
Spectral Response of Ternary Logic Netlists

Mitchell A. Thornton and Theodore W. Manikas

Southern Methodist University
Dallas, Texas USA 75275–0122

Email: mitch@lyle.smu.edu

Abstract

Past methods for computation of the spectrum of
a multiple-valued logic network usually rely on first
characterizing the network in terms of a switching
function, secondly in mapping the function values
to complex numbers, and thirdly in performing the
computation resulting in the spectrum. More recent
approaches use decision diagram (DD) representations
but still require initial formation of a DD represent-
ing the logic network switching function before the
spectrum is computed. A method is described that
derives a spectral transfer function directly from a
netlist representation. The spectral transfer function
can then be used to compute either the logic network
spectral response for a specified input, or for compu-
tation of the entire Chrestenson spectrum. This method
avoids the need for representing the network as a DD
before computing the spectrum and can be used to
directly compute either a single spectral response, the
entire netlist spectrum, or the spectrum of subcircuits
contained within a netlist.

1. Introduction

Spectral methods as applied to logic circuit networks

have been a topic of interest in the past with applica-

tions in both synthesis and analysis of logic netlists

[1][2]. Widespread usage of spectral methods has not

occurred in part due to the heavy computational burden

associated with their computation and storage.

Improvements over use of the explicit transforma-

tion matrix have been achieved by representing the

switching function response vector in more compact

forms and through the application of elementary oper-

ations over each element within those more compact

forms. Methods that have been devised to represent

switching functions in a more compact manner include

decision diagrams [3] and cube lists [4]. Unfortunately,

these structures continue to have a worst case size of

O(rn) where r is the number of logic values and n is

the number of logic network inputs. Furthermore, after

the switching function representation is obtained, some

means for computing and representing the spectral

transformation matrix must also be employed. Com-

putation of the spectrum of a switching function can

be accomplished as operations directly over decision

diagram structures [5] or through cube lists [4]. Even

with these improvements, it is still necessary to ex-

tract a switching function representation from a netlist

before the computation of the spectrum can occur.

Coupling decision diagram representations with the

use of the so-called ‘fast’ algorithmic spectral compu-

tation methods is one means for reducing spectral com-

putation complexity. The fast methods are commonly

attributed to [6] and require the characterization of a

radix-r switching function as an exponentially large rn

vector that is then applied to log(rn) stages of inter-

mediate computations (butterfly operations). However,

this improved approach still requires the logic netlist

to be initially modeled as a switching function from

which the exponentially-sized rn network response

vector is formed.

Further savings in the computation of the spectrum

can be achieved by representing the network response

vector as a decision diagram (DD) and applying

smaller butterfly operations of size r × r to each DD

vertex resulting in the spectrum being represented as

a corresponding spectral decision diagram [5] [7] [8].

The DD representations allow for savings since many

switching functions and their corresponding spectra

can be represented more compactly as a DD rather

than vectors of size rn. However in the worst case,

some switching functions still require exponentially

large DDs which in turn require an exponential number

of r×r butterfly operations. Furthermore, some means

for first converting a netlist into a DD structure must

first be employed before the spectral transformation

can occur.

It is often the case that a logic diagram, or intercon-

2013 IEEE 43rd International Symposium on Multiple-Valued Logic

0195-623X/13 $26.00 © 2013 IEEE

DOI 10.1109/ISMVL.2013.52

109

2013 IEEE 43rd International Symposium on Multiple-Valued Logic

0195-623X/13 $26.00 © 2013 IEEE

DOI 10.1109/ISMVL.2013.52

109

2013 IEEE 43rd International Symposium on Multiple-Valued Logic

0195-623X/13 $26.00 © 2013 IEEE

DOI 10.1109/ISMVL.2013.52

109

nection of logic gates, does not require an exponential

number of gates and is much more compact than

cube list or DD representations of the corresponding

switching functions. Also, in modern design flows

using Electronic Design Automation (EDA) software

tools, logic networks are first characterized as com-

pact higher-level Register Transfer Language (RTL)

descriptions and then automatically synthesized into

a logic network expressed in the form of a structural

netlist. Thus, a netlist is a more commonly encountered

structure in modern design flows as well as being a

compact representation.

