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The crux of the problem is how to use the data L to determine
the splits, the terminal nodes, and their assignments. It turns
out that the class assignment problem is simple. The whole story

is in finding good splits and in knowing when to stop splitting.

2.3 CONSTRUCTION OF THE TREE CLASSIFIER

The first problem in tree construction is how to use £ to deter-
mine the binary splits of X into smaller and smaller pieces. The
fundamental idea is to select each split of a subset so that the

data in each of the descendant subsets are '‘purer' than the data
in the parent subset.
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For instance, in the six-ciass ship problem, denote by Py s

., Pbg the proportions of class 1, ..., 6 profiles in any node.
1 1 1 .
For the root node £y, (pl, ey p6) = fg, T oo EJ. A good spli

of t; would be one that separates the profiles in £ so that all
profiles in classes 1, 2, 3 go to the left node and the profiles i
4, 5, 6 go to the right node (Figure 2.5).

FIGURE 2.5

Once a good split of t; is found, then a search is made for good.
splits of each of the two descendant nodes t,, ti.

This idea of finding splits of nodes so as to give '‘purer" de
scendant nodes was implemented in this way:
1. Define the node proportions p(ile), 7 =1, ..., 6, to be the

proportion of the cases X € t belonging to class j, so that

p(l]t) + +++ + p(6lt) = 1.
2. Define a measure i(t) of the impurity of t as a nonnegative

function ¢ of the p(llt), ey p(6lt) such that

1 1 1 .
¢[‘6—, g e '6"'] = maxlimum,

¢(1, 0, 0, 0, 0, 0)
¢(0, 0, 0, 0, 0, 1)

1]

0, (0, 1, 0, 0, 0, 0) =0, ...,
0

That is, the node impurity is largest when all classes are equally

mixed together in it, and smallest when the node contains only on€
class.
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For any node t, suppose that there is a candidate split 4 of
the node which divides it into tr and tR such that a proportion P,

of the cases in t go into t, and a proportion P, 80 into tR (Fig-
ure 2.6) .,

FIGURE 2.6

Then the goodness of the split is defined to be the decrease in im-

purity
A1 (s, £) = i(t) - le(tL] - pRl(tR).
The final step 1is:

3. Define a candidate set S of binary splits 4 at each node. Gen-
erally, it is simpler to conceive of the set S of splits as
being generated by a set of questions @, where each question
in @ is of the form

Is x € A7, 4 C X.
Then the associated split 4 sends all X, in t that answer 'yes"
to t, and all x_ in t that answer '"no'" to t.
In the ship project the node impurity was defined as
b

i(t) = -} p(Flt) log p(ilt).
1

There is no convincing justification for this specific form of i(t).

It was selected simply because it was a familiar function having
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4.3 THE MULTICLASS PROBLEM: UNIT COSTS

Two different criteria have been adopted for use in the multiclass
problem with unit costs. These come from two different approaches
toward the generalization of the two-class criterion and are
called the

Gini criterion
Twoing criterion

4,.3.1 The Gini Criterion

The concept of a criterion depending on a node impurity measure has
already been introduced. Given a node t with estimated class proba-
bilities p(j|t), 7 =1, ..., 7, a measure of node impurity given ¢

i(t) = ¢o(plle), ..., p(3lt))

is defined and a search made for the split that most reduces node,

or equivalently tree, impurity. As remarked earlier, the original

function selected was
c ey = - . lo .
2(p, p.) g p, log p, 83\.:}/\4»\,(1

In later work the Gini diversity index was adopted. This has

the form

i) = ] pGlestio Y@

J#i

and can also be written as
i) = () pGGle))? - 1 pPGle) = 1 - ) PP, %(4.9)
J b b

In the two-class problem, the index reduces to
i(e) = 2p(1[t)p(2]e),

equivalent to the two-class criterion selected previously.
The Gini index has an interesting interpretation. Instead of

using the plurality rule to classify objects in a node t, use the
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rule that assigns an object selected at random from the node to
class i with probability p(i|t). The estimated probability that

the item is actually in class j is p{(j|t). Therefore, the estimated

probability of misclassification under this rule is the Gini index

b oplilt)p(i]e).
) ¥

1

J

Another interpretation is in terms of variances (see Light and
Margolin, 1971). In a node t, assign all class j objects the value
1, and all other objects the value 0. Then the sample variance of
these values is p(j|e)(1 - p(j|t)). If this is repeated for all J
classes and the variances summed, the result is

L pGley(1 - p(le)) = 1 - ] p2(5l0).

