
Embedded and Real-time Systems Classes in

Traditional and Distance Education Format

M. A. Thornton, T. W. Manikas

Dept. of Computer Science and Engineering
Southern Methodist University

Dallas, Texas USA

Abstract-Embedded Systems design courses are important
components in software, computer, and electrical engineering
programs and curricula. We describe topics for inclusion in
these courses and associated hands-on experiences as required
portions of the courses including example development systems
based upon two popular microcontrollers. We also describe the
challenges of offering these courses in distance format and
provide examples of how the hands-on component may be
included for distance students.

Keywords-embedded systems; distance education

I. INTRODUCTION

A significant number of computer and software engineers
practice in the area of embedded and real-time systems design.
Embedded Systems (ES) are found in virtually every
application domain such as transportation, defense,
communications and industrial control and are also ubiquitous
in consumer products such as appliances and televisions. The
application settings usually require that the embedded system
must adhere to real-time constraints. Therefore, a mainstream
topic within modern computer and software engineering
curricula is embedded systems design and implementation.
Such courses can be very effective when combined with
practical laboratory exercises that involve hardware interfacing
and the development of systems-on-chip comprised of a
processor core, memory, peripherals, and real-time firmware.
Using this approach, the student learns the necessary skills of
software and hardware design that will provide the foundation
for future embedded system design.

Many educators agree that an effective means for
administering classes in these areas is to combine a lecture
portion with hands-on projects [7][8] [9] [10]. Consistent with
this viewpoint, traditional embedded system courses have
separate lecture and laboratory sessions. Students learn
embedded system theory and concepts in the lecture session,
and then apply this knowledge to practical applications in the
laboratory session.

However, there is an increasing number of distance
education students who need to participate remotely through
various forms of synchronous and asynchronous distance
learning. Coupled with the desired content of an embedded
systems class is the need for supporting distance education
students. The number of students requiring distance education
formatted courses continues to increase as more and more

978-1-4673-5261-1/13/$31.00 ©2013 IEEE

P. A. Laplante

Great Valley School of Graduate Professional Studies
Pennsylvania State University
Malvern, Pennsylvania USA

students are moving from traditional on-campus class
attendance to remotely administered courses [11]. While
many methods exist for delivering the lecture session to
distance education students, a significant challenge is the
delivery of the laboratory sections remotely.

This paper addresses the challenge of offering an
embedded systems class containing content consistent with
modern processors and design methods in both a traditional
and distance education format. Distance education classes
that are comprised of laboratory content require carefully
crafted experiments and hands-on experiences in order to be
successfully administered to distance students. However,
there are significant challenges to providing a meaningful
laboratory experience to students at a distance. In this paper
we describe these challenges and propose some approaches to
delivering such a course.

In particular, we describe embedded and real-time systems
classes that are based upon the ARM® and Arduino® processor
architectures with associated laboratory/project sections that
are designed to be accessible by both traditional and distance
students. We address the challenge of offering the class in a
distance format while also incorporating a required laboratory.
A description of experiments and projects is included and is
accompanied by an evaluation of different types of equipment,
software, and simulators available to support the laboratory
section. One of the discussed approaches utilizes a HDL
(Hardware Description Language) softcore version of an
ARM® processor and HDL descriptions for the interfacing
portions of the project. Using these resources, laboratory
experiments and course projects can be conducted remotely by
distance students.

II. EMBEDDED SYSTEMS BACKGROUND

Embedded systems are generally defmed to be any system
composed of input/output devices, at least one processor, and
dedicated memory that are integrated subsystems within a
larger overall system. These systems often have real-time or
near real-time constraints in that the production of an output
response must occur within some specified time frame after
the occurrence of a corresponding input event. For this
reason, most embedded systems contain dedicated timers or
other means for meeting application-specific deadlines.
Other commonly included support circuitry includes data
converters for transformation of analog to digital signals and

vice versa. Many embedded systems involve significant
amounts of signal processing capability and the designer must
determine which portions of the signal conditioning and
processing should be ported into dedicated hardware or
implemented in software. The microcontroller unit contains
the CPU and is responsible for running the application
specific software as well as providing internal embedded
system control.