A netlist is a textual description of the structure of

a logic network and may be expressed using a variety

of Hardware Description Languages (HDL) [9]. A

netlist description at the structural level is isomorphic

to a logic network diagram and we represent logic

circuit netlists as logic network diagrams here. We

assume that the netlist is flattened and does not contain

hierarchical subnetlists. Because spectral transforma-

tion algorithms model the logic network as a discrete

switching function represented as a decision diagram

or cube list, spectral methods are inconvenient. For this

reason, we are motivated to find a spectral transforma-

tion method that operates directly upon the netlist.

Past work in the direct computation of a spectrum

from a netlist includes that reported in [10] [11]. In

[10] a method was described that allowed for a single

spectral coefficient to be obtained but required aug-

menting the structure of a netlist and then traversing

it for each spectral coefficient. In [11] a method was

described where spectral coefficients can be obtained

directly from a netlist, however the resulting coeffi-

cients are based upon a specific variable assignment.

Here, a method for computation of the spectrum by

traversing a structural netlist representation without

modifying the netlist or performing a specific variable

assignment is developed. Although any of a class of

spectral transforms may be used, we focus upon the

Chrestenson transform as described in [1] [12]. Meth-

ods similar to the one presented here were developed

for the case of binary (r = 2) logic networks where

individual, partial, or entire Walsh and Reed-Muller

spectra were computed [13] [14].

Our approach models each logic network gate with

a transfer matrix and each logic value is modeled as

an r-dimensional vector instead of a single integer or

complex value. Any logic system that allows for the

defining elementary logic operations to be modeled as

transformation matrices is applicable to our technique.

This representation allows the transfer matrices of each

element to be transformed into the spectral domain

and a technique for traversing the netlist to compute a

spectral transfer matrix is described.
Furthermore, this technique can be implemented

by representing each transfer matrix as a DD. The

implementation approach using DDs allows for an

average reduction in the computational resource re-

quirements for representing the matrices and vectors.

The spectrum may be calculated through the use of

DD traversal algorithms as described in [15]. Using

DDs in our method provides a savings in memory and

computation analogous to those of [5] [7] [8], although

these previous methods are quite different from the

approach we describe here.

2. Background and Notation

Vectors are denoted using “bra-ket” notation [16].

A row vector is denoted by 〈x| and a column vector

is denoted as |x〉. Matrices are denoted as bold font,

upper case characters such as A. Vectors and matrices

may be considered to be tensors of order one and order

two respectively. The dimensions of vectors and matri-

ces are described by non-zero integers that have value

equivalent to the number of components composing

them. A specific tensor is characterized by a number

of such integers equivalent to their tensor order. For

example, a vector is a tensor of order one and is

characterized by a single dimensional value while a

matrix is a tensor of order two and is characterized by

a pair of dimensions whose values are the number of

row and column components.
The inner product of two vectors is denoted as 〈x|y〉

and the outer product as |x〉〈y|. The tensor or outer

product can be formed among two tensors regardless of

their order or dimension. The outer product is a specific

case of the Kronecker product and in the following we

use the symbol ⊗ to refer to either of these operations

[17]. The Kronecker product may be applied to two

matrices as A ⊗ B. The form of the tensor operands

clarifies which of these two multiplicative operations

is being employed.
We use H to represent a Hilbert vector space

whose elements are three-dimensional row vectors that

model ternary logic variable assignments. Hn denotes

a Hilbert vector space of expanded dimension and

defining 3n-dimensioned vectors. The outer product

operation is used to expand the dimensionality of a

Hilbert space from H to H
n as shown in Equation 1

where n is any natural number, n ∈ N.

