
Using Existing Reconfigurable Logic in 3D Die
Stacks for Test

Fanchen Zhang1, Yi Sun1, Xi Shen1, Kundan Nepal2, Jennifer Dworak1, Theodore Manikas1, Ping Gui1,

R. Iris Bahar3, Al Crouch4, and John Potter5

1Southern Methodist University, Dallas, TX

2University of St. Thomas, St. Paul, MN
3Brown University, Providence, RI

4SiliconAid, Austin, TX
5ASSET InterTech, Richardson, TX

 Abstract— We propose an architecture for an FPGA-based
tester for a 3D stacked IC. Our design exploits the underlying
structure of the FPGA, allowing it to be used to efficiently store
and apply predefined test patterns at a high bandwidth,
reducing the FPGA resources required and often reducing scan
shift toggling. The proposed approach and its advantages can
generally also be applied to 2.5D multi-die circuits containing
FPGAs.

I. INTRODUCTION

Future 3D stacked integrated circuits (ICs) may implement
the functionality of an entire board through multiple bare dies
stacked directly on top of each other and connected by
through silicon vias (TSVs). These dies may contain
intellectual property (IP) from multiple sources and may
include processors, memories, ASICs (application specific
ICs), analog dies, and even FPGAs (field programmable gate
arrays) [1]. In addition to dramatically increasing the
functionality contained within a very small form factor, 3D
stacked ICs also have significant performance benefits arising
from the high-bandwidth, low delay, and low-power
connections that TSVs and bumped connections can provide
[2].

Similar advantages are also obtained in 2.5D multi-die
scenarios, in which multiple die are laid side-by-side on a
silicon interposer or embedded multi-die interconnect bridge
(EMIB) [3]. 2.5D systems are already being produced by
multiple manufacturers, including AMD, which makes a high
performance graphics card using 2.5D technology, and IBM,
which is manufacturing server chips in both 2.5D and true
3D, among others [4].

FPGAs have become increasingly important in a variety of
areas. As their performance and density have increased, they
have become cost-effective replacements for ASICs in many
applications. FPGAs are also used for performance
acceleration through the on-demand instantiation of
specialized hardware and for system repair. Intel has already
announced that its EMIB will be used to connect its CPUs to
Altera FPGAs to enhance performance and handle power
issues [3].

In addition to these other applications, FPGAs have been
used to aid in testing for many years, either by adding

functionality to the load board when a chip is tested using
ATE (automatic test equipment) at the factory or by serving
as a tester for chips that are connected to it directly on a board
[5]. This can allow a board to be partially tested even when
all of the chips and board firmware are not yet available, for
example during board development.

When used to test other chips on the board, an FPGA can
serve as a generator of tests for a directly connected chip. For
example, it could be programmed to contain a memory built-
in-self test (MBIST) engine to send read and write commands
to a directly connected memory chip. Alternatively, it may
also serve as a target for functional or protocol-based tests—
receiving/generating information from/to other chips based
upon their functional behavior.

Just as an FPGA included on a board for other purposes
can provide important test capabilities, an FPGA in a 3D stack
can be repurposed, when desired, to provide critical testing
functions as well. In fact, the advantages of using an FPGA as
a tester on a board become magnified in the 3D IC space.

For example, one important issue in 3D is how and when
to test each die in the stack. Bandwidth to upper die is likely
to be limited to a few pins at the base die, and the P1838
Standard committee is currently investigating protocols and
methods for the transmission of test data including, a TAP and
TAP controller on every die, a serial boundary wrapper on
every die interface (e.g. Upward and Downward) to conduct
interconnect testing, and a parallel port to deliver high
bandwidth test data. However, because the number of TSVs
on a die can be much greater than the number of pins on a
package, it may be possible to obtain significant additional test
bandwidth by using many TSVs between an FPGA-based
tester and the die under test to transmit test data.

These TSVs between the FPGA and another die may serve
as functional communication buses under normal operation or
could have been added for performance enhancement or
repair. In either case, the high bandwidth available may allow
a larger number of short chains to be accessed directly for
scan-based testing—reducing the overall shift cycles and thus
the energy dissipated (and heat created) during test.

Using an FPGA to test dies already in the stack will also
allow for field-testing. For example, a tester could be
instantiated on system boot-up—allowing errors arising from

This paper was supported in part by NSF grant CCF-1061164. .

2016 IEEE 25th North Atlantic Test Workshop

978-1-4673-8949-5/16 $31.00 © 2016 IEEE

DOI 10.1109/NATW.2016.15

46

wearout, aging, warping of dies, etc. to be found. Tests could
be selected or changed based upon functional behavior and
history of the device. Furthermore, the test environment
would be closer to the normal operating environment—
helping to create more accurate tests, to provide valuable
failure data for debug, and possibly even to allow field repair.

