CSE 5343 Fall 2006 PROJECT
Due Date: 12/7/06

In this project, you are to divide into teams of two and implement a shell on a CSE Unix/Linux system of your choice. You may implement the project in a language of your choice.
You are to submit (via email) for grading the code, the test execution, and a brief writeup indicating what you did. You will be graded on these as well as a test to be performed by Dr. Dunham.

Code MUST contain comments for each procedure/function and data. In addition, each program must have a comment at the beginning indicating the names of the team members and the purpose of this program. Late projects will not be accepted.

ANY STUDENT FOUND PLAGIARIZING WILL RECEIVE A GRADE OF 0 ON THE PROJECT AND MAY BE REPORTED TO THE HONOR COUNCIL.

The following grading scheme will be used:
	Submissions Requirements(Code,Test,Writeup)
	10 pts

	Comments in Code
	10 pts

	Testing (Test programs,test results)
	10 pts

	Successfully implement shell (Do what was required)
	40 pts

	Successful compilation/test by Dr. Dunham
	10 pts

	Writeup
	20 pts

This task is not easy, so begin work as soon as possible.

Prior to beginning the programming, you need to identify teams and notify Dr. Dunham via email as to the members of each team. Please send this information to Dr. Dunham via email by November 7.

Task Description:
The concept of a shell is crucial to Unix. The object of your project is to design and implement a new Unix shell
 Your shell should function much as a traditional Unix shell, so that the command line consists of a prompt (displayed by your program), and then the commands entered by the user.
The basic steps in your shell are as follows:

1. Clear the screen

2. Output prompt and wait for input

3. Obtain complete command line

4. Parse command line to divide into commands and parameters

5. Execute the command via use of:

a. fork to create the new process (one for each command on the command line)

b. exec to overlay the code with that of the program to be executed

c. Original process performs a wait to await the signal at completion of the child process

If there are multiple commands on the command line, you will need to actually use a pipe to implement the pipe found on the command line.
You will probably have to research the exact format and functionality of the various exec commands as well as the wait command.

You will need to determine the syntax of your command line.

· You need to be able to input filenames and pathnames for programs to be executed as well as pass parameters to these programs.

· You must have a command line prompt that includes the names/initials of team members

· You must be able to support at least one pipe between two programs

· You must be able to continue commands to subsequent lines

· You must be able to identify basic shell commands (ls, ps, pwd, cc/gcc) from the underlying Unix shell and execute these appropriately.
· You must have a predefined command to exit your shell.
Testing:

You are to test your shell by actually using it to compile and execute the pipe program introduced by Dr. Dunham in class on 10/26. Submit for grading the actual test:
1. Compile your shell program(s)

2. Execute your shell

3. From within your shell compile the pipe program and execute it.
4. Exit your shell
You may use the Script command to capture the terminal output to a file and submit this for grading.

Writup:

This document should be about 5 pages in length and contain the following:

1. Overall design of the programs

2. Syntax design of your shell (including use of pipes and any line continuation.
3. Description of Engineering school platform on which you executed the shell.
4. Discussion of any problems you had in implementing the shell. Be sure to indicate any portions that you did not successfully complete.

5. Bibliography of all sources used in the creation of this project. IF you are able to find sample shell code that you use as a guideline, include those here as well as in the code itself. Do not copy that code directly.
� The project is based on that found on pp47-54 in

Gary Nutt, Operating Systems A Modern Perspective, Second Edition, Addison-Wesley, 2000.