In modern embedded systems, the CPU is present in the
form of a single integrated chip (lC) that is typically
comprised of other cores such as timers, on-chip memory, data
converters, and hardware accelerators. Many products that
have anticipated large volume sales in the marketplace contain
custom microcontroller chips that are designed for the specific
application and are referred to as a 'System on Chip' (SoC).
The design flow for a SoC generally involves the selection of
a set of third party vendor cores such as a CPU, memory, 110
interfaces, and hardware accelerators with little custom
circuitry. These cores are interconnected within the custom
microcontroller through the use of custom or industry standard
busses. The use of standardized busses is more common and
includes busses such as AMBA, I2C, and others. Bus
controller and interface cores are available from third party
vendors for inclusion in custom SoC microcontroller designs.

In terms of supporting software, the microcontroller within
an ES is most usually intended for a specific function and it is
thus uncommon to fmd commonly known general-purpose
operating systems (OS) such as Microsoft Windows in use.
Some ES do utilize an OS specifically designed for the ES
design space such as open source software variants of Linux
or commercial real-time operating system, while other more
simple ES rely on simple monitors or even a main controlling
program that contains system housekeeping within the
dedicated application [5]. Because a typical ES must have the
capability to reboot at the time of power-up, the controlling
software is typically present in on-board non-volatile memory
such as Flash and is referred to as 'firmware'. Those ES that
utilize an OS have different requirements as compared to an
OS for a general purpose computing system such as a laptop
and generally do not need the capability to support a large
variety of 110 devices and virtual memory support.
Furthermore, most ES utilizing an OS do require a real-time
component, thus such OS often support timing relating
features.

Many ES are implemented as portable devices such as a
cell phone or hearing aids and thus require careful
consideration of power usage. Additionally, performance is
an important consideration due to processing time constraints.
These two design constraints present a tradeoff since power
savings is generally inversely proportional to performance. In
order to meet ES requirements, the systems level design
process involves the determination of a hardware/software co
design partitioning followed by determining how the
individual hardware and software components will be
implemented. Hardware implementation is accomplished
through a selection of third party hard- or soft-cores and the
choice of technologies for any custom hardware devices. If it
is determined that some hardware components will be directly
designed, a further choice is made regarding the use of

commercial off-the-shelf (COTS) programmable logic devices
versus a standard cell or custom implementation. Similar
tradeoffs are made with regard to software implementation
with those most crucial portions of the software implemented
in low-level assembler language and those less crucial
portions implemented in higher-level languages such as C. It
is often the case that high-level language paradigms such as
object-oriented programming are avoided due to the overhead
required by the compiler to support features such as operator
overloading being to costly in terms of performance.

III. ES COURSE CORE TOPICS

Embedded system classes are taught at both the
undergraduate and graduate levels. Given the description of an
ES architecture as provided in the previous section, it is clear
that several core academic topics may be present in a typical
ES design class. Particular program curricula at a given
institution often include some of these topics in prerequisite
courses. In this case, the corresponding topic may not be
present in the actual ES course syllabus.

1) Digital Logic Design and Implementation

2) Computer Architecture

3) Operating Systems

4) Software Design and Implementation

5) Systems Design and Implementation

Each of the core topics comprises an extensive amount of
material and they are typically present in most curricula as one
or more stand-alone courses. The IEEE and ACM jointly
developed a model undergraduate curriculum for the
embedded systems component of a model curriculum as
shown in Table I.

