
Copyright 1994 by IEEE. Published in the Proceedings of the 14th International Conference on Distributed Computing Systems, June 21-24, 1994, Poznan,
Poland, IEEE Computer Society Press, Los Almaitos, California, p.372-379.

Submission of Transactions from Mobile Workstations in a Cooperative
Multidatabase Processing Environment

L. H. Yeo & A. Zaslavsky

School of Computing & Information Technology, Frankston, Monash University
McMahons Road, Frankston, Victoria 3199, Australia

Abstract

In a multidatabase environment with mobile computers
involved, the nature of computing is such that the user
may not wait for the submitted global transaction to
complete before disconnecting from the network. In this
paper, a basic architectural framework to support
transaction management in multidatabase systems is
proposed and discussed. A simple Message and Queuing
Facility is suggested which provides a common
communication and data exchange protocol to effectively
manage global transactions submitted by mobile
workstations (MWS). The state of global transactions is
modelled through the use of transaction sub-queues. The
proposed strategy allows an MWS to submit global
transactions and then disconnect itself from the network
to perform some other tasks thereby increasing
processing parallelism and independence.

1 Introduction

With the decentralisation of business enterprises, there
is a shift in the processing requirements: from online
processing environment accessing a centralised host
computer system in the 1980's to that of a distributed
processing environment in the 1990's. The main driving
forces that influence the emergence and adoption of
distributed computing technologies are: (1) information
systems are now being decentralised and are developed
utilising heterogeneous computer hardware and software
platforms; (2) widespread implementation of local area
networks and wide area networks. These have given rise
to a distributed heterogeneous computing environment
with multi-hardware, multi-software and multi-network
protocols with widespread sharing of computer resources
such as communication facilities, files, printers and
databases. Remote access to critical corporate data
resources by end-users has also become an important
strategic requirement for strengthening the business

competitiveness of the enterprise. Consequently, new
application systems executing in such a decentralised
environment may require access to distributed data
resources and exchange information with each other. The
autonomy of each site also implies that different
concurrency control and recovery facilities are
implemented. Thus, the management of distributed
transactions across the heterogeneous multidatabase
environment has become an important research issue.

Advancements in wireless communications (such as
cellular communications and Cellular Digital Packet
Data) as well as in portable and mobile computers (or
mobile workstations), such as laptops and Personal
Digital Assistants (hand held pen-based computers) have
enabled telecommuting to become a reality. In an ever
increasing degree, people are now working from home
and are connected to their offices via telecommunications
lines. The communication network also provides the
basic infrastructure that facilitates the use of mobile
computers including data transfer and message exchange.
Consequently, mobile computing paradigm will have a
significant impact on both hardware and software design
including database systems. From the database systems'
perspective, several research areas need to be revisited
such as query processing, transactions processing, and
security [1]. In the context of transaction management,
the transaction model needs to include long-duration
transactions and Sagas [7]. While the connection of
mobile computers to some coordinating site may be only
for a limited duration, the synchronisation and recovery of
global transactions submitted will form a new area of
challenges to database researchers.

Cooperative processing in a distributed multidatabase
environment has also become an emerging technology. In
a distributed cooperative processing environment, part of
the processing is carried out at the workstation while the
partner application is executing at the host computer
system. This also assumes that the applications are to be
developed and processed on a suitable platform. Such
platform should allow transparent access by users so that

they are not concerned with the location of resources. In
this respect, cooperative processing is more specialised
and is a subset of a distributed processing [2, 11].
Therefore, there are two distinct characteristics in a
cooperative processing environment: (1) there exists a
distributed database system to support and manage
transactions and data resources; (2) there are workstations
that initiate transactions with their subtransactions being
processed at one or more sites. In such a scenario, a
global transaction is initiated by an end-user using a
mobile computer. Therefore, one can observe that mobile
computing can be considered as part of the distributed
processing environment [1]. We believe that transaction
management in a cooperative processing environment
utilising distributed multidatabase systems (MDS) with
mobile computing is an important area of research.