Finally, using an FPGA as a tester in a 3D stack provides
significant additional security advantages over an FPGA on a
board because the inter-die connections are hidden in the
stack and cannot be physically probed. As a result, test data,
including test patterns, may never appear outside of the stack,
and side channel analysis, such as power or thermal analysis,
is much less likely to be effective.

In this paper, we explore the implementation of one tester
design that is intended to take advantage of the underlying
FPGA structure. Specifically, we consider the case where
specific ATPG patterns should be applied to the die under test
and how those patterns can be efficiently stored in the lookup
tables (LUTs) that form the programmable fabric of FPGAs.
We explore both the FPGA resources required as well as the
scan shift toggling expended. Test energy arising from scan
shift toggling is especially important in 3D stack structures,
where excess toggling may generate heat that is difficult to
remove from the stack. Excessive toggling can also cause
brownouts when the di/dt exceeds the capacity of power rails
that have limited connections to the board.

The rest of this paper is organized as follows. Section II
provides some more details on previous work in FPGA testers
and 3D test. In Section III we discuss several reasons (other
than test) for including FPGAs in a 3D stack. Section IV
introduces our proposed FPGA tester design and Section V
explores the resources and toggling required by our tester.
Section VI concludes the paper.

II. PREVIOUS WORK

Replacing traditional test and measurement equipment
with FPGAs on boards has been previously shown to help
significantly reduce test costs and allows high-speed testing
because FPGA-based instruments can be reconfigured as
needed and have direct access to the DUT (Design Under
Test) [6]. FPGAs have also been embedded into SoCs
(Systems on Chips) to provide system test capabilities [7].
Using this approach, the FPGA may be reprogrammed for
different functions at different times, so the FPGA may be
used to add functionality to the chip, as well as being used as
an embedded tester.

Various methods have also been developed for testing 3D
stacks. For example, [8] discusses methods for scan-chain
design and optimization for 3D ICs. They found that 3D
scan-chain optimization achieves significant wire-length
reduction compared to common 2D optimization approaches.
The authors of [9] discuss DFT architecture and ATPG for
interconnect test of 3D memory chips (DRAMs) and propose
serial and parallel TAMs (Test Access Mechanisms) to
communicate between dies. The serial TAM is used to
transport test mode instructions and low-bandwidth test data,

while the parallel TAM is used for high-bandwidth volume-
production test data. There has also been significant research
on the testing of TSVs [10], test scheduling [11], and the
communication of test data between layers through the JTAG
port [12]. However, test approaches for chip logic in 3D
stacks have generally assumed that all test data will initially
be provided through the bottom die by a tester (ATE).

III. FPGAS IN 3D STACKED ICS

Including FPGAs in the 3D stack can provide many
advantages. In 2D, an FPGA can often provide the required
performance while meeting area or power constraints. In
addition, the re-programmability of FPGAs allows designs to
be modified easily over a system’s lifetime, as specifications
or standards change, or even as design errors or enhancements
are discovered. Finally, 2D versions of FPGAs have been
used for performance acceleration, allowing co-processing
hardware to be reconfigured “on-the-fly” when a particular
portion of the code can benefit [13]. It is reasonable to expect
that these advantages of FPGAs will likely carry over into the
3D IC space.

FPGA companies are already proposing, and in some cases
manufacturing, 2.5D and 3D systems containing FPGAs. In
recent years, Altera and Amkor have proposed a face-to-face
packaging approach consisting of a mother die (FPGA) and
daughter die (ASIC) [14]. Xilinx currently produces a Virtex
7 FPGA that contains four FPGA dies sitting side-by-side on
a silicon interposer, aiding in prototyping and emulating large
processor systems [15]. Intel is planning to ship its first server
chips containing its CPUs and Altera FPGAs combined into
multi-chip modules to leading edge cloud customers in the
first quarter of 2016 and will place them in mass production
in 2017 [16].

Our previous work has demonstrated the advantages of
including FPGAs in a 3D stack for built-in self-repair [17],
[18]. This paper expands upon our previous work by using
FPGAs in a 3D stack for built-in self-test.

IV. FPGA-BASED TESTER ARCHITECTURE

As individual dies become more complex, the need for
embedded instruments (such as sensors, hardware monitors,
environment monitors, built-in-self test (BIST) engines, trace
buffers, etc.) will only grow. They are likely to be needed not
only for manufacturing test and failure or yield-analysis, but
also to identify and address aging, wearout, and thermal
issues in the field, and to verify or configure inter-die
communication. An FPGA in a 3D stack may be used as a
controller for these instruments or it may be used to
implement some instruments, such built-in-self-test (BIST)
pattern generators, itself.

