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Abstract 
Clustering in  spatial data mining is to group similar 

objects based on their distance, connectivity, or their 
relative density in space. In the real world, there exist 
many physical obstacles such as rivers, lakes and high- 
ways, and their presence may affect the result of clus- 
tering substantially. In this paper, we study the problem 
of clustering in the presence of obstacles and define it 
as a COD (Clustering with Obstructed Distance) prob- 
lem. As a solution to  this problem, we propose a scal- 
able clustering algorithm, called COD-CLARANS . W e  
discuss various forms of pre-processed information that 
could enhance the eficiency of COD-CLARANS . In the 
strictest sense, the CODproblem can be treated as a 
change an distance function and thus could be handled 
by current clustering algorithms by changing the dis- 
tance function. However, we show that by pushing the 
task of handling obstacles into COD-CLARANS instead 
of abstracting it a t  the distance function level, more op- 
timization can be done in the form of a pruning func- 
tion E’. W e  conduct various performance studies to 
show that COD-CLARANS is both eficient and effec- 
tive. 

1 Introduction 
Cluster analysis, which groups data for finding 

overall distribution patterns and interesting correla- 
tions among data sets, has numerous applications 
in pattern recognition, spatial data analysis, image 
processing, market research, etc. Cluster analysis 
has been an active area of research in computa- 
tional statistics and data mining, with many effective 
and scalable clustering methods developed recently. 
These methods can be categorized into partitioning 
methods [KR90, NH94, BFR981 , hierarchical methods 
[KR90, ZRL96, GRS98, KHK991, density-based meth- 
ods [EKSX96, ABKS99, HK981, grid-based methods 
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[WYM97, SCZ98, AGGR981 , and model-based meth- 
ods [SD90, Koh821. 

Typically, a clustering task consists of separating a 
set of objects into different groups according to some 
measures of goodness that differ according to applica- 
tion. A common measure of goodness will be the sum 
of square of the direct Euclidean distance between the 
customers and the center of the cluster they belong to. 
However, in many real applications, the use of direct 
Euclidean distance has its weakness as illustrated by 
the following example. 

Example 1.1 A bank planner wishes to locate 4 
ATMs in the area shown in Figure l (a )  to serve the 
customers who are represented by points in the figure. 
In such a situation, however, natural obstacles exist in 
the area and they should not be ignored. This is be- 
cause ignoring these obstacles will result in clusters like 
those in Figure 1 (b) which are obviously inappropriate. 
For example, Cluster C11 is, as a result of clustering, 
split by a river, and some customers on one side of the 
river will have to travel a long way to the ATM located 
at the other side. 0 

Example 1.1 shows a simple but a serious fact which 
has not been addressed so far: most clustering algo- 
rithms assume direct Euclidean distance among the 
objects to be clustered without obstacles in the way, 
however, most applications do have obstacles in pres- 
ence, and the omission of such obstacles may lead to 
distorted and often useless clustering results. 

In this study, we examine the problem of clustering 
spatial objects with the presence of obstacles. The def- 
inition of the problem that we are solving is as follows. 

Definition 1.1 The Clustering with Obstructed 
Distance (COD ) Problem 
Given (1) a set P of n points {pl ,p2,  ..., pn} ,  and (2) 
a set 0 of m non-intersecting obstacles (01, ..., om} 
in a two-dimensional region, R, with each obstacle 
0, represented by a simple polygon, the direct Eu- 
clidean distance between two points p j  and pk,  de- 
noted as d(pj,pk), is the Euclidean distance between 
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the two points by ignoring the obstacles; whereas the 
obstructed distance, between the two points, denoted 
( I S  d'(pj, p k ) ,  is defined as the length of the shortest Eu- 
clidean path from pj to pk without cutting through any 
obstacles. 

The problem of clustering with obstacle dis- 
tance (COD) is to partition P into k clusters, C11, 

E ,  is minimized. 
. . . .  elk, such that the following square-error function, 

where ci is the center of cluster Cli  that is deter- 
mined by the clustering. 0 
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(a) Customers' locations and obsta- 
cles. 
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(b) Clusters formed when ignoring 
obstacles. 