ACID (Atomicity, Consistency, Isolation and
Durability) properties have been widely used and studied
in the formulation of concurrency control and recovery
mechanisms used in database management systems. At
the same time, new emerging computing environment
based on cooperative processing and distributed
heterogeneous database systems adds new dimensions to
database problems. Firstly, there is a requirement for
autonomy of local database systems to be preserved.
Secondly, the mobile workstations may be disconnected
from the network most of the time. Therefore, a
distinction should be made between a logical
disconnection of a mobile workstation and a failure in the
network. In the former case this is planned and well
prepared in advance. Hence, in the context of transaction
management, such distinction must be considered in its
design. Thirdly, the end user may not wait for the
transaction to complete before disconnecting from the
system. Therefore, transaction management in such an
environment offers new challenges both at the
workstation level and at the MDS level.

To facilitate our research, five main goals have been
set. Our first goal is to provide a full-fledged transaction
management framework so that the users and application
programs will be able to access data across multiple sites
transparently. Our second goal is to attempt to enhance
database concurrency and data availability through the
adoption of a distributed concurrency control and recovery
mechanism that preserves local autonomy, that is, the
local DBMS has full control over the execution of
transactions (both global subtransactions and local
transactions). The third goal is to implement the concept
of extensibility to support various database systems in our
framework so that our components can coexist with a
relational or an object-oriented database system. The
fourth goal aims at providing an environment where the
proposed transaction processing component operates

independently and transparently of the local DBMS. This
also implies that a local database system can participate or
detach itself from the MDS without having to be
concerned with the implementation complexity of the
proposed framework. This means that the MDS must
ensure that all outstanding global transactions must be
completed successfully before a detachment process can
occur. Finally, we incorporate the concept of mobile
computing through the use of mobile workstations into
our model. Therefore, our model addresses both the
management of distributed transactions and mobile
computing.

The main aim of this paper is three folds. Firstly, to
present a brief overview of a generalised architectural
framework that supports mobile computing in a
cooperative multidatabase processing environment.
Secondly, to present a Message and Queuing Facility
(MQF) to manage global transactions submitted by mobile
workstations thereby improving transaction parallelism
and independence in a distributed MDS environment.
Thirdly, to discuss management of mobile workstations
within the proposed framework.

2 Related Work

Transaction management in an MDS environment has
some inherent problems which are a result of the
requirement that the underlying participating DBMSs
should have complete autonomy over the execution of
local transactions. These problems have been extensively
studied and numerous strategies have been proposed [10].

In general, there are three main requirements that may
cause problems in designing a transaction management
scheme in an MDS environment [6]. Firstly, due to the
heterogeneity of the underlying database management
systems that are being implemented, the Global
Transaction Manager (GTM) must have the capability of
dealing with different transaction managers. Secondly,
the underlying DBMSs have the ability to implement their
own concurrency control mechanisms. Thirdly, the Local
Transaction Manager (LTM) may not communicate
information regarding local concurrency control back to
the GTM. As such, the GTM is unaware of any conflicts
between local transactions and the global subtransactions.
The concept of serializability has been used as a
correctness criteria for concurrent execution of multiple
transactions in a centralised and decentralised database
environment. However, in an MDS environment,
ensuring global transaction serializability is complicated
by the fact that the LTM is autonomous and it can also
implement different concurrency control mechanism. One
of the main problems encountered in maintaining global
transactions serializability is how to ensure the execution

order of global transactions by the local database systems.
This is due to the fact that indirect conflicts between
global subtransactions and local transactions can occur,
thereby causing the execution order of these global
subtransactions to be altered [8].

One of the approaches is to restrict the global
transaction type [4]. The main rationale is to disallow any
two global transactions to access the same site. Such a
scheme does provide some site autonomy. However, the
underlying DBMS must implement strict two-phase
locking protocol. Moreover, the MDS is designed to be a
centralised system which is subjected to site and network
failures. Another approach is to force global transactions
to obtain a ticket (logical timestamp) stored in the local
database system [8]. Such an action would cause an
additional conflict to occur between global
subtransactions thereby maintaining their execution order.
Other approaches relax the serializability as the
correctness criteria. For instance, the concept of Sagas
had been introduced by Garcia-Molina and Salem [7] for
long-lived transactions. Another approach is to use quasi-
serializability [5] where no value dependencies exist
among databases so that indirect conflicts between global
subtransactions and local transactions cannot occur.

3 Motivation

Consider a scenario of a hypothetical wheat marketing
agency using cooperative processing in an MDS
environment shown in Figure 1.