One type of BIST pattern generator that may be
implemented either in a die or on an FPGA is an LFSR-based
LBIST (logic BIST) engine. Although adding weights and
test points can increase the coverage of LBIST, top-off
patterns may still be needed to achieve high coverage. Thus,
in this section, we describe one possible FPGA-based tester

47

architecture that is capable of generating specific patterns to
apply to a die-under-test (such as those that may be needed
for top-off) while making use of the underlying FPGA
architecture to reduce the resources needed for the design.

To meet these goals, our chosen FPGA-based tester stores
the data to be shifted into the chains on different patterns into
1-bit LUTs on the FPGA. As an example, Fig. 1 shows how
the outputs of a set of LUTs are fed into a multiplexer’s data
inputs. The output of the multiplexer feeds into one of the
scan chains on the ASIC through a TSV (possibly via a
SerDes connection.) A counter is used to cycle through all of
the entries in the LUTs so that they can be shifted out one-by-
one into the chain. This same architecture is repeated for all
chains in the design.

Fig. 1: Example FPGA-based implementation for storing pattern data
for a single scan chain. This is repeated for multiple chains, with LUTs
possibly shared among chains.

To save on FPGA resources, we can reduce the number of
LUTs by merging compatible patterns into a single LUT that
can be selected multiple times. Such merging may occur both
among those patterns that will eventually be fed into a single
chain as well as across chains, in which case a single LUT
may fanout to multiple muxes.

Of course, the select line data is also needed. If the length
of each chain is equal to the size of a LUT, one set of select
lines must be stored per mux/chain for each pattern. For
longer chains, more select line values would be needed so
multiple LUTs may be unloaded in sequence during scan
shift. These values may be stored in the FPGA itself, in a
memory located in the stack, in a memory on the board, or
they may be passed to the stack by an external tester. In our
experiments, we used 5-input LUTs to store 32 bits of data to
feed 32-bit chains, so each mux requires one set of select line
values to be stored per pattern.

A. Merging Algorithm

The LUT design process starts with a synthesized Verilog
circuit netlist, which undergoes scan insertion. Using the
Mentor Graphics Tessent tool, an ATPG pattern set for stuck-
at faults is generated using the “set_atpg_fill X" command
so that don’t cares (Xs) in the patterns are retained. The
patterns are broken up into a set of 32-bit chains containing
both input and flip-flop values. (We assume that output
values will be fed into a response compactor and do not need

to be merged.)

Once the patterns have been generated and divided
between multiple scan chains, they must be assigned to LUTs.
This process is summarized in Fig. 2. There are two
constraints here—the number of LUTs needed and the number
of select lines on the multiplexers (mux). To keep the size of
the muxes manageable, we give preference to the reduction of
select lines on muxes. For each chain, we analyze the patterns
that will be applied to that chain and see if different patterns
can be merged into a single LUT. We also look to see if
patterns across different chains can be merged to reduce the
total number of LUTs. Note that a pattern can only be merged
with a member of the current global list of LUTs (which we
call a LUT pool), if for all bit positions of the pattern, the bits
are compatible between the pattern and the LUT. An X
merged with a defined value (0 or 1) is replaced by the defined
value in the merged LUT. In each case, we need to keep track
of which of the muxes each LUT connects to and when that
LUT should be selected (i.e., for which patterns) for each
chain.

Fig. 2: Flowchart for LUT and Select Line Reduction.

B. Example

To help illustrate this compression methodology, consider
the following example consisting of 3 chains, 4 patterns, and

48

5 bits per chain, with patterns shown in Table I. To reduce the
LUTs and select lines required, we must merge the patterns
when possible, taking the following steps:

TABLE I: EXAMPLE PATTERN DATA BEFORE MERGE

 Chain 1 Chain 2 Chain 3
Pattern 1 01XX1 100X0 XX1X1

Pattern 2 1XX11 11XX1 110XX

Pattern 3 X0XX0 1X001 1X0XX

Pattern 4 XX11X 101XX X1XX1

1. Because the LUT pool is empty, we push the first pattern
of Chain 1 (01XX1) into the LUT pool. This LUT is added to
the first data input of Chain 1’s mux, and the select line value
for Pattern 1, Chain 1 is set to 0.

2. Pattern 2 of Chain 1:1XX11. This pattern cannot be
merged with the LUT pool so we must create a new LUT.
The new LUT is added to the next data input for Chain 1’s
mux, and the select line value 1 for the pattern is recorded.