Figure 1. Planning the locations of ATMs 

Since our given problem is to ensure a minimized 
overall travel distances of all the customers in the city, 
the partitioning-based algorithms will be a good choice 
as a solution. This is because most of the other cate- 
gories of clustering algorithm focus on finding natural 
clusters which do not guarantee minimization of the 
distances to the cluster centers. 

Of the two typical types of partitioning-based algo- 
rithms, k-means and k-medoids, the k-medoids method 

0 Z o  0 
0 0 0  

mean medoid 

Figure 2. Mean vs Medoid. 

is selected due to the fact that the mean of a set of 
points is not well defined when obstacles are involved. 
For example, in Figure 2,  the mean of the points is in- 
side an obstacle and thus by definition is unreachable 
by all the points in the cluster. On the other hand, the 
k-medoids method chooses an object within the cluster 
as a center and thus ensures that such a problem does 
not exist. In view of this, we derived an efficient k- 
medoids algorithm called COD algorithm for solving 
this problem. 

The COD-CLARANS algorithm is developed in the 
spirit of CLARANS [NH94] and is designed for han- 
dling obstacles. While CLARANS algorithm can be 
made to handle obstacles by changing its distance func- 
tion, COD-CLARANS further optimized this function 
by "pushing" the task of handling obstacles into the 
algorithm. 

Figure 3 shows the overall structure of COD- 
CLARANS. To facilitate the running of COD- 
CLARANS, we pre-process the data  and store certain 
information which will be needed by COD-CLARANS 
during its run. Pre-processing will 'be discussed in Sec- 
tion 2. The COD-CLARANS algorithm consists of 
three main parts, the main algorithm] the computa- 
tion of the squared-error E and a pruning function E'. 
The pruning function E' has two purposes. First, it 
can help to prune off search and avoid the computa- 
tion of E.  Second, in the event when the computation 
of E cannot be avoided, the pruning function can pro- 
vide focusing information to make the computation 
of E more efficient. Section 3 will describe them in 
more detail. In Section 4, we will do a performance 
study on the COD-CLARANS algorithm. We will dis- 
cuss some possible future work in Slection 5. Our study 
is concluded in Section 6. 

2 Pre-processing 
During the course of clustering,the COD-CLARANS 

often needs to compute the obstructed distance be- 
tween a point and a temporary cluster center. Our 
aim of pre-processing here is to  materialize informa- 
tion which will facilitate such a computation. 
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Figure 3. Overview of COD-CLARANS. 
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Figure 4. A visibility graph. 

2.1 The BSP-tree 
The Binary-Space-Partition (BSP) tree [SG97] is a 

data structure which can efficiently determine whether 
two points p and q are visible to each other within the 
region R. We define p to be visible from q in the region 
R if the straight line joining p and q does not intersect 
any obstacles. In our algorithm, the BSP-tree is used 
to determine the set of all visible obstacle vertices from 
a point p. Henceforth, we will use the notation v is (p)  
to denote such a set of vertices. More details of the 
BSP-tree can be found in [SG97]. 

2.2 The Visibility Graph 

Definition 2.1 Visibility Graph 
Given a set of m obstacles, 0 = (01, ..., om}, the visibil- 
i ty graph is a graph VG = (V, E )  such that each vertex 
of the obstacles has a corresponding node in V ,  and 
two nodes v1 and 212 in V are joined by an edge in E 
if and only i f  the corresponding vertices they represent 
are visible to each other. 

To generate VG,  we make use of the BSP-tree com- 
puted previously and search all other visible vertices 
from each vertex of the obstacles. The visibility graph 
is pre-computed because it is useful for finding the ob- 
structed distance between any two points in the region. 
The following lemma is proven in [O’R98]. 

0 

Lemma 2.1 Let p and q be two points in the region 
R and VG = (V, E )  be the visibility graph of R. Let 
VG’ = (VI, E’) be a visibility graph created from VG by 

adding two additional nodes p’ and q’ in  V’ representing 
p and q .  Similar to  earlier definition, E’ contains an 
edge joining two nodes in  V’ i f  the points represented by 
the two nodes are mutually visible. The  shortest path 
between the two points p and q will be a sub-path of 
VG’. 0 

In Figure 4 , we show how the visibility graph VG’ 
can be derived from the visibility graph V G  of a region 
with two obstacles 01 and 02. From Lemma 2.1, we can 
see that the shortest path from p to q will begin with 
an edge from p to either 211, v2 or 213, go through some 
path in VG and then end with an edge from either 214 

or v5 to q.  