H
n = H⊗H⊗ . . .⊗H =

n⊗
i=1

H (1)

Logic networks are mathematically modeled as map-

pings of vectors within the vector space H
n to that of

110110110

H
m or equivalently as T : Hn → H

m where T denotes

a ‘transfer matrix’ [18]. T models the functionality

of a logic netlist since it is a specific form of the

concept of a transfer function [19]. Transfer functions

allow a system output response to be calculated when

multiplied by an input stimulus and the particular

multiplication operation used with T is the direct

vector-matrix product.

A transfer matrix T for a ternary logic network can

be derived through use of truth table isomorphism or

through netlist traversals and characterizes the input-

output behavior in the switching domain. As is the

case in other applications of engineering system theory,

transfer functions may also be formulated in the spec-

tral domain and used to determine an output response

in the form of a spectral coefficient due to a particular

input stimulus also expressed in the spectral domain.

In this case, the spectral coefficient is referred to as

the ‘spectral response’ [19]. In this paper, we derive

the spectral transfer matrix Ts for a ternary switching

function by using the switching domain transfer matrix

T. Once the spectral transfer function is specified, it

may be used to compute the spectral response for a

given input stimulus expressed as a vector through

a vector-matrix multiplication operation. Because the

spectral transfer function is in the form of a transfor-

mation matrix, we refer to the transfer function as a

‘spectral transfer matrix.’

2.1. Ternary Logic Constant Models

In philosophical ternary logic systems such

as those of Łukasiewicz and Kleene/Bochvar,

logical outcomes are expressed as states from

the sets {true, false, indeterminate} and

{true, false, undecidable} respectively [20]. These

philosophical logic systems include defined operations

among the logic states such as disjunction, conjunction,

negation, and others that are typically specified by

a ‘truth table.’ In mathematical logic, an abstract

algebraic structure is used to describe a logic system

where the algebra consists of a set of values, a set

of operators, and where the set of values contains

members that serve as identities with respect to the

various operators. Formally, an algebra must also

generally adhere to certain other properties such as

closure. The specific algebra chosen in a mathematical

logic system is typically one where the defining

philosophical logic operations are represented by

distinct algebraic operators and where the set of

values corresponds to the philosophical logic states.

From this point of view, the particular values in the

set are arbitrary in the sense that they may be any

type of objects so long as they are consistent with

the algebraic operators and properties and that they

contain the required identity values.

The application of interest here is that of modeling

the functionality of MVL switching circuits as discrete

MVL functions. Thus, any algebra can be used so long

as it contains operators that allow for modeling all

MVL functions and likewise the set of values must be

consistent with the defined algebraic operators. From

this perspective, the approach described here is not

restricted to any particular mathematical logic system

as long as the logic gates comprising a logic network

may have their functionality expressed in terms of

operations from the defining algebraic model. This

flexibility justifies our use of a set of vectors instead

of the more commonly used sets of scalars or complex

values to model the ternary logic values.

Although three-valued switching circuit models

commonly use the integers {0, 1, 2} to represent logic

values, these values can also be expressed as three dis-

tinct complex-valued cube roots of unity denoted as ak
corresponding to the integral logic value k ∈ {0, 1, 2}.
Equation 2 contains the relationship between the inte-

gral (k) and complex-valued (ak) logic constants. This

complex-valued encoding is convenient for some forms

of spectral analysis, in particular the Chrestenson spec-

trum where logic functions are expressed as complex-

weighted sums of the discretized Chrestenson basis

functions and where the basis functions are expressed

in terms of ak as in [1] [12].

ak = ei
2kπ
3 (2)

Because we model the functionality of a logic net-

work with a linear transformation matrix, an alterna-

tive set of ternary logic value encodings is used for

consistency with the logic network model. Table 1

contains numerical encodings for ternary logic values

that we refer to as ‘scalar’ mappings and the new

encodings referred to as ‘vector’ mappings. We note

that one of the two scalar mappings in Table 1 contains

the three complex roots of unity and that a complex

value may be considered to be a two-dimensional

vector in the complex plane. We nevertheless refer

to this as a ‘scalar complex’ mapping to describe

that it is a mapping of the scalar switching values

to corresponding complex values. Likewise, the new

encodings used here are referred to as a ‘vector’

mapping since ternary logic values are expressed as

row vectors whose components are either integers or

complex values.