Now LUT pool: 01XX1, 1XX11. Chain 1’s LUTs: 0,1; Chain
1’s Select lines:0,1.

3. Pattern 3 of Chain 1: X0XX0. X0XX0 cannot be merged
with LUT0(01XX1) or LUT1(1XX11). Add the pattern to the
pool, attach the LUT to the 3rd data input of Chain 1’s Mux,
and record the select line value.

Fig. 3: Resulting implementation for patterns shown in Table I after
pattern merging.

Now LUT pool: 01XX1, 1XX11, X0XX0. Chain 1’s LUTs:
0,1,2 Chain 1’s Select lines:0,1,2.

4. Pattern 4 of Chain 1: XX11X. This pattern can be merged
with LUT0 (01XX1). Create merged pattern 01111 and
replace LUT0 in the pool with this merged pattern. Since
LUT0 exists in the LUT pool and is already attached to this
chain’s mux at data input 0, it does not need to be added to
another data input. However, the select line value 0 must be
recorded for this chain and pattern 4.

Now LUT pool: 01111, 1XX11, X0XX0. Chain 1’s LUTs:
0,1,2; Chain 1’s Select line values :0,1,2,0.

5. Pattern 1 of Chain 2: 100X0. This pattern can be merged
with LUT2 (X0XX0) to create 100X0. Replace LUT2 with
this new merged pattern in the pool. Add LUT2 to Chain 2’s
MUX 0th data input and record 0 as the select line value for
Chain 2, pattern 1.

This process continues until we have attempted to merge
all of the patterns. To store the final data into the LUTs, we
replace any remaining don’t cares (Xs) with 1s and 0s using
the adjacent fill technique. This gives us our final LUT pool:
01111, 10000, 10110, 11001.

The final implementation is shown in Fig. 3. The merging
process allows LUTs to be shared between chains and also
allows the size of the muxes to be reduced when the same
LUTs can be used multiple times for each chain.

Although this example assumed uncompressed patterns
with many X’s, it is still compatible with patterns with fewer
X’s at the cost of less merging. Eventually, if no X’s are
available, and if the number of repeated pattern sequences are
small (as could happen with embedded deterministic test
(EDT) [19]), then other variations could be needed. For
example, it might become more efficient to store the patterns
directly in the FPGA memory or to store some of the data,
such as the select line data, off-chip.

V. IMPLEMENTATION RESULTS AND ANALYSIS

To evaluate the effectiveness of the FPGA-based tester
architecture outlined in Section IV, we ran several
experiments on different benchmark circuits obtained from
opencores.org. These circuits were synthesized with
Synopsys Design Compiler using a 90 nm ASIC library. We
assumed that the primary inputs and primary outputs would
be registered. Mentor Graphics Tessent was originally used
to insert a single scan in each circuit. This scan chain was
then subdivided to form multiple scan chains of length 32
containing only PIs and/or flip-flops (with the final chain
possibly containing fewer scan cells when the original chain
plus the PIs was not evenly divisible by 32). Stuck-at fault
ATPG patterns were generated with Tessent as well. Details
regarding each of the circuits studied are provided in Table II.

 Note that such circuits could very easily represent a core
on a chip that needs to be tested using top-off patterns after
LBIST. Furthermore, although the tester design may be used
to apply top-off patterns only, in these experiments we will
store and apply the entire test set for each circuit.

TABLE II: OPENCORES.ORG BENCHMARKS

 PI PO FF Fault Pattern Chain
colorconv 299 35 584 36534 82 28

des56 134 68 193 13962 113 11

fm_receive 12 13 501 17664 411 17

fpu_double 138 71 5231 264096 294 168
quadratic 36 25 120 6448 40 5

 We assumed that capture values of the flip-flops and
primary outputs would be scanned out and analyzed using an
output signature analyzer, such as a MISR. However,
because a comparison of different output compression
methods is not a goal of the current research, no specific
result compactor was selected or implemented. Note that no
X’s appeared in the scan chains’ capture values during test for

Select Line
Sequence
0 0 0 0 0
0 1 1 0 1
1 0 1 1 0
0 0 0 0 0

0
1
1
1
1

1
0
0
0
0

1
0
1
1
0

1
1
0
0
1

00 01 10 11 00 01 10 11S0
S1

Chain 1

LUT0 LUT1 LUT2 LUT3

LUT
Address
Generator

0 1

Chain 3Chain 2

S2
S3
S4

S4 S3 S2 S1 S0

49

any of the circuits studied. When tests do generate X’s in the
capture values, they must be masked if a MISR will be used.

