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Abstract
Multi-Valued (MV) fault trees can be used to rep-

resent a variety of probability distributions charac-
terizing system-related events. Representing MV fault
trees in the form of multiple-valued decision diagrams
(MDD) provides a means for representing overall sys-
tem probability distributions and are constructed from
structure functions. MDD edges are annotated with
component probability values and allow for computa-
tion of overall system probability values. MDD ‘phan-
tom’ vertices are presented to overcome inaccuracies
introduced by the ‘rare event approximation’. Addi-
tionally, a method that allows continuous probability
distributions as MDD edge annotations is described.
Experimental results are provided that illustrate the
viability of the method.

1. Introduction
Modern systems and processes are becoming more

complex and involve ever increasing numbers of sub-

systems and components. Design and analysis tasks

include calculations of overall reliability, availability,

threat vulnerability, and other system-level probabilis-

tically distributed events. A past approach devised for

these calculations uses “fault trees” that were devel-

oped at Bell Laboratories in 1961 [1]. Traditionally,

fault trees are used to model failure or reliability dis-

tributions where subsystem components are assumed

to have the binary states of “FAILURE” or “OPER-

ATIONAL.” Correspondingly, overall system analysis

based on a fault tree model results in a composite

estimate of the system being in one of these two states.
The idea of extending binary fault trees to multiple-

valued fault trees for multi-state system reliability is

described in [2]. In [3], the similar concept of a cyber

threat tree is used for the purpose of analyzing the

disaster tolerance of large systems in the presence

of threats. Because some threats can render a sys-

tem to be partially operational, the incorporation of

intermediate states of operability that are not fully

operational nor one of catastrophic failure motivates

the use of multiple-valued (p > 2) states rather than

only p = 2 states. The corresponding binary cyber

threat tree is extended to a multiple-valued (MV) tree

where symbolic AND and OR gates are replaced with

multiple-valued MIN and MAX gates.

The use of binary decision diagrams (BDD) for

representing fault trees was first proposed in [4] and

was extended to use Multiple-valued Decision Dia-

grams (MDD) in [2]. This concept is used for disaster-

tolerance analysis in [3] where a mark-up language,

CyTML, represents cyber-threat trees and a companion

parser converts the CyTML into a corresponding MDD

with edge annotations. The cyber-threat tree approach

is generalized for application to other analysis tasks

in [5]. The work in [6] extends that of [5] by using

an Edge-Valued MDD (EVMDD) software to provide

additional experimental results and analysis of the

computational memory resource requirements. New

algorithms to minimize the number of edges in the

EVMDDs are reported in [7]. Other applications of the

MV fault tree analysis approach are reported in [8] and

[9]. In [8], analysis of the fault tolerance of medical

devices is described and includes the use of conditional

probabilities. The work reported in [9] extends the

MV fault tree approach to that of processes instead

of systems.

In the work described here, we continue to use

the term ‘fault tree’ since it is widely recognizable;

however, the structure can represent any of a variety of

probability distribution functions characterizing events

within a system or process that may not necessarily be

“faults.” With this viewpoint, the fault tree structure is

used in general as a means for describing composite

system or process probability distribution functions in

a compact manner. An important distinction between

fault trees and switching circuit diagrams is that the

variables are events with corresponding probability

2014 IEEE 44th International Symposium on Multiple-Valued Logic

0195-623X/14 $31.00 © 2014 IEEE

DOI 10.1109/ISMVL.2014.42

196



Figure 1. (a) System Diagram, (b) Fault Tree

distributions rather than circuit signal values.

The contribution of this paper is the introduction

of methods to increase the accuracy of overall system

probability values that are computed using MDDs. We

also discuss the process of determining the “structure

function” that indicates how events within a system

are combined to form a fault tree. Two methods are

introduced that increase the accuracy of system prob-

ability computations. First, we discuss the notion of a

“phantom” vertex used to account for higher-ordered

terms in probability computations. Secondly, a new

method for annotating the edge values of an MDD with

curve-fitting parameters obtained from system compo-

nent probability distribution functions is included.