2.3 Micro-clustering 
In order for COD-CLARANS to handle a large num- 

ber of data points, we use the concept of pre-clustering 
which is similar to those used in BIRCH [ZRL96], 
ScaleKM [BFR98] and CHAMELEON [KHK99]. A 
micro-cluster is a compressed representation of a 
group of points which are so close together that they 
are likely to  belong to the same cluster. As such, 
instead of representating each point in the micro- 
cluster individually, we represent them using their 
center and a count of the number of points in the 
micro-clusters. Using this summarized information, the 
COD-CLARANS algorithm can approximate the square- 
error function E by assuming that all the points in the 
micro-clusters are located a t  the center of the micro- 
cluster. 

To ensure that not too much accuracy is sacrificed 
by using micro-cluster, we limit the radius of each 
micro-cluster to be below a user-specified threshold, 
max-radius. With the presence of obstacles, one key 
complication is to avoid having a micro-cluster that 
is split by an obstacle. To do so, we first triangulate 
the region R into triangles [O’R98] and group the data 
points according to the triangle that they are in. Figure 
5 illustrates a triangulation of the region and the form- 
ing of micro-clusters within each triangle. Since all the 
points within a triangle are always mutually visible, it 
is guaranteered that no micro-cluster will be split by 
an obstacle. 

2.4 Spatial Join Index 
While the information described earlier is sufficient 

for computing the obstructed distance efficiently, im- 
provements can be achieved by the additional compu- 
tation of a spatial join index [Va187, Rot91, LH921. 
In such an index, each entry is a 3-tuple ( p ,  q ,  d’(p, q ) )  
where p and q are two points in the region R and d’(p, q )  
is the obstructed distance between p and q .  There are 
three spatial join indexes which can be materialized: 
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Figure 5. Forming micro-clusters. 

1. VV Index: Compute an index entry for any 
pair of obstacles vertices 
The materialization of this index is equivalent to 
finding the all-pairs shortest paths in the visibil- 
ity graph VG. We make use of the Johnson’s al- 
gorithm [CLRSO] for this purpose. From Lemma 
2.1, we can see that the computation of shortest 
path between two points in R will often require 
the calculation of obstructed distance between the 
vertices. As such materializing the VV index will 
help avoid the redundant computation of these dis- 
tances. 

2. MV Index: Compute an index entry for any 
pair of micro-cluster and obstacles vertex 
In such an index, the obstructed distance between 
any pair of micro-cluster and vertex will be com- 
puted. An efficient way to materialize the MV 
index is to first materialize the BSP-tree and the 
VV index. For each micro-cluster p ,  the set of visi- 
ble obstacle vertices, uis (p)  can then be computed 
by using the BSP-tree and the distance to other 
non-visible be computed by using the VV Index. 

3. MM Index: Compute an index entry for any 
pair of micro-clusters 
By computing this index, the obstructed dis- 
tance between any two micro-clusters will be ma- 
terialized. Having the MM index means that 
COD-CLARANS algorithm will performed like the 
CLARANS algorithm since a lookup on the index 
is sufficient to  find the obstructed distance between 
any two micro-clusters. However, the size of such 
an index will be huge. Thus, we feel that such an 
alternative will not be feasible. 

We will compare the relative performance of the first 
and second alternatives in Section 4. 

3 The COD-CLARANS Algorithm 

In this section, we look at the COD-CLARANS al- 
gorithm in detail. 