 To provide a proof-of-concept implementation of our
design outlined in Section IV, we mapped the tester
architecture to a Xilinx Artix-7 (XC7A200T) FPGA device
using Xilinx ISE software. The Artix 7 series configurable
logic block (CLB) provides real 6 and 5 input look-up tables
(134,600 LUTs), distributed memory (2,888Kb), block RAM
memory (13,140Kb) and shift register (1.444Kb) logic
capabilities and fast wide multiplexers (16:1 MUX using 4
LUTs or 1 slice) for efficient FPGA fabric utilization [20].

 These features of the FPGA are important for efficient
implementation of our controller. Our controller will have a
number of 5-input LUTs that each store a 32-bit pattern.
These LUTs will be multiplexed with wide multiplexers. To
take advantage of LUT sharing as described earlier and to
reduce the total width of multiplexers as far as possible, the
select lines for the multiplexers are predetermined and stored
in another RAM block (implemented as either distributed
RAM or block RAM on the FPGA). Fig. 4 shows a basic
architecture of the test controller implemented on the FPGA.
The structure consists of several modules—a LUT address
generator, a LUT layer, a RAM address generator, a RAM
layer, a multiplexer layer, a scan register, a signature checker,
and a scan enable signal generator. The test controller has
three inputs (CLK, RESET and a scan signature from the
ASIC), four outputs (a scan enable signal and a reset sent to
the ASIC), a registered bus feeding scan data to the ASIC via
a SerDes, and an output that compares the signature received
from the ASIC to indicate a test having passed or failed.

Fig. 4: FPGA-based tester block diagram

As already noted, we ran experiments on several circuits
from opencores.org to validate the effectiveness of our
approach. Two separate implementations for each circuit were
generated—one where all modules were implemented as
distributed RAM or slice LUTs in the FPGA and a second one
where the mux select signals were all grouped into a larger
Block RAM (BRAM) in the FPGA. For both experiments, we
used Verilog HDL and synthesized it with Xilinx ISE 14.6
with a synthesis goal set to reduce the overall system area.
Results appear in Tables III and IV.

Table III shows that the tester architecture takes up very
little area on the FPGA and that the tester can be operated at a
clock frequency of 163 to 257 MHz for Experiment 1. Note
that the tester does not need to operate at the speed of a
functional ASIC because the tester is primarily engaging in
scan shift operations, which can occur at a much slower clock
frequency. In fact, a slower clock frequency for scan shift is
likely to be preferable to prevent thermal issues in the stack
during test. The smallest circuit quadratic used negligible
hardware resources and was the fastest while fpu_double used
the most resources (10.3% of LUTs available) and could be
run at just over 163MHz.

TABLE III: EXPERIMENT 1—ALL MODULES ARE DISTRIBUTED
RAMS/SLICE LUTS

Circuits
Max Freq

(MHz)
Slice
LUTs

% use LUTs

color 219.4 2045 1.5%
des56 225.6 986 0.7%

fm_receive 173.9 1969 1.5%
fpu_double 163.7 13797 10.3%
quadratic 256.8 269 0.2%

TABLE IV: EXPERIMENT 2—MUX SELECT LINES IMPLEMENTED IN
BLOCK RAMS (BRAMS)

CKT
Max Freq

(MHz)
Slice
LUT

% use
LUTs

Block
RAMs

%use
BRAMs

color 231.7 1760 1.3% 3 0.8%
des56 252.1 845 0.6% 1 0.3%

fm 214.9 1626 1.2% 3 0.8%
fpu 222.1 7337 5.5% 31 8.5%

quad 234.2 240 0.2% 1 0.3%

In Experiment 2, we see that the circuits use less LUTs
compared to Experiment 1 because all the LUTs of
Experiment 1 that were dedicated to storing the multiplexer
select lines are now stored in one or more of the 365 available
block RAMs (BRAMs). Keeping the select lines in BRAMs
also helps increase the speed of four of the circuits. The small
size of the quadratic circuit prevented it from really taking
advantage of the BRAMs.