TABLE I. ES CLASS KNOWLEDGE UNITS FROM 2004 IEEE/ACM
MODEL CURRICULUM [9]

Topics/Knowledge Units Importance Time Allocated

History and Overview CORE 1

Embedded Microcontrollers CORE 6

Embedded Programs CORE 3

Real-Time Operating Systems CORE 3

Low-Power Computing CORE 2

Reliable System Design CORE 2

Design Methodologies CORE 3

Tool Support ELEGIVE variable

Embedded Multiprocessors ELEGIVE variable

Networked Embedded Systems ELEGIVE variable

Interfacing and Mixed-Signal Systems ELEGIVE variable

Uthariaraj and Babu suggested that (a graduate course) in
ES should have the following components in [12]:

"Introduction: Embedded computing, characteristics of
embedded computing applications, embedded-system design
challenges, constraint-driven design, IP-based design,
hardware, software codesign
Development environment: Execution environment, memory
organization, system space, code space, data space,
unpopulated memory space, I/O space, system start-up,

interrupt response cycle, function calls and stack frames,
runtime environment, object placement
Embedded computing platform: CPU bus, memory devices,
1/0 devices, component interfacing, designing with
microprocessors, development and debugging, design
examples, design patterns, data-flow graphs, assembly and
linking, basic compilation techniques, analysis and
optimization
Distributed embedded-system design: Interprocess
communication, signals, signals in UML, shared-memory
communication, accelerated design, design for video
accelerators, networks for embedded systems, network-based
design, Internet-enabled systems
Design techniques: Design methodologies and tools, design
flows, designing hardware and software components,
requirement analysis and specification, system analysis and
architecture design, system integration, structural and
behavioral description, case studies"

An ES course when offered at the upper-level of an
undergraduate curriculum will likely need to include a survey
of the most important subtopics within the listed core topics as
it is unlikely that a typical undergraduate student will have
completed standalone courses for each, The core topic
'Systems Design and Implementation' is likely to be the one
where students have the least amount of prerequisite
knowledge and will likely represent the area comprising the
majority of the ES course content From this point of view, we
describe those subtopics that are most important within each
category.

A. Digital Logic Design and Implementation

To support the design of the one or more SoC present in an
ES, an intermediate understanding of digital logic design and
implementation is needed. Most digital systems designed with
FPGA or standard cell technology targets are based upon
specification of the desired functionality in the form of a
hardware description language (HDL) such as VHDL or
Veri log. This HDL description is then used as input to
automated logic synthesis tools that result in configuration
bitstreams for FPGAs or a 'tape-out' file used by standard cell
ASIC manufacturers. Other uses of the HDL specification are
to perfonn pre- and post-synthesis timing analyses and for
verification of correct functionality. To perform these tasks,
students need familiarity with the use of HDLs and the
accompanying electronic design automation (EDA) software
tools such as logic synthesis, timing analyzers, simulators, and
verification. Additionally, due to the large variety of FPGA
architectures, students need some familiarity with the different
types of available FPGAs and their strengths and weaknesses.

Another important aspect of this subset of knowledge areas
is familiarity with commonly used standards and protocols for
digital systems such as the 110 and internal bus standards to be
used. It may be the case that familiarity with these standards
is not included in a prerequisite digital design course, thus this
subject matter is included in the ES course. Another topic that
may not be covered to a sufficient degree in a prerequisite
digital design course is the interfacing of the ICs that comprise
the ES. Knowledge of digital circuit 110 signaling standards
and how to select the most appropriate 110 standard is needed.

When ES classes are implemented with an FPGA
development board as the principle equipment for the hands-on
component, it is important to include a processor core in the
system. Some FPGA development boards have dedicated
processor chips as on-board assets, but these can be
prohibitively expensive. Another alternative is to use a
synthesizable processor core such as the NIOS II processor
available from the Altera Corporation. This processor is
available in softcore format and can be used as an ES
microcontroller. The advantage of this approach is that manual
wiring and circuit construction skills are not required by
students.

B. Computer Architecture

Because the ES contains one or more dedicated CPUs,
students must have sufficient knowledge of architectural
varieties so that appropriate CPUs can be selected.
Furthermore, since it is common that the ES firmware will be
implemented at a low-level to exploit performance, knowledge
of internal CPU architecture is required to effectively generate
the software. Students may have been exposed to CPU
architecture in previous courses; however, it is likely that they
need more emphasis on how to exploit a particular
architecture to achieve gains in performance or to minimize
power dissipation.