3.1 The Main Function 

We show the main function of the COD-CLARANS 
algorithm in Algorithm 3.1. The algorithm first ran- 
domly selects k points as the centers of the clusters and 
then tries to find better solutions by iterating through 
Step 5 to Step 26. At each iteration, the cluster cen- 
ters are randomly ordered, and attempts will be made 
to replace them with a better ceni,er in that order. 
When a center cj is selected to be replaced, the ob- 
structed distances of the objects to the other k - 1 
centers in remain  will first be computed in Step 10. 
This information is computed because they can be re- 
peatedly used in the loop from Step 11 to Step 22 for 
the computation of E’ and E .  In Step 12, a random 
object C T a n d o m  is selected to replace c J .  Using C r a n d o m ,  

a lower bound for the squared-error E’ is computed. If 
E’ is higher than the previous best solution, the actual 
squared-error E need not be computed since Crandom is 
obviously a bad choice. Otherwise, E is computed to 
determine whether a better solution has been found. If 
this is so, the best solution will be updated and crandom 
will replace the position of cj in current .  For each 
cluster center, an attempt to replace it will be done 
m a z - t r y  times, if no better solution is found for all the 
centers, the algorithm terminates. 

3.2 Computing Obstructed Distance to Nearest 
Centers in remain  

In this section, the execution of Step 10 is discussed. 
We separate this step into two phases: 

Algorithm 3.2 Computang Dastances between Objects 
and Cluster Centres 
Phase I: For all vertzces of the obstacles, find the 
shortest obstructed dastance to  the nearest cluster cen- 
ter zn remain .  Gwen a vertex U ,  we denote zts nearest 
cluster center as N ( u )  . 
Phase 11: For each mzcro-clusterp, let us denote the 
set of all vaszble obstacle vertzces from p as uis(p). W e  
choose U from u is (p)  such that ( d ’ ( u ,  N ( u ) )  + d ( p ,  U ) )  

2s manamum. The shortest dzstance between p and ats 
nearest cluster center wzll be computed as (d’(v, N ( u ) ) +  
d ( p ,  U ) )  and p ’s nearest cluster center an remain  wzll 
be N ( u ) .  

The execution of Phase I can differ depending on 
whether the spatial join indexes VV and MV have been 
materialized. We separate them into three cases. 
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Algorithm 3.1 Algorithm COD-CLARANS . 
Input: A set of n objects, k and clustering parameters, maitry.  
Output: A partition of the n objects into k clusters with cluster 
centers, c1, ..., ck. 
Method: 

1. Function COD-CLARANSO - 
2. { randomly select k objects to be current; 

27) 

1. 

2. 

3. 

3. compute square-error function E; 
4. let currentE = E; 
5. do 
6. { foundnew = FALSE; 
7. randomly reorder current into {c l ,  ..., ck}; 
8. for (j=1 ; jsk ; j++) 
9. { let remain = current - c3 ; 

/* remain contain the remaining center */ 
10. 

11. 
12. 
13. 
14. if (E’ > currentE) 
15. 
16. compute square-error function E; 
17. 
18. 
19. 

20. currentE = E; 

compute obstructed distance of objects to nearest 
center in remain; 
for (try=@ try < maz-try; try++) 
{ replace c3 with a randomly selected object Crandom ; 

compute estimated square-error function E’; 

continue; /*  Not a good solution */  

if (E < currentE) /* Is the new solution better ? */ 
{ foundnew = TRUE; /* Found a better solution */ 

current = {c l ,  ..., crandom, ... ck} 
/* replace c, with Crandom */ 

21. 1 
22. } 
23. if (foundnew) 
24. 
25. } 
26. } while (foundnew) 
28. output current ; 

break; /* Reorder cluster centers again */  

VV is materialized 
If VV is computed, then all we have to do is 
to find the visible vertices from each cluster cen- 
ter ci and then compute the obstructed distance 
of each vertex vj as d’(ci,vj) = min(d(c i ,vk)  + 
d’( vj , vk)), vk E vis( c i ) .  The nearest center of each 
vertex can then be identified. 

MV is materialized 
If MV is available, the obstructed distance between 
any cluster center and any obstacles vertex will 
be materialized. As such, a search in MV will be 
sufficient to  find the obstructed distance of a node 
v to the IC - 1 centers. The nearest center of the 
vertex can then be determined. 