A. FPGA Occupancy Data

Another issue we wanted to explore was how much data
reduction we were able to achieve with our current FPGA-
based architecture as compared to simply storing the full test
patterns in a memory—either in BRAMs on the FPGA or in
another memory in the stack. Specifically, if LUTs could be
used for multiple chains and/or multiple patterns, and if the
number of select lines needed for each chain MUX was not
too large, then the number of bits stored should be less. The
data obtained for our 5 circuits is shown in Table V. (Note
that this does not consider additional bits needed to
implement the actual controller in the FPGA). The first
column corresponds to the circuit name and the second to the
original amount of test data that would need to be stored.
This is simply equal to: 32×#chains×#patterns, including
padding, for chains of length 32. Column 3 corresponds to
the number of bits stored for pattern pieces in the LUTs and is

RAM Address
Generator

LUT Layer

RAM Layer

Register

M
U
X

LUT Address
Generator

RESET

RESET

CLK

RESET

CLK

To SERDES

CLK

Scan EN & ASIC
Reset

RESET

CLK

Scan EN

ASIC FF Reset

SIGNATURE
REGISTER

SIGNATURE
FROM ASIC

CLK

RESET

GOLDEN
SIGNATURE

TEST PASS

N N

M M

M

S

:
:
:

50

equal to the number of LUTs identified with the algorithm in
Section IV.B multiplied by 32. Column 4 adds the data for
the select lines values on each pattern and is equal to the
number of select lines needed for all chain muxes multiplied
by the number of patterns.

TABLE V: DATA STORAGE REDUCTION

CKT

Original
Total
(bits)

LUT
data
(bits)

Select
line

(bits)

% 
(LUT
+ sel)

% 
(LUT
only)

% 
(sel

only)

color 73472 36512 15252 29% 50% 79%
des56 39776 19072 7458 33% 52% 81%

fm 223584 35968 45210 64% 84% 80%

fpu 1580544 97728 322224 73% 94% 80%

quad 6400 5184 1200 0.3% 19% 81%

Column 5 corresponds to the percent reduction in data
required when Columns 3 and 4 are added together and
compared with Column 2. This assumes that the values on
the select lines will be stored in the FPGA and are included in
the data overhead. The percent reduction varies from a low of
0.3% for our smallest circuit to a high of 73% for our largest
circuit. This is very encouraging because the percentage
reduction increases significantly as the total original test data
increases. This indicates that this FPGA-tester architecture
appears to be fairly scalable.

Column 6 compares Column 3 and Column 2, trying to
ascertain the percent reduction in data storage needed if only
the data in the LUTs is considered. For example, this might
be appropriate if we are worried about the occupancy of the
FPGA but are obtaining the values on the select lines from an
external memory. Now, the percent reduction is even larger.
It varies from 19% for our smallest circuit to 94% for our
largest circuit.

Finally, Column 7 compares the amount of data stored for
select bits only (number of total select bits multiplied by the
number of patterns) to the total number of bits in Column 2.
This comparison is most appropriate from the perspective of
how much data may need to be stored in an external memory
for feeding to the FPGA. For all circuits, this total reduction
in test data is approximately 80%. We compared this result
with the reduction reported by authors of [21]. In [21], the
authors performed data compression offline on a host
computer and stored the compressed data on an external
“slow” memory. The compressed data stored in the external
memory is then decompressed by an FPGA before being
presented to the DUT (Device under Test). The authors
reported an average compression rate of 69.8% while the total
reduction in our approach was 80%.

Thus, the selected FPGA-based tester architecture is
highly effective at reducing the amount of test data that may
need to be stored in an external memory or on the FPGA
itself. Even more encouraging, the method appears to scale
very well with increasing amounts of test data.

B. Switching Activity

Although we were able to compress our data well in the

previous section, the overall compression rate is considerably
less than is often achieved with on-chip decompressors alone.
Of course, it is still possible, to write the decompressor’s
incoming channel data to LUTs or to on-chip memories in the
FPGA. However, as already noted, in the presence of on-chip
decompressors, the pattern sequences applied to the channels
may not have any X’s, making compression in the LUTs very
difficult.

There are several reasons why this may not be a
significant problem. First, as already noted, the patterns
stored in the LUTs may correspond only to those top-off
patterns that are needed to get coverage for random-pattern-
resistant faults that are not covered by LBIST engines. This
automatically reduces the test data volume that needs to be
stored.

In addition, one of the reasons why such decompressors
are needed is to reduce the test data bandwidth when the test
inputs and outputs are limited to only a few pins. When an
FPGA in a 3D stack is used, it may be possible to have many
more chains on other dies accessed directly either through
individual TSVs or through TSVs that are implementing
SerDes. SerDes TSV channels are extremely efficient in 3D
because of the very short distances between dies. This means
that the test data bandwidth may automatically be higher in
3D between dies even without an on-chip decompressor, if we
choose not to use one.

In addition, if test patterns are going to be generated or
selected within the stack so that only a subset of all potential
patterns in the set are applied to better match suspected
defects or operating conditions, it might be necessary to set
the decompressor to bypass mode and use patterns stored in
the LUTs directly instead.