C. Operating Systems

Because many ES are designed with mUltiple concurrent
tasks and must adhere to real-time deadlines, the inclusion of
pertinent OS topics is an important component of an ES class.
If an OS class is not a prerequisite course, selected topics must
be included in the lecture portion of the course to enable
students to utilize an RTOS properly. Such topics include
memory protection, critical sections, and RTOS mechanisms
for their enforcement such as mutual exclusion and
semaphores.

D. Software Design and Implementation

Depending on ES course prerequisites students often have
varying degrees of software development experience. The
approach taken by some of the authors includes a review of
assembler programming concurrently with a study of
microcontroller architecture concepts. This provides context
for assembler language programming as hands-on experiments
involving arithmetic and logic instructions can be included
while studying concepts such as fixed-point usage and ALU
structure. During the study of memory system architecture
and 110 device interfacing, hands-on exercises can also
include material that enables students to gain familiarity with
various addressing modes in the assembler instruction set and
provides a convenient place in the curriculum to review the
concepts of pointers in C.

Most students are familiar with application development
and are accustomed to generating software with a distinct
halting state. They are also aware of deterministic finite
automata as state machines or counters encountered in a basic
digital logic course. Because many ES controller programs
have no halting state, the structure of the controlling program
as a non-halting state machine is included in the course
curriculum. This provides a review of basic C control

structures and is a good way to begin introduction of
Operating System (OS) services. Initially 110 interaction can
be implemented in software through the use of polling and
delay loops and then follow-on projects can replace delay
loops with use of on-board HW programmable timers and
polling loops can be replaced with interrupt-driven input.

E. Systems Design Concepts

Concepts from companion courses such as signals and
systems, mixed-signal design, and computer arithmetic are
important foundations for the ES course. These concepts are
briefly reviewed in the ES course as reminder to students who
have taken these courses and to provide necessary background
for those who have not. Because many ES do not support
floating-point HW units, a review of Q notation for fixed
point representations and fixed-point algorithms are included
in the ES course. System level concepts include the choice of
fixed-point word size and tradeoffs in using fixed- versus
floating point.

Many ES contain sensors and output devices that are
analog in nature and thus contain data converters for both AID
and DIA conversions. Detailed design of data converters is
beyond the scope of a typical ES course; however, system
level concepts regarding data conversion is an important
component. The specification of converter resolution and
dynamic range are included using logarithmic units (dB) and
the resulting effect on system performance are included. This
knowledge enables the ES designer to specify and select
appropriate data converters for a specific application.

While many students have taken courses in circuit-level
design, they are often not aware of various IC signaling
standards for IC 110 pins and may not have experience in IC
interfacing. Topics that include calculation of pull-up and
pull-down resistance values and source and sinking current
calculations are provided.

IV. PREVIOUS AND RELATED WORK

Because ES design is a creative activity where multiple
unique solutions are possible, we recommend that ES courses
contain requisite laboratory sections. A good overview of
typical embedded systems laboratory projects is described by
and summarized in Figs. 1 and 2.

The laboratory exercises may be implemented as a series
of independent experiences that provide experience within
each identified topic, or as a cumulative set of exercises
culminating in a course design project for an example ES.
Regardless of the approach taken, the inclusion of the
laboratory portion of the course can present a challenge for
distance students. We survey several of these laboratory
sections including those used by the authors.

There have been previous attempts to develop laboratory
assignments for distance education students. Distance
laboratories can be classified as the following two types [4]:
(1) Virtual, which use GUl's to simulate physical systems, and
(2) Remote, which allow control of real physical systems in a
remote location. Examples of virtual laboratories include
using simulators for computer architecture and organization
courses [3] [13] [18], while examples of remote laboratories

include real-time embedded systems for remote controlled
robots [2] [14] [15].