2. Fault Tree Concepts
As an example to describe basic fault tree concepts,

we use a physical system as shown in Fig. 1a. We

assume that each component has one of two basic

states; either “OPERATIONAL” or “FAILURE.” Due

to the two-state nature of the system components, the

probability distribution for each component consists of

two point probabilities, R = 1 − F is the reliability

and F is the failure probability. The resulting fault

tree shown in Fig. 1b uses binary operators depicted

as binary switching circuit gates with inputs that are

events representing component failure.

The OR and AND switching circuit gates represent

additive and multiplicative probability relationships

respectively. In the example system, components A

and B are in series so the entire system will enter

a state of failure when either component A or B

fails and the corresponding probabilistic relationship

is F (Af + Bf ) = F (Af ) + F (Bf ) − F (Af ∩ Bf ).
Depending on the nature of the events being modeled,

it can be the case that the events are mutually exclusive

resulting in F (Af + Bf ) = F (Af ) + F (Bf ) since

F (Af ∩ Bf ) = 0. It is common that failure analyses

of system components assume the event of failure for

component A is independent of that for component

B. Using the independence assumption, the overall

expression becomes F (Af+Bf ) = F (Af )+F (Bf )−
F (Af )F (Bf ) since mutual exclusiveness does not

hold but F (Af ∩ Bf ) = F (Af )F (Bf ). A further

approximation is the so-called “rare event approxima-

tion” [1]. The rare event approximation states that since

the magnitude of component failure probabilities is

generally low, the joint failure term for non-mutually-

exclusive events, F (Af )F (Bf ), may be neglected,

resulting in F (Af+Bf ) ∼= F (Af )+F (Bf ). Therefore,

the overall failure probability for series components is

additive in nature and is represented in the fault tree

with the OR gate in the lower left position in Fig. 1b.

Components C and D are in parallel and for overall

system failure to occur, both components C and D

must fail. Assuming independence of the component

failure events Cf and Df , the overall expression for

failure of both components C and D is F (Cf ∩
Df ) = F (Cf )F (Df ). This multiplicative relationship

is represented in the fault tree through the use of the

AND gate in the lower right of Fig. 1b. Finally, the

intermediate series combination of A and B and the

intermediate parallel combination of C and D are both

themselves in series, therefore the topmost OR gate in

Fig. 1b combines these component combinations.

2.1. System Structure Functions
A structure function refers to the switching func-

tion represented by the fault tree. The determination

of the structure function requires the states of each

component to be mapped to discrete values appropriate

for input to the logic gates followed by a synthesis

operation. The topology of the system only partially

dictates the structure function. Other important factors

are the discrete value mappings and the nature of the

events. In the current example, the fault tree is being

used to represent system failure; however, if a fault

tree were being constructed for system reliability, a

different structure function would result.

In the example system, the structure function and

resulting fault tree are constructed through a method-

ical reasoning about the failure events and knowledge

of the system interconnections. Similar techniques for

determination of the structure function are commonly

used and prior methods have generally not viewed

the fault tree construction process in terms of discrete

value mappings and synthesis. When considered in

terms of logic synthesis, the example system in Fig.

1a assumes that a failure is mapped to a logic 1 and

the operational states are mapped to logic 0. After

performing this mapping, a truth table is formulated as

shown in Fig. 2a and represents the structure function

Sf = Af +Bf + CfDf .

Switching functions can be efficiently represented

in the form of a decision diagram and this was first

proposed for fault tree structure functions in [4]. Fig.
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Figure 2. Example System Structure Function

2b depicts the edge-annotated BDD representation of

the fault tree in Fig. 1b. The edges are annotated

with the point probability of failure (Fi) or reliability

(1− Fi) values and also with one of the two mapped

switching constants. The terminal vertices of the BDD

represent the overall system state of failure (mapped

to value 1) or operation (mapped to value 0). A depth-

first traversal can be used where the path probability

for each path from the initial to root node of interest

is computed by multiplying the edge weights along

the path followed by summing the path probabilities

together at the terminal vertex of interest. Details of

this algorithm are described in more detail in [3] [5]

[6].