No spatial join index is materialized 
If no spatial join index is available, then the pre- 
computed visibility graph VG = (V, E )  will be uti- 
lized. We make use of the Dijkstra’s algorithm 
[CLRSO] for this purpose. We insert k - 1 addi- 
tional nodes representing the k - 1 cluster centers 
into V .  An edge is created between a cluster center 

c and a vertex v if v is visible from c .  In addition, 
a virtual node s is also inserted and linked by 
an edge of weight zero to  each of the k - 1 cluster 
centers. The Dijkstra’s algorithm is then ran with 
the virtual node s as the source point. To identify 
the closest cluster center for a vertex w ,  the short- 
est path from s to v is traced during the run of 
Dijkstra’s algorithm to monitor which cluster cen- 
ter is in the path. This cluster center will be the 
cluster center that is closest to U. 

Once Phase I is completed, the execution of Phase I1 
is trivial except for forming of vis(p) with respect to a 
point p .  We make use of the BSP-tree for this purpose. 

3.3 Computing the Lower Bound E’ 

After Crandom is generated at line 13 of Algo- 
rithm 3.1, we first underestimate the distance between 
C,andom and the micro-clusters by using direct Eu- 
clidean distance. Note that in Step 10, we have already 
computed the nearest cluster centers from remain for 
each object p .  Let us denote this center as N ( p ) .  If 
the direct Euclidean distance between a micro-cluster 
p and Crandom is shorter than d’(p ,  N ( p ) )  (which is also 
computed with the k - 1 unchanged cluster centers), 
then p is assigned to Crandom and the direct Euclidean 
distance between them will be used when computing 
the estimated square-error function E‘. We have the 
following lemma. 

Lemma 3.1 E‘ is a lower bound for  the actual square- 
error function E.  

The proof of the Lemma 3.1 is omitted for lack of 
apace. Since E’ is a lower bound of E ,  we can choose 
to abandon Crandom if E’ is already higher than the 
square-error function of the best solution found so far. 
However, if E’ is lower than the best solution, then 
E must be computed. Since the obstructed distance of 
each micro-cluster p to N ( p )  is already calculated, what 
we need to find is the obstructed distance between the 
new center Crandom and the micro-clusters that will be 
assigned to Crandom. For this purpose, we can use of the 
focusing information provided by the computation 
of E’ to limit the set of micro-clusters which will have 
Crandom as the nearest center. This is done by observing 
the following lemma. 

Lemma 3.2 I f  a micro-cluster p is not assigned to 
Crandom when computing E’, then it can never be as- 
signed to Crandom when computing E .  

Using Lemma 3.2, we can limit our computation of 
obstructed distance to  CTandom to a subset of micro- 
clusters instead of all micro-clusters. 
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3.4 Computing the Squared-error E 

As mentioned earlier, since the obstructed distance 
of each micro-cluster to its nearest center in remain is 
already computed in Step 10, what we only need to find 
when computing E is the obstructed distance between 
the new center crQndom and the micro-clusters that will 
be assigned to crandom. This process is similar to Step 
10 except that we can use the focusing information pro- 
vided by E’ to limit the computation. 

4 Performance Study 

In this section, we will have a look a t  the perfor- 
mance of the COD-CLARANS algorithm by perform- 
ing experiments on a PC with a Pentium 6OOMhz pro- 
cessor and a IBM 7200rpm hard disk. For these exper- 
iments, we use two synthetic datasets, DS1 and DS2, 
which are shown in Figure 6. DS1 consists of 63350 
points randomly distributed in the region. We simulate 
major “obstacles” like rivers, highways] and industrial 
parks in the region by adding in 20 obstacles. These 
polygons have a total of 194 edges. DS2 dataset con- 
sists of five clusters that are cut through by “stick” 
obstacles. There are altogether 60000 points and 10 
obstacles in DS2. Each obstacle has 4 edges. 

In our experiments, we set the parameter max-try  
to be 40. Micro-clusters are formed by applying the 
BIRCH algorithm described in [ZRL96]. 

The experiments proceed as follows. First, we as- 
sess the efficiency and effectiveness of the various fla- 
vor of COD-CLARANS by running our algorithms on 
DS1. COD-CLARANS can be separated into three cat- 
egories in term of materialized index: 1) non material- 
ized, 2) VV materialized and 3) MV materialized. We 
denote them as COD-CLARANS-N, COD-CLARANS- 
VV, and COD-CLARANS-MV, respectively. In addi- 
tion, a symbol “%” will be appended to the end of these 
algorithms to denote a version in which the pruning 
function is not used. We assess these algorithms by 
adjusting the parameter maz-radius  that control the 
number of micro-clusters being formed. Next, we look 
at the clustering result of COD-CLARANS on DS2 and 
compare it to those of CLARANS which ignore obsta- 
cles in its clustering. 