Embedd� SW Dev�lo ent

,
logic circuit basics lSI design basics C Integration Test)

Fig. 1. Embedded System SW and HW Exercise Relationships

FPGA Evaluation Boord

Fig. 2. FPGA-based ES Development System

Some researchers have experimented with virtual
laboratories for embedded systems teaching purposes [17]
[19] [20] [21]. Virtual laboratories are relatively easy to
establish at low cost, but can only model a limited degree of
realism [14]. Remote laboratories offer a more realistic
laboratory experience; however, this approach often requires
expensive equipment and networking resources [6].
Therefore, a common way to address this issue has been to
have distance education students combine simulations with
using a low-cost, stand-along kit to construct and test their
design at their home site [4] [16]. Brejcha et al also developed
an online undergraduate embedded systems laboratory course
using a remote, virtual laboratory but their results have yet to
be reported [1].

The authors' institutions deliver distance courses via the
Internet in a number of ways including providing streaming
video recordings of course lectures. Distance students can
communicate with course instructors through a variety of
means including email, phone calls, and web-hosted
conferencing services. Examinations are provided to pre
designated proctors for each distance student, or are provided
as web-based forms with authentication. This model of course
delivery is very similar to that used in some of the recently
instituted 'massively open online courses' (MOOCs)
offerings.

A. Laboratory Requirements

The at-a-distance laboratory needs for an embedded
systems course depend on the concepts to be taught. One
model for such a laboratory at different levels is shown in
Table II for non-electrical engineers. In this course, the
projects and experiments were developed using the Arduino®

microcontroller.

TABLE II. ARDUINO®-BASED LAB CONCEPTS AND EQUIPMENT

Level Concepts Equipment Cost

I

2

3

4

• Basic Embedded Systems • Arduino® board, • $95

• Real-time Control Sensors, Actuators,

• Device Interfacing wire

• High-level Language • Arduino® SW

Programming (open src) • Free

• Adv. Dev. Interfacing
• AID, Df A, OpAmp • $25

• O-scope on chip • $50
• Sampling Theory

• Multimeter • $40
• Signal Processing

• Soldering equip. • $40

• ASICIVLSI
• EDA Design Tools • Free

• HDL (Verilog)

• FPGA • EDA Design Tools • Free

• SoC • FPGA board • $200

• Levell: Arduino® uses a modified C language subset
with additional language constructs useful for
constructing embedded systems such as interrupt
control functionality.

• Level 2: A/D and D/A converters , op-amps and timers.
amd more sophisticated device inputs and control. We
assume students own some basic tools such as pliers,
screwdrivers, magnifying glass, etc. otherwise these
will need to be purchased. $40 for good multimeter and
$50 for an oscilloscope on a chip.

• Level 3: HDL based design for standards-based
peripherals. Utilize an open source simulator or EDA
tools on university servers.

• Level 4: HDL based design for custom peripherals with
implementation on an FPGA evaluation board. Utilize
the EDA tools on the FPGA board.

Another ES course that we have offered to 4th_year and
new graduate electrical and computer engineering students is
shown in Table III. This course is based upon the ARM®

processor core and uses the Keil MDK software development
system. In contrast to the Arduino® course, the students are
assumed to have prerequisite experience in basic digital logic
and undergraduate signals and systems. However, the level of
programming experience by students in this course is less and
many students are unfamiliar with the theory of operating
systems and software engineering methodology. For this
reason, more emphasis is placed upon low-level programming
concepts and less upon digital design.

• Level l: The STM32C board contains memory, 110
interfaces, and external 110 device ports. Additionally
it contains user switches, a joystick, and a small
graphics output display. Because this class contains
students with previous experience in digital circuit
design, all ES peripherals are modeled using the

buttons/joystick as input sensors and the graphical
display as an output. This alleviates distance students
from obtaining basic hardware components and
performing construction activities remotely. The
companion Keil MDK-ARM® software provides
support for direct generation of assembler, C, or mixed
C/assembler programming.