From the preceding discussion, the combination of

the structure function and the probability distributions

of system components result in a fault tree that rep-

resents a composite probability distribution function.

Depending upon the particular types of events being

considered, any of a variety of distribution functions

may be represented. For this reason, the structure

function is only partially related to the topology of the

system and is not uniquely determined by the system

interconnections alone.

In traditional fault trees representing failure or

reliability, events are considered to have only two

outcomes, either “FAILURE” or “OPERATIONAL”

resulting in a binary structure function. The use of con-

stant probability values is appropriate when the failure

distribution curve is constant or nearly constant over

the lifetime of the component such as the the “bathtub”

curve. The nearly constant or “lifetime” portion of the

bathtub curve allows for a single probability value to

be used for the probability of failure.

Figure 3. Phantom DD Vertex

2.2. Rare Event Approximation

The rare event approximation is applicable when

individual probability values are sufficiently small.

This is often the case for system failure computations

since the probability of a component failure is typically

small, thus the multiplicative term F (Af )F (Bf ) be-

comes negligible. When the fault tree concept is used

to represent more general distributions of events, the

approximation may introduce too much error in the

overall system probability value. Thus, we introduce

the concept of a “phantom” vertex in the decision

diagram representation of the structure function. The

structure of the fault tree remains the same; however,

the extraction of the structure function from the tree for

the purpose of constructing a decision diagram changes

in that when an OR or MAX gate is encountered,

a decision is made as to whether a phantom node

should be included or not. This decision is based upon

the consideration of the size of the magnitude of the

probability values. To illustrate the use of phantom

nodes, we describe an example using a simple binary

OR operator, although the principle is easily extended

to higher-valued radices where the MAX gate is used.

Consider the portion of the system depicted in

Fig. 1a comprised of the series components A and

B. The expression for the probability of failure is

FAB = F (Af ) + F (Bf ) − F (Af ∩ Bf ). Assuming

the failure distributions for components A and B are

independent and not mutually exclusive, the overall

failure probability becomes FAB = F (Af )+F (Bf )−
F (Af )F (Bf ) and the “rare event approximation” ne-

glects the −F (Af )F (Bf ) term. When individual fail-

ure probabilities are sufficiently large, it may not be de-

sirable to neglect this term. The inclusion of a phantom

vertex in parallel with those representing components

A and B allows this term to be included in the overall

system probability computation. Fig. 3 illustrates the

phantom node occurring in parallel to the vertices

representing components A and B. The phantom node

has exiting edges that are annotated with negative

values corresponding to the term −F (Af )F (Bf ).
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2.3. MV Fault Trees
When system components or sub-processes do not

have constant probability distributions or when more

than two event outcomes are desired, the use of binary

operators in the fault tree may not be adequate. This

observation provides the motivation for the use of MV

fault trees. for “multi-state” systems [2]. The analogous

MVL operations for the binary OR and AND operations

are the multi-valued MAX and MIN operators. The

MVL operators use identical switching gate symbols as

those used for the binary case with the understanding

that they produce non-binary results.

The radix, or number of permissible discrete switch-

ing values of each MVL fault tree operator, depends

upon the number of states being modeled. As an

example, a ternary or three-valued switching system

may be used to denote system failure states of “OPER-

ATIONAL”, “DEGRADED”, or, “FAILURE”. Higher

radices may be used to denote more intermediate states

or degrees of degradation. Furthermore, a mixed-radix
fault tree allows for each system component to be

characterized with different outcomes. For example,

some components may be more appropriately modeled

with the binary outcome of “OPERATIONAL” or

“FAILURE” while other components are modeled with

a different set of outcomes such as “OPERATIONAL”,

“DEGRADED”, and “FAILURE”.

As an example, consider the system shown in Fig.