4.1 Varying max-radius  

In this experiment, we vary the number of micro- 
clusters that are generated from DS1 by tuning the 
parameter max-radius that bound the radius of the 
micro-clusters being formed. There are two purposes in 
doing this. First, since more accuracy will be lost when 

(a) DS1. 

(b) DS2. 

Figure 6. Two datasets. 

max-radius  is increased, we like tal investigate how the 
quality of the clusters is affected by the use of micro- 
clustering. Second, since the number of micro-clusters 
varies according to max-radius, we can investigate how 
the various algorithms scale up as the number of micro- 
clusters increases. Performing this as a scalability test 
is preferable over arbitrarily adding points which may 
affect the distribution of the data and subsequently the 
execution time of the algorithms. 

The various values of max-radius  and the number of 
micro-clusters which are formed for DS1 shown in Table 
1 together with the average squared-error of the clus- 
ters. As can be seen, the increase in the quality of the 
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Table 1. Effect of Varvina max-radius. 2wo 
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clusters due to micro-clustering is not significant com- 
paring to  the decrease in the number of micro-clusters 
for DS1. The drop in cluster quality by performing 
micro-clustering is at most 8%. 

Let us now look at the pre-processing time that is 
required for DS1 in Figure 7. The pre-processing time 
for COD-CLARANS-N and COD-CLARANS-VV are 
only minorly affected by max-radius. This is because 
the only pre-processing operation that max-radius has 
an effect on is the forming of micro-clusters. We can 
also see that COD-CLARANS-VV has a higher pre- 
processing time due to the materialization of the VV 
index which is equivalent to an all-pair shortest path 
search on the visibility graph. COD-CLARANS-MV, 
on the other hand, will decrease with as max-radius 
increases. This is because increasing max-radius will 
result in less micro-clusters and corresponding the 
amount of computation that much be done to calculate 
the obstructed distance between each micro-clusters 
and the obstacles vertices. 

Next, let us look at the actual running time of our 
algorithm for DS1 in Figure 8. From the graph, we 
have the following observations. 
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Figure 7. Pre-processing Time of DS1. 

First, algorithms which does not use the pruning 
function will have a longer execution time than those 
with pruning function. This is especially true for COD- 
CLARANS-N% when the number of micro-clusters is 
high. The execution time of COD-CLARANS-N% on 
DS1 reach as high as 66392 seconds and 3119 sec- 
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Figure 8. Algorithms Running Time of DS1. 

onds when max-radius is set to 0.00 and 0.01 respec- 
tively. When spatial join indexes are available, the dif- 
ferences between the pruning and non-pruning versions 
are narrower. This is because the computation of ob- 
structed distance is more efficient with the use of spatial 
join indexes and thus the reduction of processing time 
through the pruning function becomes less significant. 

Second, the spatial join indexes are useful in re- 
ducing the execution time of the algorithms. This is 
true even when the pre-processing times are taken into 
consideration. For the pruning versions of the COD- 
CLARANS algorithm, having spatial indexes will im- 
prove the execution times of the algorithms marginally. 
Having spatial join indexes in the non-pruning versions 
of the algorithm however, has significant advantages 
over one that does not have spatial join indexes. Be- 
tween the two spatial join indexes, VV and MV, having 
the MV index generally gives better performance than 
having the VV index. The only exception is observed 
for DS1 when the number of micro-clusters is high. In 
such a case, the size of MV is much higher than the 
size of VV and the time taken to access MV will offset 
the advantage that it has by storing more information. 

As a whole, we found that the COD-CLARANS al- 
gorithm scales well for large number of points. We rec- 
ommend the use of spatial join index MV if the number 
of edges is small. However, the use of spatial join index 
VV will be more space efficient since the obstructed dis- 
tance between any two obstacle vertices is sufficient to 
avoid running the Dijkstra algorithm on the visibility 
graph. 