TABLE III. ARM®-BASED LAB CONCEPTS AND EQUIPMENT

Level Concepts Equipment Cost
• Computer architecture

• Keil STM32C
• ES architecture

board
• $350

I • CPU architecture
• MDK-ARM

• Assembler programming
Lite SW

• Free

• C language programming

• Polling vs. interrupts

• Device drivers • MDK-ARM®
• $200

2 • Basic OS concepts (RTL)

• Timing and RTOS

• Multi-tasking

• Memory interfaces
• Standards • Free

3 • Parallel bus standard
documents

• Serial bus standard

• AID and DfA

4 • Memory technology • none • Free

• IC interfacing/signalling

• Level 2: Supported through laboratory exercises that
utilize polling and software timing loops, followed by
replacing these constructs with interrupt driven input
events and the use of on-board programmable timers.
OS systems concepts are described in class with
emphasis on multi-tasking, deadlock avoidance and
prevention through MUTEX blocks and semaphores,
and the enforcement of timing deadlines for multiple
tasks. Experiments using the Keil RTL RTOS Kernal
functions are accomplished in the hands-on portion of
the class.

• Level 3: This portion of the course begins with memory
interfaces and memory decoding design and is followed
by extending these concepts to memory mapped 110
interface circuitry. Because the students in this class
have previous digital design and Verilog HDL
experience, the laboratory portion of the course is
implemented by requiring students to implement
interface logic in Verilog and to simulate their designs
using on-campus tools. It is also possible for students
to utilize open source or evaluation versions of HDL
simulators on their personal computing devices. HDL
testbenches are provided as well as modules that
simulate the processor and peripherals and students
must design the interfaces. This portion of the course
also focuses upon various bus standards and similar
approaches to laboratory experiments can be
accomplished.

• Level 4: This portion of the course consists of a
collection of topics that are comprised of a survey of
data converter architectures, converter
requirements/specifications, internal memory

architecture, and IC interfacing topics. Students are not
expected to design data converters but they do gain
experience in selection of appropriate converters with
respect to performance, dynamic range, resolution, and
distortion. A survey of both volatile and non-volatile
memory cells at the transistor level is presented so that
students may choose the most appropriate types of
memory devices to use in ES designs. Finally, students
are exposed to concepts involving the calculation of
source and sink currents and 110 signaling standards for
chip set ICs including how to calculate pull-up and pull
down resistor values and basic topics involving slew
rate calculations.

V. PROJECT EXAMPLES

In the Arduino® course, students design, build and test a
real-time system. Projects that have been completed in the
blended graduate course using a "Levell" laboratory include:

• Traffic light control system

• Anti-lock braking system

• Elevator control system

• Train control system (using model train parts)

Students have written their own operating system (e.g. for
one of the embedded platforms), used an open source real
time solution, or simply used non-interrupt driven approaches
to achieve simultaneity (e.g. a simple cyclic executive).

Student pilot study involved level-2 laboratory equipment
and built a USB interface for Guitar Hero drum-sets that
allowed users to play the drums through a Personal Computer
or Laptop. The project included the development of the
hardware interface design prototype then fabrication on
printed circuit board via third party service (cost was less than
$20 for fabrication). Software programming included the C#,
Python, and Arduino® C languages.

In the ARM® version of the ES course, the hands-on
experiences are provided as a series of experiments or mini
projects. Table IV summarizes one set of experiments for the
ARM® version of the course.

VI. ASSESSMENT

Multiple choice, fill-in-the-blank, matching and related
exams are a widely accepted mechanism to assess learning
along the Bloom's knowledge (recall), comprehension
(understanding of meaning), application and analysis levels of
learning. For example, the professional licensure exam for
electrical, computer, and software engineers in the United
States uses multiple-choice exams to assess minimal
competence and we can model course assessment exams after
these instruments. Massively open online courses (MOOCs)
also use online assessment to assess student learning.
Therefore, we intend to use frequent multiple choice, fill-in
the blank, matching, and short answer exams for learning
assessment. Where applicable, students will also be required
to submit project artifacts such as circuit diagrams, FPGA
netlists, Verilog or VHDL files, and C and assembler language

program source code and block diagrams for manual grading
by instructors or instructional assistants.

The hands-on aspect of electronics courses presents
certain challenges in assessment of learning from a distance,
particularly in demonstration of some level of competence in
the construction of demonstration circuits and systems. While
for many of the student produced designs hardware
description languages can satisfy proof of concept, it may be
desirable for students to deliver as-built projects via post or
parcel services to the instructor for assessment. As a
minimum, distance students are required to email their design
files (both HDL and software language) to course instructors
who then synthesize, recompile, and implement the distance
projects for evaluation.