Wheat
Stock
System
(OODB)

Wheat
Stock
System
(RDB)

Wheat
Stock
System
(RDB)

Communication
 Network

Site Y (Headquarter)

Site X (State Office)

Site Z (Regional Office)

Mobile
Workstation

GT1

GST2

GST1
GST3

GT2

GST4

Mobile
Workstation

Fig.1. Distributed Processing Environment of a
Wheat Marketing Agency

Consider a global transaction GT1, where a wheat
marketing officer may be negotiating a contractual
agreement on wheat procurement from a wheat grower
using mobile workstation to access information at some

remote host computer located at Site X via wireless
communication facilities. Information such as the stock
level of a particular grade of wheat (GST1) may be
obtained from a central host computer located at Site Y.
Information on grain availability and transport facilities
(GST2) may also be obtained from its regional office at
Site X simultaneously. The wheat marketing officer may
then disconnect from the network and perform some other
tasks. He may then reconnect to Site X to query the status
of GT1 at some point in time. The results obtained from
GT1 may then be scrutinised by a knowledge-based or a
decision support application so that the wheat marketing
officer can then present various price and payment
options available to the wheat grower. Once the
contractual agreement has been signed, the agreed price
and delivery details must be reflected in their respective
databases.

Now consider another global transaction GT2 which is
a wheat sale initiated at Site Z. Information on wheat
stock (GST3) obtained from Site Y together with the
information on location of wheat silos and transport
arrangements (GST4) obtained from Site Z may be used
to obtain the best location to collect the wheat grains. The
prices and location of delivery may depend on whether
GT1 has been committed or not as the stock level will
affect the prices and delivery schedules.

In this scenario, a decision support processing system
is depicted where the structure of the environment is
dynamic and the transaction rates are low. The
information used, for example wheat stock, represents
only a snapshot of its value at some moment in time.
Discrepancies of data can therefore occur, however, these
can be resolved quite easily. For example, we can change
the application semantics such that if the wheat stock
availability is above a certain prescribed threshold level,
then transaction GT1 may be allowed to proceed.
Alternatively, another extraction of the wheat stock data
can be performed and then be used to contrast with the
previous extraction so that a reconciliation between these
two sets of data can be carried out. Another possible
solution would be to introduce time-constraint into the
execution of global transactions such that if the deadline
is not met, then the global transactions should not be
executed at all. Hence, one could design a customised
concurrency control mechanism and recovery
management scheme specific to this operating
environment based on the semantic requirements of such
application needs.

This example clearly illustrates that the design of a
transaction management scheme in a cooperative
processing environment involving heterogeneous and
autonomous database systems is complex and difficult.
Disconnection of mobile workstations from the network is

an important issue as a mobile workstation may
disconnect itself from the network after the submission of
a global transaction. Two problems can arise from such
an implementation: (1) the differentiation between a
connection failure and an orderly disconnection from the
network; (2) the management of global transactions
submitted to the host computers by the users of these
mobile workstations after the disconnection. Therefore,
these problems offer new challenges in the design of a
transaction management scheme both at the global level
and at the local level. The following section discusses the
design and conceptual framework of the proposed
Multidatabase Transaction Processing Manager
(MDSTPM) architecture.

4 Overview of MDSTPM System
Architecture

An MDS is an integrated distributed database system
consisting of a number of autonomous component
database management systems. Each of the underlying
component database systems is responsible for the
management of transactions locally. To facilitate the
execution of global transactions, an additional layer of
software must be implemented which permits the
scheduling and coordination of transactions across these
multiple component database management systems.
Several questions can be raised that will influence the
overall design of MDSTPM architecture, namely:

• How to build a layered transaction management
architecture that would be implemented over existing
DBMSs and mobile workstations?

• Given that mobile workstations will be disconnected
for a considerable period of time, what is the impact of
mobile computing on transaction processing?

• What is the most appropriate transaction model to be
used?

• How to preserve the autonomy of local DBMSs?
• What is the correctness criteria to be used for such a

transaction management scheme?
• What type of concurrency control mechanism should

be used?
• What is the crash/recovery strategy to be

implemented?
• How to support an effective and efficient distributed

processing in an MDS environment?
• If a mobile workstation is a part of an MDS, and a

global transaction requires an information kept there,
what would be the most appropriate strategy to manage
transactions given that the workstation is disconnected for
a considerable period of time?