Vector switching constants are denoted as row vec-

tors 〈i| where i ∈ {0, 1, 2} represents a distinct

111111111

Table 1. Ternary Logic Constants

Scalar Vector
Switching Complex Switching Complex

0 a0 〈0| 〈c0|
1 a1 〈1| 〈c1|
2 a2 〈2| 〈c2|

Vector Constant Definitions

〈0| = [
1 0 0

] 〈c0| =
[

a0 a0 a0
]

〈1| = [
0 1 0

] 〈c1| =
[

a0 a2 a1
]

〈2| = [
0 0 1

] 〈c2| =
[

a0 a1 a2
]

ternary logic valuation. Additionally, we define the

‘null’ vector 〈∅| = [
0 0 0

]
that represents the

absence of any specific logic valuation. The vector

complex constants denoted by 〈c0|, 〈c1|, and 〈c2|
are composed of complex-valued components ai as

defined in Table 1 and can be computed in terms

of the corresponding switching vector constants and

the Chrestenson transform matrix as 〈ci| = 〈i|C∗
1 for

i ∈ {0, 1, 2}.
The vector space expansion operation in Equation

1 allows for vectors in lower-dimensioned spaces to

combined into a single vector in a higher dimensioned

space. This is useful in our approach since it allows

for n different ternary logic values in vector form to be

represented by a single 3n-dimensional vector instead

of n different three-dimensional vectors.

2.2. Logic Network Elements

Logic networks are defined as a collection of prim-

itive operators that are depicted in a graphical form

and interconnected forming a netlist. Each element

is modeled mathematically as a transformation over

vectors in H. In this work, we utilize the ternary MIN ,

MAX , and Jk (unary literal selection gate) operators

as example logic primitives [20]. Figure 1 depicts some

corresponding netlist symbols, their truth tables, and

their switching transfer matrices.
The output response of a network element, 〈f |,

is obtained by multiplying the corresponding input

stimulus vector, 〈x|, with the element transfer matrix

T as shown in Equation 3. Input stimulus vectors

are obtained through the use of Equation 1 where the

vector representation of each individual network input

value is combined into a single vector 〈x|.

〈f | = 〈x|T (3)

2.3. Chrestenson Transform

The Chrestenson transform is a discrete orthogonal

transform whose basis functions are a set of general-

ized Walsh functions [21]. Equations 4 and 5 are used

Figure 1. Ternary Logic Gate Representations

to construct the Chrestenson transform matrix Cn for

any n ∈ N.

C1 =

⎡
⎣

a0 a0 a0
a0 a1 a2
a0 a2 a1

⎤
⎦ (4)

Cn =

n⊗
i=1

C1 (5)

2.3.1. Scalar Chrestenson Spectrum of f . The scalar

complex encoded Chrestenson spectrum of a logic

network is a column vector of spectral coefficients |sf 〉
and is computed through multiplication of C∗

m with a

column vector of the complex scalar encoded values of

the function f denoted as |fc〉. Equation 6 expresses

this relationship as used in [1] [12].

|sf 〉 = C∗
m|fc〉 (6)

2.3.2. Vector Chrestenson Spectrum of f . The vector

Chrestenson spectrum of a switching function f con-

sists of a column of row vectors resulting in matrix

112112112

Sf . Each row vector in Sf is a distinct Chrestenson

spectral coefficient. We therefore refer to this form of

the Chrestenson spectrum as the ‘vector Chrestenson

spectrum.’
The vector Chrestenson spectrum Sf is calculated

using the relationship in Equation 6 where the column

vector of scalar complex conjugate encodings for the

function |fc〉 is replaced with matrix Fc. Each row

of Fc is the vector complex encoding of f values,

〈fc|, and F is the switching domain transfer matrix.

The transfer matrix F can be viewed as a single

column of row vectors where each row vector is

the switching vector encoded truth value of function

f , hence Equation 6 yields Fc, the complex vector

encoded form of F.