Shortly after the midterm examinations, students prepare
proposals outlining the course project in the fonn of a brief
written document and a presentation slide deck. On-campus
students deliver brief presentations of their proposals in class
and distance students email their presentations and narrative
notes to the distance instructor. In the future, we intend to
experiment with remote delivery of project proposals using
inexpensive web-cams and Internet communications software
such as Skype. This portion of the course provides for
assessment of educational objectives involving
communication and presentation skills. While the majority of
students choose the suggested course project, the proposal
activity allows for the possibility for students to propose
custom embedded systems projects that are better-suited for
their particular interests and provides a mechanism for
approval of such projects by the course instructor.

Finally, course evaluation surveys will be administered at
the end of the course and these will include questions for
students to self-assess learning.

VII. CONCLUSION

It is possible to build effective laboratories at a distance for
embedded systems courses - the blended graduate course and
pilot undergrad course as well as the successes of other
researchers demonstrate this potential. Distance students face
challenges in that live instructor help with respect to circuit
debugging is lacking and some degree of maturity in trouble
shooting is required. The availability of low-cost evaluation
boards and evaluation versions of software development
systems enable students to create their own personal
laboratory and project environments. If on-campus licensed
software is used, students must have the capability to use their
personal computing devices as remote terminals and must
login remotely through ssh services or through the
establishment of a VPN connection. An alternative to actual
circuit construction is the use of HDL simulators; however,
students need prerequisite experience in digital logic design
based upon RTL HDL descriptions and familiarity with EDA
tools and methods is desirable.

It is anticipated that more synthesizable processor cores
will become available for student use in the future. One such
core that is currently available is the NIOS II core from the
Altera corporation. Discussions with personnel at ARM®

indicate that a version of the ARM® Cortex-MO processor core

will soon be available for educational use. As these cores
become available, ES courses will have more flexibility in
choice of equipment for the hands-on portion of the course. To
support distance education, it will become more important for
students to have familiarity with the use of HDLs for digital
design so that softcore processors and FPGAs can be used to
support interfacing experiments remotely.

TABLE IV. ARM®-BASED COURSE EXPERIMENTS/MINI-PROJECTS

Topic Level
Equipment Familiarity: Software Development Environment 0

Assembler: Arithmetic & Logic Instructions I

Assembler: Memory Access & Addressing Modes I

Assembler: I/O Access 1,2

Assembler: Non-OS Output Device Access 1,2

Veri log: Memory Decoder Design 3,4

Veri log: Interface Design for Standard Bus 3,4

C: Non-OS ES with SW Delay Loop and SW Polled Input 1,2

C: Non-OS ES with HW Timers for Delay and SW Polled
1,2,3

Input

C: Non-OS ES with HW Timers for Delay and Interrupt-
1,2,3

driven Input

C: RTOS-based three Task ES with 110 1,2,3,4

[I] P. Brejcha, R. Beneder, and M. Kramer, "New approaches for a distance
learning course about Embedded Systems. " In Proc. iEEE Global
Engineering Education Conference (EDUCON), pp. 903-906, 20 II.

[2] R. Cedazo, D. Lopez, F. M. Sanchez, and J. M. Sebastian, "Ciclope:
FOSS for Developing and Managing Educational Web Laboratories,"
iEEE Transactions on Education, vol. 50, no. 4, pp. 352-9, Nov. 2007.

[3] J. Djordjevic, B. Nikolic, and A. Milenkovic, "Flexible web-based
educational system for teaching computer architecture and
organization," iEEE Transactions on Education, vol. 48, no. 2, pp.264-
73, May 2005.

[4] N. Kostaras, M. Xenos, and A. N. Skodras, "Evaluating Usability in a
Distance Digital Systems Laboratory Class," iEEE Transactions on
Education, vol. 54, no. 2, pp. 308-13, May 20 II.

[5] P. A. Laplante and S. J. Ovaska, Real-time systems design and analysis:
tools for the practitioner. Wiley-IEEE Press, 20 1 1.