4.2 Clustering Results 

To ascertain that clustering with consideration of 
obstacles is in fact useful, we will compare the clus- 
ter quality of COD-CLARANS with the clusters that 
is discovered by the CLARANS algorithm. For the 
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CLARANS algorithm, we first cluster the data points 
by ignoring the obstacles. At the end of the algorithm, 
the cluster centers are fixed. Data points are then allo- 
cated to the nearest centers by obstructed distance 
and the squared-error will be computed. Note that in 
this case, points which are earlier assigned to a cluster 
center may be reassigned to a different one when ob- 
stacles are taken into consideration. The results of the 
two algorithms for DS2 are shown in Figure 9. 

When k = 5, the average squared-error found by 
the COD-CLARANS algorithm on DS2 is 1.24 while 
CLARANS gives an average squared-error of 1.68. 
The clustering result of DS2 illustrates why COD- 
CLARANS performs better than CLARANS in both 
cases. Let us refer to the space between any two ob- 
stacles as a corridor. As we can see, the cluster centers 
that are discovered by the COD-CLARANS algorithm 
are mostly placed at  the “entrance” of the corridor so 
that they are accessible by points from other corridors. 
On the other hand, CLARANS which has no knowledge 
of the obstacles will place the centers into the corridors, 
which means that points from other corridors will be 
very far from the nearest center. 

While the performance of COD-CLARANS is better 
than CLARANS for low value of k ,  this performance 
gap is found to decrease as we increase k. The reason 
behind this is that as k increases, most points will be 
directly visible to the nearest center. As such, the ef- 
fect of the obstacles will diminish. We thus conclude 
that COD-CLARANS will be effective for value of k in 
which most point will not be directly visible from any 
of the k centers. 

5 Future Work 
While the work presented here is sufficient for many 

applications of clustering with obstructed distance, 
there are still a lot of future work to be considered. 

Although the model of discussion in this paper is in 
a two-dimensional region with obstacles represented as 
simple polygons, it can be generalized to other mod- 
els as well. For example, consider clustering objects 
around a network structure. We can still perform 
micro-clustering although there is no requirement for 
other pre-processing information. To speed up the 
process, a spatial join index can still be materialized. 
A pruning function E’ can also be used to prune the 
search space. 

In our work, one implicit assumption is that the 
number of obstacles is smaller than the number of data 
points. This is true for many applications like ATM 
locations planning where we only need to take major 
obstacles into consideration. However, in cases where 
there are a lot of obstacles between any two data points, 

(a) Result of COD-CLARANS. 

(b) Result of CLARANS. 

Figure 9. Clustering Result for DS2. 

techniques like micro-clustering will not be applicable 
since a triangulation of the region will result in few or 
no points in each triangular region. Further study is 
required to handle such cases. 

Besides this, a look at  how obstacles will affect other 
clustering paradigms will be interesting as well. For ex- 
ample, it will be challenging to see how density-based 
algorithms like DBSCAN [EKSX96] can be enhanced 
to cluster under obstructed distance. Since DBSCAN 
makes uses of the k-nearest-neighbors operation to per- 
form clustering, an immediate subproblem is to find 
the k nearest neighbors with consideration of obsta- 
cles. This subproblem is a challenge by itself as most 
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k-nearest-neighbors implementation are relying on spa- 
tial index structures like the R-tree to speed up the op- 
eration and no consideration of obstacles are taken in 
such a spatial data structure [BBKK97]. 

6 Conclusion 
In this paper, we have studied on the problem of 

Clustering with Obstructed Distance (COD) which 
we believe is a very has many practical applica- 
tions. We formalize the definition of this prob- 
lem and derive an algorithm COD-CLARANS for solv- 
ing it. We discuss various types of pre-processed 
information that could enhance the efficiency of 
COD-CLARANS . By pushing the handling of obsta- 
cles into the COD-CLARANS algorithm instead of ab- 
stracting it at the distance function level, we are able 
to provide a pruning function E’ that greatly enhance 
the efficiency of COD-CLARANS . We perform various 
experiments on COD-CLARANS to ascertain its useful- 
ness and scalability. Finally, we discuss some potential 
enhancements to the COD-CLARANS algorithm. We 
believe that there is still a lot of room for research in 
the problem of COD and hope that our work could mo- 
tivate more people to look into this area. 
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