Fc = FC∗
n (7)

Using Equations 6 and 7, the relationship for the

computation of the vector Chrestenson spectrum of the

function f is given in Equation 8.

Sf = C∗
mFc (8)

Example 2.1: Scalar Chrestenson Spectrum Con-

sider the J1 (literal selection) gate and scalar switching

truth table shown in Figure 1. The scalar Chrestenson

spectrum for the J1 gate is computed as:

|cJ1
〉 = C∗

1|J1c〉 =
⎡
⎣

a0 a0 a0
a0 a2 a1
a0 a1 a2

⎤
⎦
⎡
⎣

a0
a2
a0

⎤
⎦

=

⎡
⎣

2a0 + a2
a0 + 2a1
2a0 + a2

⎤
⎦ �

Example 2.2: Vector Chrestenson Spectrum To

compute the vector Chrestenson spectrum of the J1
gate, we first formulate the vector complex encoded

values of J1 as the matrix J1c through the application

of the mapping in Equation 7.
J1c = (J1)(C

∗
1)

=

⎡
⎣

1 0 0
0 0 1
1 0 0

⎤
⎦
⎡
⎣

a0 a0 a0
a0 a2 a1
a0 a1 a2

⎤
⎦

=

⎡
⎣

a0 a0 a0
a0 a1 a2
a0 a0 a0

⎤
⎦

The calculation of the spectral matrix SJ1 is then

accomplished using Equation 8.
SJ1 = (C∗

1)(J1c)

=

⎡
⎣

a0 a0 a0
a0 a2 a1
a0 a1 a2

⎤
⎦
⎡
⎣

a0 a0 a0
a0 a1 a2
a0 a0 a0

⎤
⎦

=

⎡
⎣

(3a0) (2a0 + a1) (2a0 + a2)
(a0 + a1 + a2) (2a0 + a1) (a0 + 2a1)
(a0 + a1 + a2) (a0 + 2a2) (2a0 + a2)

⎤
⎦ �

Theorem 2.3: Scalar and Vector Spectrum Relation
The scalar Chrestenson spectrum and the rightmost

column of the vector Chrestenson spectrum of a func-

tion representing the same logic network are identical.

Proof: For a given switching function f , the scalar

Chrestenson spectrum is given as |sf 〉 = C∗
n|fc〉

and the vector Chrestenson spectrum is given as

Sf = C∗
nFc. We define a vector |v〉 of length 3n

composed of 3n − 1 zero-valued components and a

single unity-valued component of the form, 〈v| =[
0 0 . . . 0 1

]
. The rightmost column of the

vector Chrestenson spectrum can be formed by the

product Sf |v〉, yielding:

Sf |v〉 = C∗
nFc|v〉 (9)

Subtracting Equation 6 from Equation 9 results in:

Sf |v〉 − |sf 〉 = C∗
nFc|v〉 −C∗

n|fc〉
= C∗

n(Fc|v〉 − |fc〉)
(10)

For a given switching function f , Fc and |fc〉 result

by expressing the components of |f〉 using the vector

complex and scalar complex encoded values from Ta-

ble 1. Examination of the encodings specified in Table

1 reveals that the scalar complex and vector complex

encodings are identical in that they both have value ai
corresponding to f having a scalar switching value of

i. Thus, the Equation 10 term (Fc|v〉 − |fc〉) = |∅〉.
Substituting this observation into Equation 10 results

in Sf |v〉 − |sf 〉 = C∗
n|∅〉 = |∅〉. This result can only

occur if the rightmost column of Sf is equivalent to

|sf 〉.

3. Spectral Transfer Matrix

The spectral transfer matrix Ts represents the spec-

tral response of a logic network. When Ts is multiplied

with the complex vector representation of a logic

network input stimulus, the corresponding spectral

response results. Figure 2 contains a block diagram

where a ternary logic network is represented by a

spectral transfer matrix Ts with an input stimulus

matrix Xc and a spectral response matrix Sf .

Theorem 3.1: Spectral Transfer Matrix The spectral

transfer matrix Ts for a logic network is related to the

switching transfer matrix T as given in Equation 11.