• How to notify a disconnected mobile workstation
that a global transaction has been submitted which
requires some data kept there ?

The proposed MDSTPM architecture incorporating
mobile computing is depicted in Figure 2. This layered
architecture is discussed in more detail in [13].

GTMC GTMP

G

C

M

G

C

M

GTM

GRM

GIM

GTM

GRM

GIM

MDS
Local Database System

Mobile
Workstation

 Mobile
Workstation

 Mobile
Workstation

Wireless Communication Network

Message Queue
Transaction Queue
Global Log
Global Transaction
 Table
Site Status Table

Message Queue
Transaction Queue
Global Log
Global Transaction
 Table
Site Status Table

� �

Message Queue
Transaction Queue
Global Log
Global Transaction
 Table
Site Status Table

MDS Engine MDS Engine

LTM
Local
Database

Local
Database LTM

Local Database EngineLocal Database Engine

Fig.2. MDSTPM Architecture

The MDSTPM consists of the following components:
• The Global Communication Manager (GCM) is

responsible for the generation and management of
message queues within the local site. In addition, it also
communicates, delivers and exchanges these messages
with its peer sites and mobile workstations in the network.

• The Global Transaction Manager (GTM)
coordinates the submission of global subtransactions to its
relevant sites. The Global Transaction Manager
Coordinator (GTMC) is the site where the global
transaction is initiated. All participating GTMs for that
global transaction are known as GTMPs. The GTM can
be categorised into: Global Scheduling Submanager
(GSS) and Global Concurrency Submanager (GCS). The
GSS is responsible for the scheduling of global
transactions and global subtransactions. The GCS is
responsible for the acquisition of necessary concurrency
control requirements needed for the successful execution
of a global transactions/subtransactions. The global
transaction manager (GTM) is responsible for the
scheduling and commitment of global transactions and
global subtransactions while the local transaction
manager (LTM) is responsible for the execution and
recovery of transactions executed locally.

• The Global Recovery Manager (GRM) coordinates
the commitment and recovery of global transactions and
global subtransactions after a failure. It ensures that the
effects of committed global subtransactions are written to
the underlying local database or none of the effects of
aborted global subtransactions are written at all. It also

uses the write-ahead logging protocol so that the effects to
the database are written immediately without having to
wait for the global subtransaction to complete or commit.

• The Global Interface Manager (GIM) coordinates
the submission of request/reply between the MDSTPM
and the local database manager which can be executing in
a relational database system (RDB) or an object oriented
database system (OODB). This component provides
extensibility functions including the translation of an SQL
request to an object-oriented query language request.

5 Management of Distributed Global
Transactions and Mobile Workstations

Our approach to the management of mobile
workstations and the global transactions submitted is to
have these mobile workstations to be part of the MDS
during its connection with their respective coordinator
node. Once a global transaction has been submitted, the
coordinating site can then schedule and coordinate the
execution of the global transaction on behalf of the mobile
workstation (it is beyond the scope of this paper to discuss
the concurrency and recovery strategies to be
implemented). A detailed discussion of these can be found
in [12,13]. The main rationale for this strategy is: (1) the
user of the mobile workstation may disconnect from the
network and perform some other tasks without having to
wait for the global transaction to complete; (2) the host
computers are connected to each other with an existing
reliable communication networks and are thus less
susceptible to network failures.

One of the mechanisms that has been used extensively
for interprocess communication in a distributed
computing environment is Remote Procedure Call (RPC),
eg, the Open Software Foundation's Distributed
Computing Environment RPC model. In the RPC
paradigm, an application program requests services from
another application executing in a remote node. This
strategy is analogous to a subroutine call by a main
program with parameters being passed to the processing
node to direct processing requirements. Such an
implementation would imply that events are occurring
synchronously as the caller would have to wait for the
control to be returned back before continuing its
processing.