Finally, thermal issues during test are likely to be very
problematic in 3D because it may be more difficult for heat to
escape. Thus, reducing switching activity during scan shift is
very important. Although low power ATPG for on-chip
decompressors is possible with commercial tools, some
approaches to reducing scan shift toggling, such as adjacent
fill, are difficult or impossible to apply in the presence of on-
chip decompressors because they depend on having a large
number of X’s. It may be easier to get low power test
patterns from our approach if enough X’s remain in the
patterns to perform adjacent fill.

As a result, we investigated the difference in scan shift
switching activity for both patterns shifted in as the output of
a power-limited on-chip decompressor and for our original
scan patterns with adjacent fill implemented after merging.
Specifically the on-chip decompressor patterns were
generated in Mentor Graphics Tessent with the low-power
options—and we tried to limit switching activity to between
10% and 25% of the maximum possible. (Further limitations
on switching lead to lower test coverage.) More than 200 test
sets were created for each circuit with different threshold
parameters to try to find the very lowest EDT toggling
activity possible without losing significant fault coverage.

51

The switching activity comparisons are shown in Table VI.

TABLE VI: TOTAL TOGGLING FOR OUR METHOD VS. EDT

CKT

Patterns with
Adjacent Fill

Embedded Determ-
inistic Test (EDT) %  with

EDT Fault
Cvrg.

of
Toggles

Fault
Cvrg.

of
Toggles

color 98.92% 974355 98.26% 1235642 26.82%

des56 99.98% 387082 99.98% 507995 31.24%

fm 99.99% 2873740 98.62% 1656506 -42.36%

fpu 99.97% 30169143 98.91% 46773663 55.04%

quad 100.00% 87596 98.65% 92799 5.94%

When collecting the data, we used scan chains of length
approximately 32 for all circuits, whether or not an on-chip
decompressor was used. Toggling includes both toggling due
to the pattern shifted into the chains as well as toggling due to
the results shifted out of the chains in each case. In each case,
only toggling of flip-flops in the chains was counted. Any
toggling that would have been generated in the circuit’s
combinational logic is not included. Thus, the total toggling
that would have occurred in the circuit overall due to the
toggling of these flip-flops would have been even greater.

The toggling of flip-flops during scan-shift for each circuit
is shown in Columns 3 and 5. Column 6 shows the percent
increase in total toggling when EDT is used instead of our
patterns (that are merged into LUTs and then use adjacent fill
for remaining X’s). Clearly, the amount of energy dissipated
into the circuit due to toggling during scan shift is usually
greater when EDT is used. In the case of the largest circuit,
fpu, there is more than a 55% increase in the total toggling
during scan shift of the test set when EDT is used instead of
our method. Only in the case of fm_receiver is the toggling
for EDT less than ours. This is true even though we didn’t
consider any additional EDT toggling due to the fact that the
channel length is longer than the chain length and the
decompressor itself will toggle internally. We also merged
our patterns to minimize FPGA occupancy instead of
toggling. In future work, we will explore options to reduce
the toggling even more. This may be easier with our method
because of its inherent flexibility and amenability to making
tradeoffs.

VI. CONCLUSIONS

In this paper we have explored some of the advantages of
using an existing FPGA as a tester in a 3D stack. We have
proposed an FPGA-based tester design for the application of
specific test patterns that is well-matched to the underlying
structure of the FPGA fabric. Our analysis shows that the
proposed technique uses only a very small fraction of FPGA
resources, and the percent reduction in overall bit storage
relative to simply storing the patterns in a memory actually
increases as the total amount of test data increases.
Furthermore, the proposed technique can take advantage of
the high TSV bandwidth that is likely possible in 3D die
stacks to transmit data to multiple chains in parallel. This
allows us to implement adjacent fill and can often
significantly reduce the amount of scan-shift toggling that is

needed when compared to patterns generated in low power
mode for embedded deterministic test. In general, most of
these advantages should also carry over into the 2.5D space.
Future work will investigate in detail the security advantages
of using an FPGA in a 3D stack as an in-system tester.