Ts = TC∗
m (11)

Proof: Substituting Equation 7 into Equation 8

results in:

Sf = C∗
nFC

∗
m (12)

113113113

Figure 2. Diagram of Spectral Transfer Matrix

Using the notion of a switching transfer matrix, the

switching domain output response, 〈f |, due to a single

switching vector input stimulus 〈x| is computed as

〈f | = 〈x|T. If all possible valuations 〈xi| (where

0 < i < 3n − 1) are represented as a column of row

vectors, a matrix X results with each row equivalent

to 〈xi|. Using X to compute the total switching vector

response results in F = XT. Furthermore, due to the

switching vector encoding definition given in Table 1,

it is observed that X = I where I is the identity matrix,

hence F = XT = IT = T.

Substituting this result into Equation 12 results in:

Sf = C∗
nXTC∗

m = C∗
nTC∗

m (13)

It is observed that the leftmost C∗
n factor in the

expression C∗
nTC∗

m can be considered to be composed

of a single column of row vectors where each row vec-

tor represents the vector complex encoded input values

Xc. From this observation, we have Sf = XcTC∗
m.

Hence, Ts = TC∗
m.

3.0.3. Spectral Response Definition. In keeping with

the terminology of linear systems analysis [19], we

refer to the logic network output in switching vector

encoded form as the ‘switching response’ of a logic

network. Likewise, the ‘total switching response’ is the

complete set of all switching responses for all possible

valuations of input stimuli 〈x|. When all valuations of

〈x| are written as a column of system input stimuli,

the matrix X = I results and thus the total switching

response F is identical to the switching transfer matrix

T since F = XT = T.

Analogous to the switching response of a logic

network, the ‘spectral response’ is the vector complex

encoded output response due to a specific vector com-

plex encoded input stimulus 〈xc|. The ‘total spectral

response’ is a column of vector complex encoded

spectral coefficients and is the complete spectrum Sf .

The spectral response of a logic network due to a

single valuation of an input stimulus 〈xc| is the single

spectral coefficient 〈sf |. The spectral response of a

logic network characterized by Ts can be calculated

as shown in Equation 14.

Figure 3. Ternary Network Element Spectral
Transfer Matrices

〈sf | = 〈xc|Ts (14)

4. Spectral Transfer Matrix from Netlist

Applying Theorem 3.1 to the network element trans-

fer matrices given in Figure 1 results in the correspond-

ing spectral transfer matrices as shown in Figure 3.

4.1. Spectral Transfer Matrix Procedure

The spectral transfer matrix of a logic network

represented as a netlist, can be obtained based on a

traversal of the network and knowledge of the individ-

ual network element spectral and switching transfer

matrices. This technique is summarized below.

1) Determine k logic network partitions φj where

1 ≤ j ≤ k by performing cuts such that each

partition φj is comprised of a set of parallel

network elements with no serial or cascaded

elements and where the first partition, φ1, is

closest to the logic network inputs.

2) Compute the switching transfer matrices, Tφj

for each partition φj where 1 ≤ j < k by

combining the parallel network element switch-

ing transfer matrices using the outer product

operation.

3) Compute the spectral transfer matrix, Tsφk
cor-

responding to partition φk by combining the

parallel network element spectral transfer ma-

trices using the outer product operation. This

step combines the individual steps of using the

114114114

Figure 4. Partitioned Ternary Logic Network

switching transfer matrix for partition k and then

multiplying the overall circuit transfer matrix

with C∗ into a single operation.

4) Compute the overall network spectral transfer

matrix by combining the spectral transfer matrix

for partition φk with each switching transfer ma-

trix of the remaining partitions using the direct

matrix product.

4.1.1. Example Ts Computation. To illustrate the

method for forming the spectral transfer matrix, we

depict the example ternary network in Figure 4 with

partition cuts labeled φ1, φ2, and φ3.