J 3

Finally, note that the Gini index considered as a function
¢(p1, e pJ] of the Py «-es Py is a quadratic polynomial with
nonnegative coefficients. Hence, it is concave in the sense that
forr+s=1,r2>0, s>0,

$(rpy + sp|, TP, * SPy, ..., TP, + spl}

> r¢(p1, ceey pJJ + S¢(p{, cees p&)-

This ensures (see the appendix) that for any split 5,

pi{s, t) > 0.
Actually, it is strictly concave, so that Ai(s, t) = 0 only if
p(ilty) = plile) = pUile), 5= 1, ..., 7

The Gini index 1s simple and quickly computed. It can also

incorporate symmetric variable misclassification costs in a natural

way (see Section 4.4.2),

4.3.2 The Twoing Criterion

The second approach to the multiclass problem adopts a different

strategy. Denote the class of classes by C, i.e.,
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¢ =1{1, ..., 7}.
At each node, separate the classes into two superclasses,

C1 = {jl, RN jn}, C2 = C - Cl.

Call all objects whose class is in C; class 1 objects, and put all
objects in C, into class 2.

For any given split 4 of the node, compute Ai(4, t) as though
it were a two-class problem. Actﬁally A1{4, t) depends on the se-

lection of C;, so the notation
ri(s, £, Cy)

is used. Now find the split #*(C;) which maximizes Ai(s, ¢, C;).

Then, finally, find the superclass Cj which maximizes
&i(‘é*(cl}ﬁ t, Cl)‘

The split used on the node is 4*(CY).

The idea is then, at every node, to select that conglomeratior
of classes into two superclasses so that considered as a two-class
problem, the greatest decrease in node impurity is realized.

This approach to the problem has one significant advantage:

It gives "strategic” splits and informs the user of class similari-
ties. At each node, it sorts the classes into those two groups
which in some sense are most dissimilar and outputs to the user
the optimal grouping C}, C4 as well as the best split 4*.

The word strategic is used in the sense that near the top of
the tree, this criterion attempts to group together large numbers
of classes that are similar in some characteristic, Near the bot-
tom of the tree it attempts to isolate single classes. To illus-
trate, suppose that in a four-class problem, originally classes 1
and 2 were grouped together and split off from classes 3 and 4,

resulting in a node with membership
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Class: 1 2 3 4
No. cases: 50 50 301

Then on the next split of this node, the largest potential for de-
crease in impurity would be in separating class 1 from class 2.

Spoken word recognition is an example of a problem in which
twoing might function effectively. Given, say, 100 words (classes),
the first split might separate monosyllabic words from multisylla-
bic words. Future splits might isolate those word groups having
other characteristics in common.

As a more concrete example, Figure 4.5 shows the first few

splits in the digit recognition example. The 10 numbers within

18 24,20,12,13, 28,19, 22, 24, 20

{134579/ \6810}

(163181112116123) Q212112732112@

4 \ 2

{1,7} {3,4,5,9,(2,6,8)} {2,(1,3,7)} {6,8,10,(4,:
@,2,15,11,12,1,1,1,22,0) ( 2,19.2,0,0,4,3,2,0,13
16,1,3,0,0,0,15,0,1,0 ) C0,2,0,1,1,23,0,19,1,19 )

FIGURE 4.5

each node are the class memberships in the node. In each split the
numbers in brackets by the split arrows are the superclasses C¥%,

E, for the split. In parentheses in the brackets are the classes
whose populations are already so small in the parent node that
their effect in the split is negligible. Zero populations have been

ignored.
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Recall that the lights are numbered as

7

The first split, on the fifth light, groups together classes 1, 3,
4, 5, 7, 9 and 2, 6, 8, 10. Clearly, the fifth light should be off
for 1, 3, 4, 5, 7, 9 and on for the remaining digits. The next
split on the left is on light 4 and separates classes 1, 7 from
classes 3, 4, 5, 9. On the right, the split on light 2 separates
class 2 from 6, 8, 10.

Although twoing seems most desirable with a large number of
classes, it is in such situations that it has an apparent disad-
vantage in computational efficiency. For example, with J classes,
there are 271 distinct divisions of C into two superclasses. For
J = 10, 2J_l = 1000. However, the following result shows, rather
surprisingly, that twoing can be reduced to an overall criterion,

running at about the same efficiency as the Gini criterion.

THEOREM 4.10. Under the two-class criterion p(llt)p(ZIt), for a

given split &, a superclass Cy(4) that maximizes
AL (4, t, Cy)

is
Cr(8) = {5: p(ile)) 2 p(ile)}

and

PP, 2
max 4i(s, £, C) = —%—ELZ [pCile,) - p(jltR)l] :
Cy J

COROLLARY 4.11. For any node t and split 4 of t into tL and tR'

define the twoing criterion function ®(4, t} by