REFERENCES
[1] R. Chaware, K. Nagarajan, and S. Ramalingam, “Assembly and reliability
challenges in 3D integration of 28nm FPGA die on a large high density 65nm
passive interposer,” in Electronic Components and Technology Conference
(ECTC), 2012 IEEE 62nd, 2012, pp. 279 –283.
[2] M. Agrawal and K. Chakrabarty, “Test-cost optimization and test-flow
selection for 3D-stacked ICs,” in IEEE VLSI Test Symp (VTS), 2013\pp. 1–6.
[3] E. Sperling, “Thinking Outside The Chip,” Semiconductor Engineering,
14-Jan-2016.
[4] E. Sperling, “Is The 2.5D Supply Chain Ready?,” Semiconductor
Engineering, 28-Sep-2015.
[5] A. L. Crouch, J. C. Potter, A. Khoche, and J. Dworak, “FPGA-Based
Embedded Tester with a P1687 Command, Control, and Observe-System,”
Des. Test IEEE, vol. 30, no. 5, pp. 6–14, Oct. 2013.
[6] I. Aleksejev, S. Devadze, A. Jutman, and K. Shibin, “Virtual
reconfigurable scan-chains on FPGAs for optimized board test,” Test Symp.
LATS 2015 16th Lat.-Am., pp. 1–6, Mar. 2015.
[7] S. Devadze, A. Jutman, I. Aleksejev, and R. Ubar, “Fast extended test
access via JTAG and FPGAs,” International Test Conf.., pp. 1–7, Nov. 2009.
[8] X. Wu, P. Falkenstern, K. Chakrabarty, and Y. Xie, “Scan-chain Design
and Optimization for Three-dimensional Integrated Circuits,” J Emerg
Technol Comput Syst, vol. 5, no. 2, pp. 9:1–9:26, Jul. 2009.
[9] S. Deutsch, B. Keller, V. Chickermane, S. Mukherjee, N. Sood, S. K.
Goel, J. Chen, A. Mehta, F. Lee, and E. J. Marinissen, “DfT architecture and
ATPG for Interconnect tests of JEDEC Wide-I/O memory-on-logic die
stacks,” in Test Conference (ITC), 2012 IEEE International, 2012, pp. 1–10.
[10] C. Wang, J. Zhou, R. Weerasekera, B. Zhao, X. Liu, P. Royannez, and
M. Je, “BIST Methodology, Architecture and Circuits for Pre-Bond TSV
Testing in 3D Stacking IC Systems,” Circuits Syst. Regul. Pap. IEEE Trans.
On, vol. 62, no. 1, pp. 139–148, Jan. 2015.
[11] S. K. Roy, P. Ghosh, H. Rahaman, and C. Giri, “Session Based Core
Test Scheduling for 3D SOCs,” in VLSI (ISVLSI), 2014 IEEE Computer
Society Annual Symposium on, 2014, pp. 196–201.
[12] Y. Fkih, P. Vivet, B. Rouzeyre, M.-L. Flottes, and G. Di Natale, “A
JTAG based 3D DfT architecture using automatic die detection,” in (Ph.D.
Research in Microelectronics and Electronics (PRIME), 2013 9th Conference
on, 2013, pp. 341–344.
[13] C. Claus, R. Ahmed, F. Altenried, and W. Stechele, “Towards rapid
dynamic partial reconfiguration in video-based driver assistance systems,”
Reconfigurable Comput. Archit. Tools Appl., pp. 55–67, 2010.
[14] J. Xie and D. Patterson, “Realizing 3D IC Integration with Face-to-Face
Stacking,” Chip Scale Rev., vol. 17, pp. 16–19, 2013.
[15] P. Dorsey, “Xilinx stacked silicon interconnect technology delivers
breakthrough FPGA capacity, bandwidth, and power efficiency,” Xilinx
White Pap. Virtex-7 FPGAs, pp. 1–10, 2010.
[16] A. Shah, “The first fruits of Intel’s biggest buy ever coming this
quarter,” Computerworld, 14-Jan-2016.
[17] K. Nepal, X. Shen, J. Dworak, T. Manikas, and R. I. Bahar, “Built-in
Self-Repair in a 3D die stack using programmable logic,” in 2013 26th IEEE
International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems, (DFTS), pp. 243–248, October 2013, New York.
[18] K. Nepal, S. Alhelaly, J. Dworak, R. I. Bahar, T. Manikas, and P. Gui,
“Repairing a 3-D Die-Stack Using Available Programmable Logic,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 34, no. 5, pp. 849–861,
May 2015.
[19] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherjee, “Embedded
deterministic test,” Comput.-Aided Des. Integr. Circuits Syst. IEEE Trans.
On, vol. 23, no. 5, pp. 776–792, 2004.
[20] Xilinx, “7 Series FPGAs Configurable Logic Block User Guide (UG474
(v1.7)).” Xilinx, 17-Nov-2014.
[21] L. Ciganda, F. Abate, P. Bernardi, M. Bruno and M. S. Reorda, "An
enhanced FPGA-based low-cost tester platform exploiting effective test data
compression for SoCs," Intl. Symp. Design and Diagnostics of Electronic
Circuits & Systems, (DDECS), Liberec, 2009, pp. 258-263.

52