Step 1) parses in the netlist file and produces an

internal data structure that represents the logic net-

work. During the parsing process, serial partitions are

detected. The partitions used here are identical to those

described in the unrelated work of [22]. This portion

of the procedure has O(N) complexity where N is the

number of logic gates in the netlist. The netlist parsing

operation is commonly implemented in modern EDA

software tools.

Step 2) of the procedure determines the switching

transfer matrices of the two leftmost partitions. Fanout

points are represented by the FO switching transfer

matrix and are included in the calculation since they

expand the dimension of the vector space. These two

switching transfer matrices are Tφ1
= A and Tφ2

=
FO respectively.

Step 3) of the procedure determines the spectral

transfer matrix for partition φ3, Tsφ1 = TsJ1 ⊗TsI .

The overall spectral transfer matrix for the network

is computed in Step 4) as the direct matrix product of

the partition transfer matrices and is given by Ts =
(A)(FO)(TsJ1

⊗TsI). The explicit spectral transfer

matrix for the example network is given in Equation

15.

Ts =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a0 a0 a0 a0 a0 a0 a0 a0
a0 a0 a0 a0 a0 a0 a0 a0 a0
a0 a0 a0 a0 a0 a0 a0 a0 a0
a0 a0 a0 a0 a0 a0 a0 a0 a0
a0 a2 a1 a1 a0 a2 a2 a1 a0
a0 a2 a1 a1 a0 a2 a2 a1 a0
a0 a0 a0 a0 a0 a0 a0 a0 a0
a0 a2 a1 a1 a0 a2 a2 a1 a0
a0 a1 a2 a0 a1 a2 a0 a1 a2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)

The spectral transfer matrix for each of the outputs

f1 and f2 can also be separately computed through

application of the spectral transfer matrix construction

procedure for the portion of the network applicable to

each output. The resulting spectral response values for

each individual network output are in the form of a

row vector consisting of three elements.

Alternatively, the spectral response due to a single

input stimulus vector may also be obtained by forming

the spectral mapping of a specific input value and

traversing the logic network and simultaneously multi-

plying the complex vector input stimulus of each stage

with the corresponding switching transfer matrices

followed by multiplying the output response of stage

k − 1 with the spectral transfer matrix for stage k. In

this manner, the spectral response of the logic network

may be computed through a traversal of the netlist

and avoids performing a vector-matrix product after

the overall Ts matrix is computed.

4.1.2. Spectral Response through Netlist Traversal.
An alternative to computing the entire Ts matrix is

to compute a spectral response during the traversal of

the netlist. This approach avoids the explicit represen-

tation of the overall Ts matrix and allows for spectral

coefficients to be obtained with only a netlist traversal.

Initially, the complex vector representing the input

stimulus is formed and is multiplied with the transfer

matrix of the first partition. The resulting vector is

then multiplied by the second partition matrix and the

process is repeated for each partition stage. The final

resulting complex vector is the spectral response of

the netlist corresponding to the initially specified input

stimulus vector. This approach avoids computation of

the overall Ts matrix and a final step of using Ts with

an input stimulus to determine the spectral response

is not required. The complexity of this approach is

reduced to storage of the largest partition transfer

matrix and requires P vector-matrix multiplies where

P is the total number of partitions. It is only necessary

to store each partition matrix at any instant in time.

115115115

5. Conclusion

A method for computation of the spectral transfer

matrix for a ternary logic network is described. The

technique allows the spectral transfer matrix to be

computed through a traversal of a netlist representing

the logic network. The spectral transfer matrix may be

used to compute the entire spectrum of the network or

a single or subset of spectral responses (coefficients).

Furthermore, the method for computing the spectral

transfer matrix may be augmented by pre-multiplying

the input switching transfer matrices with a complex

vector representation of a specific network input value

resulting in computation of the logic network spectral

response through a traversal of the netlist. This latter

approach avoids the need to perform a vector-matrix

product using Ts after the partitioning and partition

matrix operations are performed.

References

[1] M. G. Karpovsky, Finite Orthogonal Series in the
Design of Digital Devices. Wiley and JUP, 1976.

[2] S. L. Hurst, J. C. Muzio, and D. M. Miller, Spectral
Techniques in Digital Logic. Academic Press Publish-
ers, 1985.