1a where component A is modeled as having a ternary

(radix-3) discrete point probability distribution for the

states “OPERATIONAL”, “PARTIAL FAILURE”, and

“COMPLETE FAILURE”. In this case, a mixed-radix

MV fault tree is required to model the overall system

failure distribution function. The structure function

is determined by first assigning logic values to the

component states and then synthesizing the resulting

function. While the actual assignment of switching

values is arbitrary, it does affect the structure of the

resulting fault tree. We use the arbitrary discrete value

mappings of 2 for “FAILURE”, 1 for “PARTIAL

FAILURE”, and 0 for “OPERATIONAL”. Although

system components B, C, and D continue to have

binary states, their corresponding switching values are

0 for “OPERATIONAL” and 2 for “FAILURE” to

maintain consistency with the ternary mapping for

component A. The determination of optimal switching

value assignments in terms of producing a compact

decision diagram structure is left as an area of future

research. The MV fault tree and corresponding deci-

sion diagram are shown in Fig 4. The MDD is obtained

by synthesizing the fault tree using a standard MDD

APPLY algorithm.

The MDD edges are annotated with the probabilities

Figure 4. (a) MV Fault Tree, (b) MDD

of failure, Fi, partial failure, PFi, and operational, Oi

as well as the mapped switching values. For the binary-

state components B, C, and D, Oi = 1 − Fi and for

the ternary-state component A, FA + PFA + OA =
1. Overall system failure probabilities are computed

using the algorithms in the previously cited work [3]

[5] [6]. The EVMDD can be optimized through the use

of a variety of optimization methods such as sifting

resulting in a more compact structure.

3. Probability Distribution Representation
Many existing analysis methods for multi-state sys-

tems, including the methods described previously, uti-

lize discrete random variables and their associated

probability distributions. In practical applications, con-

tinuous random variables and their distributions are

often required. More accurate analysis results can be

achieved with a new extension to previous analy-

sis methods that incorporate continuous distributions.

Continuous probability distributions are usually given

as PDFs or CDFs. Thus, we formulate the system

analysis problem addressed in this section as follows:

Problem: Given a structure function S of a multi-
state system and probability distributions for com-
ponents as probability density functions (PDFs) or
cumulative distribution functions (CDFs), compute the
probability distribution of states in the multi-state
system.

Each state of the components represents an interval

of continuous values such as performance or reliability

of multi-state systems. That is, each component state

represents a range of continuous values. Probability

density functions (PDFs) and cumulative distribution

functions (CDFs) are continuous functions, and the
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Figure 5. Edges Annotated with Probabilities

probability for a range [a, b) can be computed by using

PDFs or CDFs as shown in the following equations,

P (a ≤ X < b) =

∫ b

a

PDF (x)dx (1)

P (a ≤ X < b) = CDF (b)− CDF (a) (2)

where P (a ≤ X < b) is the probability for the

range [a, b), PDF (x) and CDF (x) are given prob-

ability density or cumulative distribution functions,

respectively. In this way, the probability for each range

(i.e., the probability for each component state) can be

computed by Equations 1 and 2 even if probability

distributions are given as continuous functions. Since

the obtained probability for each component state is

a single value, we can analyze multi-state systems

using the same method as the analysis method for dis-

crete probability distributions described in the previous

work.

Fig. 5a shows an MDD vertex whose edges are

annotated with point probability values, and Fig. 5b

shows an MDD vertex whose edges are annotated

with probabilities obtained by the equation 1 or 2 for

ranges. As shown in this figure, we can easily incorpo-

rate continuous probability distributions into decision

diagrams. However, in the following subsections, we

describe other methods to incorporate continuous prob-

ability distributions into decision diagrams.