An alternative approach termed Message and Queuing
Facility (MQF) is proposed to facilitate the
implementation of the overall strategy. A mobile
workstation (mws) sends a request message (together with
the information required for processing) to its pre-
assigned coordinating node for processing. Messages are
thus handled asynchronously enabling the mobile
workstation to disconnect itself from the network to

perform some other tasks leaving the coordinating node to
coordinate the execution of the global transactions
submitted on its behalf. Moreover, as these mobile
workstations may have totally different reliability
characteristics compared to host computers located at the
various remote sites, their connection period may be
intermittent and short. Because of the nature of mobile
computing, the MQF strategy would be most appropriate
in this implementation as: (1) it is simple to manage the
delivery and recovery of messages; (2) it is time
independent in that mobile workstations may be
disconnected from the network for an unbounded period
of time while the global transactions submitted by these
mobile workstations are being coordinated and executed
by their respective coordinating node; (3) the ability of
each workstation to query the status of its global
transactions at its convenience. The constructs for MQF
and the procedural flow will be discussed further on.

5.1 Management of Message Queues

In the proposed MQF, messages can be classified into
three types: (1) Request Message; (2) Acknowledgment
Message; (3) Information Message.

Typical examples of a Request message are
Req_Reconnect (Request for Reconnection), or
Req_Mws_Status (Request Mobile Workstation Status).

Acknowledgment messages are created in response to a
request message and might include, for example,
Ack_Reconnect_Mws (Acknowledge Reconnection to
mobile workstation).

Information messages include among others
Info_Msg_Queue (Message Queue status) or
Info_Mws_Status (Mws/Site status information).

For each of the mobile workstations there exists a
message queue and a transaction queue. Below we
discuss the management of mobile workstations through
the use of these queues.

5.2 Management of Mobile Workstations

To make a connection to the coordinating node, the
mobile workstation will perform the following:

• Checks its mws status table for its last connection
status, where the status_table={node_id, mws_id,
mws_timestamp, mws_status}.

• Sends a Req_Connect to the designated GTMC
with the following {node_id, mws_id,
mws_timestamp, action}, where action={connect}.

• Writes the connect request into the mobile
workstation log file.

• Updates the mws status table.

Upon receipt of this request, the GCM will perform he
following:

• Logs the connect request into its log file and then
acknowledges the connection by replying
Ack_Connect back to the mobile workstations. It
also checks and updates the workstation status
table that is kept in storage.

• Scans the output queue for any outstanding output
and routes this information to the mobile
workstation if necessary.

To make a disconnection from its coordinating node,
the mobile workstation will perform the following:

• Sends a Req_Disconnect request to the designated
GTMC with the following {node_id, mws_id,
mws_timestamp, action}, where action =
{disconnect}.

• Writes the disconnect request record into the
mobile workstation's log file.

Upon receipt of this request, the GCM will perform he
following:

• Writes the disconnect request into its log file and
then acknowledges the disconnection by replying
Ack_Disconnect back to the mobile workstation. It
then updates its mws status table that is kept in
storage.

The overall procedural flow in the management of
mobile workstations is shown in Figure 3.

Mobile Workstation GTMC

Request Connect

Ack-Connect

Request Disconnect

Ack-Disconnect

Time Write Req_Connect to log
Update Workstation status table
Send Ack_Connect
Write Ack_Connect to log

Begin Session

Processing

End Session

Send Req_Connect
Write Req_connect to log

•
•
•

 End Processing

Send Req_Disconnect
Write Req_Disconnect to
 log

Disconnect
Write Disconnect to log

Connect

Write Req_Disconnect to log
Update Workstation status table
Send Ack_Disconnect
Write Ack_Disconnect to log

Fig.3. Workstation Connection Procedural Flow

Assuming that during a session with the host
computer, an mws is disconnected from the network, for
example, when a network failure is encountered. During
its subsequent connection to the host computer, the mws
would have detected from its mws status table stored
locally that it has not performed an orderly disconnection.

Hence, the mws would send a Req_Reconnect to the
coordinating site together with the last global transaction
submitted (if any).

Upon receipt of Req_Reconnect, the GCM can then
verify from its Global Log that the last global transaction
submitted (if any) is correct. The GCM would send the
following messages back to the mws :

• Ack_Reconnect_Mws
• Info_Msg_Queue
• Info_Queue_Status
• Info_Mws_status

If there is a total failure of the mobile workstation,
during subsequent connection to the coordinating site, its
GCM would have detected that the mws is still in session
according to the mws status table. The GCM would send
the following messages back to the mws :

• Ack_Reconnect_Mws
• Info_Msg_Queue
• Info-Queue_Status
• Info_Mws_status

Based on this information returned, the end-user can
then decide the follow-up actions to be taken.