[3] D. M. Miller and R. Drechsler, “Implementing a
multiple-valued decision diagram package,” in Pro-
ceedings. 1998 28th IEEE International Symposium on
Multiple-Valued Logic, May 1998, pp. 52 –57.

[4] B. J. Falkowski, I. Schaefer, and M. A. Perkowski,
“Effective computer methods for the calculation of
Rademacher-Walsh spectrum for completely and in-
completely specified Boolean functions,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 11,
no. 10, pp. 1207 – 26, 1992.

[5] D. M. Miller, “Graph algorithms for the manipulation
of Boolean functions and their spectra,” in Proceedings.
1987 Congressus Numeratium, 1987, pp. 177 – 199.

[6] J. T. Cooley and J. W. Tukey, “An algorithm for the
machine computation of complex fourier series,” Math.
Computation, vol. 19, pp. 297–301, 1965.

[7] M. A. Thornton, R. Drechsler, and D. M. Miller,
Spectral Techniques in VLSI CAD. Kluwer Academic
Publishers, 2001.

[8] R. Stankovic’ and J. Astola, Spectral Interpretation of
Decision Diagrams. Springer-Verlag Publishers, 2003.

[9] S. Devadas, A. Ghosh, and K. Keutzer, Logic Synthesis.
McGraw-Hill Publishers, 1994.

[10] R. Drechsler and M. A. Thornton, “Computation of
spectral information from logic netlists,” in Proceed-
ings. 2000 IEEE International Symposium on Multiple-
Valued Logic, May 2000, pp. 53 – 58.

[11] R. Krenz, E. Dubrova, and A. Kuehlmann, “Fast algo-
rithm for computing spectral transforms of Boolean and
multiple-valued functions on circuit representation,” in
Proceedings. 2003 IEEE International Symposium on
Multiple-Valued Logic, May 2003, pp. 334 – 339.

[12] C. Moraga, “Complex spectral logic,” Proceedings.
IEEE International Symposium on Multiple-Valued
Logic, pp. 149–156, 1978.

[13] M. A. Thornton, “Spectral analysis of digital logic
circuit netlists,” in Proceedings. 2011 International
Conference on Computer-Aided Systems Theory, Feb.
2011, pp. 414 – 415.

[14] M. A. Thornton and J. Dworak, “Direct Reed-Muller
transform of digital logic netlists,” in Proceedings. 2011
Applications of the Reed-Muller Expansion in Circuit
Design, May 2011, pp. 11 – 20.

[15] E. M. Clarke, M. Fujita, P. C. McGeer, K. McMillan,
J. C. Yang, and X. Zhao, “Multi-terminal binary de-
cision diagrams: An efficient data structure for matrix
representation,” in Proceedings. IEEE Int. Workshop on
Logic Synthesis, 1993, pp. 1–15.

[16] P. A. M. Dirac, “A new notation for quantum me-
chanics,” Proc. of the Cambridge Philosophical Society,
vol. 54, p. 416, 1939.

[17] H. Yang and G. He, “Some properties of matrix product
and its applications in nonnegative tensor decomposi-
tion,” Journal of Information and Computing Science,
vol. 3, no. 4, pp. 269 – 280, 2008.

[18] M. A. Thornton, “A transfer function model for ternary
switching logic circuits,” in Proceedings. 2013 IEEE
International Symposium on Multiple-Valued Logic,
May 2013.

[19] C. T. Chen, Linear System Theory and Design. Holt,
Rinehart and Winston, 1984.

[20] D. M. Miller and M. A. Thornton, Multiple Valued
Logic: Concepts and Representations. Morgan &
Claypool Publishers, 2007.

[21] H. E. Chrestenson, “A class of generalized Walsh
functions,” Pacific Journal of Mathematics, vol. 5, pp.
17–31, 1955.

[22] V. I. Levin, “Probability analysis of combination sys-
tems and their reliability,” Engineering Cybernetics,
no. 6, pp. 78 – 83, 1964.

116116116