3.1. Curve-fitting Method
The objective of this section is to represent continu-

ous probability distributions using discrete MV struc-

ture functions so that the overall composite probability

distribution can be represented using the MDD data

structure. This requires determination of appropriate

partitions of the distribution curve followed by map-

ping or assigning a logic value to each partition. The

number of identified partitions becomes the radix value

X

1
0 r - 1

P (X) = a X + b0 00

P (X) = a X + b1 11

P   (X) = a     X + br - 1 r - 1 r - 1

Figure 6. Edges Annotated with Polynomials

X

1
0

P (X) * P (Y)0 i

P (Y) = c Y + di ii

= a  c XY + a  d X + b  c Y + b  d0 i 0 0 0i i i

P (X) * P (Y)1 i

= a  c XY + a  d X + b  c Y + b  d1 i 1 1 1i i i

r - 1
P    (X) * P (Y)r - 1 i

(a) Splitting probabilities

X

P (Y) = c Y + dj jj

P (Y) = a Y + bi ii P (Z) = p  Z + qk kk

P (Y) + P (Y) + P (Z)i j k

= a Y + c Y + p  Z + b + d + qi j ik j k

(b) Merging probabilities

Figure 7. Computation of Probabilities at a Vertex

for the MDD vertex. The edge value(s) contain the

information required to approximate the corresponding

portion of the distribution curve. A variety of curve-

fitting techniques may be used to represent the various

portions of the distribution curve. One method is to

determine a linear equation for each partition and then

to annotate each edge with the slope of the fitted line

m and the vertical axis with the intercept point b. In

this manner, a linear interpolation can be performed

during the traversal of the MDD to determine a more

accurate value from the probability distribution curve.

Any of a variety of curve-fitting techniques is possible,

the key factors are the degree of accuracy required in

approximating the distribution function and the number

of parameters that are required for storing the curve-fit

information. The identified parameters are then stored

in the MDD data structure as edge value annotations.

Using a piecewise polynomial approximation, we

can analyze multi-state systems similarly to the pre-

vious MDD-based analysis methods [5] [8] [6] [7]

that use a single value for each probability. Instead

of a single value, we assign a polynomial to each

edge of an MDD, as shown in Fig. 6. Then, by

multiplying and adding the polynomials, we obtain

probability distributions of system states that are given
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Table 1. Practical Systems Results
NAME MDD SIZE TIME

Redundant fire pumps [10] 1.6 KB < 1msec.
Engine starter [10] 41.1 KB < 1msec.

Overrun of motor [1] 44.3 KB < 1msec.

Table 2. Random Systems Results
Number of MDD SIZE TIME

Components n
4 0.2 MB 0.02 sec.
5 0.6 MB 0.19 sec.
6 1.5 MB 1.19 sec.
7 3.5 MB 7.01 sec.
8 8.3 MB 72.42 sec.

as continuous distribution functions (i.e., polynomi-

als). Multiplications and additions of polynomials can

be realized by multiplications and additions of the

corresponding coefficients obtained from the series

expansions as shown in Figs. 7. Note that coefficients

cannot be summed up when ranges for polynomial

approximations are different even if the variable is

the same. This is shown in Fig. 7b. In this figure,

the Y s’ ranges (i and j) are different from each

other. Multiplications and additions of polynomials

are performed at each MDD vertex in a top-down

manner, and polynomials obtained at terminal vertices

are probability distributions of the entire system state.

4. Experimental Results
To illustrate the usage of the technique described

here, we implemented the curve-fitting method using

MDDs to represent the structure function on the fol-

lowing computer environment: CPU: Intel Core2 Quad

Q6600 2.4GHz; memory: 4GB, OS: CentOS 5.7; and

C-compiler: gcc -O2 (version 4.1.2). The results of

the experiments are given in Tables 1 and 2. For all

these example systems, computer runtimes were less

than 1 msec. To show the effectiveness of our method

for larger systems, we randomly generated multi-state

systems consisting of n 6-valued components as in

[6]. From this table, it is shown that our method is

a practical and viable approach for large systems.

5. Conclusions
The use of the fault tree as a means to represent

probability distributions is shown to be viable for

continuous and empirical distribution data through the

use of MVL structure functions. The formulation of

the structure function is described as a process of

discrete switching value assignment followed by MVL

logic synthesis. We have described two techniques for

improving the accuracy of overall system or process

probability representations using MDDs. The tech-

nique of including phantom vertices allows higher-

ordered terms in additive probability relationships to be

included in the calculations. The second enhancement

involves the representation of continuous probability

distributions when decision diagrams are used to rep-

resent fault trees. Experimental results indicate that

our method is a practical approach for large system

analysis tasks.
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