transform 
as described previously.  In the following example, we use the more 
intuitive approach of direct MDD traversal methods for the sake of 
clarity in describing the methodology. 

Fig. 8 shows the MDD of the shaded part of the cyber threat tree 
in Fig. 3, we can see the calculation of the probability of power plant 
subsystem in Operational (2) state in Equation 1.  The probability of 
the power plant subsystem operates in Degraded (1) state can be 
calculated as seen in Equation 2, while the probability of system in 
Offline (0) state is calculated in Equation 3.  The notion PSw in the 
equations means probability of system operating in state w, while Px,y,z 
denotes probabilities of coal power plant in state x, hydrodynamic 
power plant in state y and wind power plant in state z. Take PS2 as an 
example, the probability of the power generation subsystem in No 
Outage (2) state can be calculated by traversing the MDD in Fig. 8, 
there are three paths from root node f that terminated at terminal node 
“2” thus the PS2 equals sum of the probability of (coal1, hydro2), (coal2, 
hydro1) and (coal2, hydro2) as can be seen in Equation 1.   
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As for the probability of the power generation subsystem in 

Partial Outage (1) state, there are four paths from root node f that 
terminated at terminal node “1” thus the PS1 equals sum of the 
probability of (coal0, hydro1, wind1), (coal0, hydro1, wind2) , (coal0, 
hydro2) and (coal1, hydro1) as can be seen in Equation 2.   
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(2) 

 

Lastly, for the probability of the power generation subsystem in 
Complete Outage (0) state, there are four paths from root node f that 
terminated at terminal node “1” thus the PS0 equals sum of the 
probability of (coal0, hydro0), (coal0, hydro1, wind0) , (coal1, hydro0) 
and (coal2, hydro0) as can be seen in Equation 3.   
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VII. CONCLUSION 

A method for efficiently cataloging a large number of cyber 
threats for a large system has been developed based on the new 
concept of the cyber threat tree.  Additionally, we describe an 
automated procedure allowing the cyber threat tree to be converted 
into an MDD structure.  The MDD structure is advantageous for this 
application since it is a compact representation of the threat catalogue 
and also allows for a convenient means to automatically reason over 
the cyber threat catalogue. The analysis phase allows for the 
identification of the most critical threats in an efficient and automated 
manner, which in turn can be used to identify critical components, or 
subsystems that can be strengthened to enhance disaster tolerance.  To 
support this approach, we have described a new formal specification 
language, CyTML for the representation of cyber threat trees. 

We are also currently working on optimizing the synthesis of 
MVL logic gate network; this will speed up the MDD creation of a 
large system. 
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