The second type of failure that can arise, concerns the
MDSTPM software itself and is analogous to a site
failure. Such a failure will affect both the execution of
global transactions and global subtransactions. Recovery
from site failures in the proposed scheme can be handled
properly. Upon recovery from a site failure, the GTM
would perform the following:

• Recovers the site status table from the shadow site
status table.

• Re-establishes the site status table by sending a
probe packet (Req_Site_Status) to all participating
sites.

• Rebuilds the temporary virtual global MDS
schema.

• Reads the global log file and repeatedly submits
those global subtransactions which are in the
prepared state to their respective LTMs for
execution if their global transactions have already
been committed.

The management of global transactions/subtransactions
through the use of transaction queues will be discussed
next.

5.3 Transaction Management

To manage the transactions submitted by mobile
workstations, a simple but effective global transaction
queuing mechanism is proposed. The basic principle
behind our queuing mechanism is the concept of finite
state machines. This is because we can clearly define a
set of possible state and transitions from one state to

another during the life span of a global transaction, where
by life span we mean actions or subtransactions within the
primitives BEGIN_GLOBAL_TRANSACTION and
END_GLOBAL_TRANSACTION. Hence the key to
implement the proposed model is to design a queuing
facility that maps exactly each of these states. Altogether,
there are five transaction sub-queues that are used to
manage global transactions/subtransactions submitted to
the local site by the mobile workstation.

• Input Queue. This queue contains all the global
transactions/subtransactions that first arrived at the
coordinator node. It is in monotonically increasing order
based on transaction arrival time.

• Allocate Queue. Global transactions/subtransactions
will be selected for execution based on a first-in-first-out
(FIFO) basis or a priority based scheduling algorithm. All
the locks required for the global transactions /
subtransactions will be acquired during this stage.

• Active Queue. This queue contains all currently
active global transactions/subtransactions.

• Suspend Queue. This queue contains all global
transactions/subtransactions that have completed the first
phase of the two phase commit protocol.

• Output Queue. This queue contains all completed
global transactions.

When a global transaction is being submitted by a
mobile workstation, the GCM will place the global
transaction into the Input Queue. Periodically, the GSS
will scan the Input Queue and select a global transaction
for execution. Once selected, the global transaction will
be transferred to the Allocate Queue where all required
locks will be acquired by GCS. The global transaction
will then be transferred to the Active Queue where global
subtransactions to be executed at other sites will be
despatched by the GCM. Once the global transaction has
completed its first phase of the two phase commit
protocol, it is then placed into the Suspend Queue. Upon
completion of the two-phase commit, the global
transaction is then placed into the Output Queue.

Once a transaction has been selected for execution by
the GSS, the necessary concurrency control requirements
are then acquired and managed by the GCS.

To ensure the consistency of database objects from
interleaved execution of multiple concurrent transactions,
concurrency control mechanism is used to isolate a
transaction from the effects of all the other concurrently
executing transactions. Serializability is the usual
correctness criterion used for the design of concurrency
control mechanism [3].

One of the main problems encountered in maintaining
serializability of global transactions is how to ensure that
the execution order of global transactions is preserved by
the LTM. Georgakopolous, Rusinkiewicz and Sheth [8]

have shown that local conflicts between global
subtransactions and local transactions may change the
order of execution of global transactions. A ticketing
method is used to resolve this problem. All global
subtransactions are forced to obtain a ticket first thereby
causing additional conflicts among themselves
consequently preserving their execution order [13].

As the use of mobile workstations becomes a new
computing paradigm, transaction management is of more
and more importance, especially in a cooperative
multidatabase processing environment. We have seen that
preserving local database autonomy in an MDS
environment is difficult and has given rise to numerous
problems in the design of transaction management
scheme. We have also examined the various approaches
to transaction management in a distributed MDS
environment. However, there are tradeoffs made by these
various approaches that can be classified into two broad
categories. First, the level of autonomy is relaxed which
results in changes being made to the local DBMSs.
Second, some of the ACID properties are compromised
and alternative correctness criteria are suggested.
However, it is important to note that all these approaches
assumed a failure-free system. We have also discussed
that the use of mobile computing has given rise to a new
set of challenges to the database researchers.