[6] Y.-H. Li, c.-R. Dow, C.-M. Lin, and P.-J. Lin, "A transparent and
ubiquitous access framework for networking and embedded system
laboratories ", Computer Applications in Engineering Education, vol. 20,
no. 2, pp. 321-3 1, June 2012.

[7] H. Mitsui, K. Hidetoshi, and K. Hisao, "Use of student experiments for
teachinQ emheclclecl software clevelonment inclllclinQ HW/SW co

design," iEEE Transactions on Education, 52, no. 3, pp. 436-43, August
2009.

[8]

[9]

[10]

[II]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

M. Moallem. "A lahoratorv testhecl for emheclclecl comnllter control"

iEEE Transactions on Education, vol. 47, no. 3, pp. 340-7, August
2004.

K. G. Ricks, D. J. Jackson, and W. A. Stapleton, "An embedded systems
cllrriclllllm hasecl on the !FFF/ArM moclel cllrriclllum," iEEE
Transactions on Education, 5 1, no. 2, pp. 262-70, May 2008.

D. T. Rover, R. A. Mercado, Z. Zhang, M. C. Shelley, and D.S. Helvick,
"Reflections on teachinQ ancl learninQ in an aclvancecl Ilnclemraclllate

course in embedded systems. " Education, iEEE Transactions on 5 1, no.
3 (2008): 400-412.

The Sloan Consortium, "Going the Distance: Online Education in the
United States,"
http://sloanconsortium.orQ]publications/survey/going distance 20 1 1,
20 1 1, last accesed 3/31113.

V. R. Uthariaraj and M. M. Babu, "Graduate Courses in Embedded and
Real-Time Systems," iEEE Pervasive Computing, vol. 6, no. 2, pp. 10 1-
4, April-June 2007

D. Patti, A. Spadaccini, M. Palesi, F. Fazzino, and V. Catania,
"Supporting Undergraduate Computer Architecture Students Using a

Visual MIPS64 CPU Simulator," Education, iEEE Transactions on
Education, vo1.55, no.3, pp. 406- 1 1, Aug. 2012.

H. Bahring, J. Keller, and W. Schiffmann, "Remote operation and
control of computer engineering laboratory experiments." In Proc. ACM
Workshop on Computer architecture education: held in conjunction with
the 33rd international Symposium on Computer Architecture (WCAE),
ACM,2006.

X. Yue, E.M. Drakakis, J. Harkin, M.J. Callaghan, T.M. McGinnity, and
L.P. Maguire, "Modular hardware design for distant-internet embedded
systems engineering laboratory ", Computer Applications in Engineering
Education, vol. 17, no. 4, pp. 389-97, December 2009.

R. Sell, S. Seile, and D. Ptasik, "Embedded system and robotic
education in a blended learning environment utilizing remote and virtual
labs in the cloud, accompanied by 'robotic homelab kit"', international
Journal of Emerging Technologies in Learning, vol. 7, no. 4, p 26-33,
2012.

G. Borriello and E. McManus, "Interacting with physical devices over
the web", In Proc. iEEE international Conference on Microelectronics
Systems Education (MSE), pp. 47-8, 1997.

P. Brejcha, R. Beneder, and M. Kramer, "New approaches for a distance
learning course about embedded systems", In Proc. Global Engineering
Education Conference (EDUCON), pp. 903-6,20 1 1.

J. Harkin, M.J. Callaghan, T.M. McGinnity, and L.P. Maguire, In Proc.
international Conference on information Technology and Applications
(ICIT A), vol. 2, pp. 1 19-24,2005.

MJ. Callaghan, J. Harkin, G. Prasad, T.M. McGinnity, and L.P.
Maguire, "Integrated architecture for remote experiementation", In Proc.
iEEE international Conference on Systems, Man and Cybernetics, vol.
5, pp. 4822-7, 2003.

[2 1] M.J. Callaghan, J. Harkin, T. McGinnity, and LIP/ Maguire, In Proc.
iEEE international Conference on Systems, Man and Cybernetics, vol.
6,2002.