6 Summary and Future Work

In this paper, we have introduced a generalised
MDSTPM architecture that provides an autonomous
transaction management strategy in a cooperative
processing environment across heterogeneous database
systems. The main focus of this architecture is to provide
an underlying framework to support mobile computing
that can achieve a high degree of distributed transaction
parallelism and independence. The fundamental feature of
our approach is that it decomposes the operating
environment into two separate entities: the mobile
workstation level and at the host computer or stationary
computer level.

A Message Queuing Facility is proposed to manage
mobile workstations effectively in a distributed MDS
environment. As messages are being handled
asynchronously, the mobile workstations can perform
some other tasks while their pre-assigned coordinating
nodes coordinate and execute transactions on their
behalf. However, there are several issues that require
further investigations including the implementation of the
MQF and the development of a prototype system to
support the execution and recovery of multidatabase
transactions. It is also important to note that for an MDS
to function correctly, it is necessary to establish an

MDSTPM component software at each site in order to
facilitate the integration.

In conclusion, the two computing environments -
multidatabase systems and mobile computing - can be
integrated in harmony to provide a rich solution to
emerging requirements for cooperative processing
computing.

Acknowledgments

Liu Hui Yeo wishes to thank the Australian Wheat
Board and especially Mr Howard Smith for the support of
this research programme. Authors are thankful to
Professor Phillip Steele for the provided opportunities,
encouragement, advice and necessary facilities for this
research. The views and opinions expressed in this paper
are solely that of the authors and do not represent that of
the Australian Wheat Board. Authors would like to thank
the referees for their useful comments that helped to
improve this paper.

References

[1] Alonso,R. and Korth,H.F. "Database System Issues in
Nomadic Computing", ACM SIGMOD. 22:2, 1993,
p.388-392.

[2] Atre,S. Distributed Databases, Cooperative Processing, &
Networking. New York:USA. McGraw-Hill, 1992.

[3] Bernstein,P.A., Hadzilacos,V. and Goodman,N.
Concurrency Control and Recovery in Database Systems.
Reading, Mass : Addison-Wesley, 1987.

[4] Breitbart,Y., Silberschatz, A. and Thompson,G. "An
Update Mechanism for Multidatabase Systems". Database
Engineering. (Eds.) W.Kim, M.Carey, S.Sarin and
C.Zariolo. IEEE Computer Society Press, 1990, 150-156.

[5] Du,W., and Elmagarmid,A.K. "Quasi Serializability : A
Correctness Criteria for Global Database Consistency in
InterBase", in Proceedings of the Fifteenth International
Conference on Very Large Databases, 1989, 347-356.

[6] Elmagarmid,A.K. and Rusinkiewicz,M. "Critical Issues in
Multidatabase Systems". Information Sciences. 57-58,
1991, 403-424.

[7] Garcia-Molina,H. and Salem,K. "Sagas" in Proceedings of
the ACM SIGMOD International Conference on
Management of Data, 1987, 249-259.

[8] Georgakopolous,D., Rusinkiewicz,M. and Sheth,A. "On
Serializability of Multidatabase Transactions Through
Forced Local Conflicts" in Proceedings of the Seventh
International Conference on Data Engineering, 1991
Kobe Japan, p. 314-323.

[9] Rowe,L.A. and Stonebraker,M. "The POSTGRES Data
Model" in Proceedings of the 13th International
Conference on Very Large Databases. Brighton, England.
Palo Alto:California. Morgan Kaufmann, 1987, 83-96.

[10] Sheth,A.P. and Larson,J.A. "Federated Database Systems
for Managing Distributed, Heterogeneous, and
Autonomous Databases", ACM Computing Surveys,
Vol.22, No.3, 1990, 183-236.

[11] Voss,F.W. "APPC/MVS Distributed Application
Support". IBM Systems Journal. 31:2, 1992, 381-408).

[12] Yeo, L.H. and Zaslavsky, A. "Transaction Management in
Multidatabase Systems" Technical Report Number 93-02.
SCITF, Monash University, Melbourne, Australia, 1993.

[13] Yeo,L.H. and Zaslavsky,A. "Layered Approach to
Transaction Management in Multidatabase Systems" in
Proceedings of the 5th International Hong Kong
Computer Society Database Workshop: Next Generation
Database Systems, 1994, 179-189.

