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Abstract 

1 Introduction 
In a rnohile mvironmcnt. a set of database serwrs 

dissmminatcs database informatio” via rvirclcss chnn- 
“cts to multiple mobile clients. Drpulditlg 011 the 
affinity of irrdividuat dat.nb;lsc items. items of intrr- 
cst to r~wst mohitc cticrlts sho”td be broadcast from 
a databasr scrvu to muttiptc vticnts white items of 
interest to single cticrlt sho”td br rtissemi”nted ovu 
dedicated channets 0” dernarrd [O]. Siu:e il wiretcss 
channel slltfws from a low txmdwidth of 19.2 Kbps prr 
charlnel and is also xwlncrabte to frequent disconrlec- 
tion, it is importarlt to cache frcqnently accessed items 
(hot spot) into a mobile client’s tout storage. This 
improves the performance of database queries and the 
availability of database items for query processing dnr- 
ing disconnection. 

A caching mechanism is characterized by its caching 
granularity cache coherence strategy, and cache re- 
placement policy. Conventiorlat caching usually re- 
quires a quite stable network; a rcasonabty high trans- 
mission bandwidth. and a high degree of localit> 
among database items residing within a data page at 
the database server [6]. These conflict with t,he char- 
acteristics of a mobitc environment. 

In this paper. WC irrvcstigatr t.hr ;rbuve thrw issws 
of a caching mechanism ill a mobile e~“rironmalt utitiz- 
i”g pain-to-point rornmunicatiorl paradigm rrferrp(t 
to as mobile caching. Caching mechanism for hroad- 

cast paradigm has been addressed in [I, 2, 8, 12 The 
performance of mobile caching wilt be evaluate d wa a 
detail simutatiorl model. 

The rcmaindcr of this paprr is organized as fot- 
lows. In Sectio” 2. we survey previous work on cachirlg 
mccharrisms. The design and implenlc”tation of var- 
ious cache rrxmagcnxnt issues for mobile caching are 
dcscribrd i” Section 3. In Ser:tio” 4. we presut the de- 
sign uf o”r sim&ltiorl model. Section 5 prcwnts somc~ 
of ow reprrscntativc experimental rwutts. Finally, ~vc 
offer brief concluding remarks ill Sectio” 6. 

2 Related Work 
Caching mechanisms in convrntional client-server 

environment “re usually paRe-hased [G]. primarily be- 
cause the owrhrad for transmittirlg one item or a pagr 
is similar in ronventionat client-srrvrr cnvironmcnt. 
Pagebnsrd caching mechanisms require a high dcgrw 
of locality among the items within a page to he elfec- 
tive [-I]. 

In practicr. database items requested hv different 
mobile ctient,s via drdicated cha”nels wilt d”iffer mnch 
in a point-twpoint mobile cnviro”ment: ot.herwise thr 
mart’ &v:tircx imd scntabtc broadcast paradigm shoutd 
be emptoyd to broadcast items of cornmo” inter- 
est [!l. 151. .I ptysicat organization that favors the, 
locality exhibited t>y OIIF cticrlt ndght result in pool 
localit,? for arlother. Database items xvithin a page “t 
a database server thus barely whibit. arry degree of 
locality Furthwmorr, mobile clients are powered by 
short-hfc batteries [!I]. Caching a page will result in 
wasting of energy when the degree of locality is tow. 
The overhead of transmitting a page over a tow band- 
widt.h wireless channel would be too expensive to he 
justified. It is, therefore, necessary to consider caching 
at R smatter granularity in this context. 

Cached items will become out-dated when the base 
items (copies residing at the database server) are up- 
dated. .I cache coherence strategy must be provided 
to update the cached items at each client. Conven- 
tional cache coherence strategies require the server to 
notify all relevant clients whenever a” item is updated. 
Each mobile client. however. connects or disconnects 
from the wireless network freely arid frequently. It is. 
t.hrrefore. not feasible for the server to keep track of all 
cached copies of individual iwms. A cti?“t shwtd take 
a more active rote in maintaining the coherence of its 
cached items and determinitrg if a pnrticrdar cached 
item should be invatidated. 
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In the Leasei filt, caching mechanism [7], each file, 
cached in thy lo;,-1 storage of a client, is associated 
with a pre-speafied reJres/x time which defines the du- 
ration within which the cached file could be regarded 
as valid in the client’s local storage. When the refresh 
time expiws. the client needs to contact the server for 
an updated file. It is, however, difficult to determine 
an appropriate refresh duration. 

If a mobile client can provide unbounded disk stor- 
age, it can cache all database items accessed. How- 
ever, the available storage for caching is often lim- 
ited [13]. Furthermore, caching items that will barely 
be accessed wilt result in a waste of energy. A cache 
replacement policy is needed to retain only frequentI) 
accessed items for best performance. 

In [5], various cache replacement policies for a con- 
ventional database system have been examined: op- 
timal, \VORST, least recently used (LRU). CLOCK, 
and least reference density (LRD). These policies arc 
all page-based. In general, the performanre of indi- 
vidual replacement policies is sensitive to the charac- 
teristics of queries initiated and the application a- 
x%onment. .4 general conclusion on the perforlnnncc 
of the replaremcnt~ policies cannot lw rcrommrnded 
In practiw. the optimal policy is often aplxoxinratrd 
by LRU in ronventionat caching [F. 161. LRU is fur- 
thrr generalized into LRU-I: [Id] wbicb idmtifics the 

reptaccmrnt yictim according to the time of t,hc k’* 
previous access of a page. LRU is, thus, cqu~valerlt to 
LRU-1. 1” a mobile em’iromnent. since a client might 
change its location, the set of databasr itcms in abicb 
a cticnt is intercstrd might change over time as acll. 
Therefore. we nrcd to examinr the suitability of COP 
ventional rrptacemcnt policies in this changing access 
pattern and to draelop other mow suitable rrptacc- 
mcnt policies for bctt,rr performance. 

Onlv until rcccntt~ have caching mechanisms been 
inwsti$trd in a mobile database c~nvironmrnt [Z., 81. 
In [z], an invalidation report is broadcast owr a wn- 
less channrl to inform individual mobilv clients about 
tbc invalidation of cached items. This rcquircs a mo- 
bilr client to keep tuning into tbr rhamel to invnlidat~ 
and refrrsh its cached items. 4 . disconncrtrd cliwt 
row miss thr invatid;lti”n. 111 [8 an item is cached 
io i mobilr cticnt‘s local storage, i thr nnmbrr of rcwl 
operations performed on the item is grcatcr ttlan thr 
number of write operations performed, as is llsuattv 
tbr case. \Ve believe that an item should be cacb~d 
ill the local storage if it is freqncntty accessed regard- 
less of the access operations. Rattler tbao disallowing 
an item to be cached if it is frequently updated. thr 
caching mccbanism should adapt to tbc situation. 

3 The Design and Implementation of 
Mobile Caching 

nism is needed to retain the frequently request,ed data- 
base items in a client’s local storage. The more effec- 
tive a caching mechanism in keeping the frequent,ly ar- 
cessed items. the better a query will perform and the 
mow queries could be served during disconnection. 

3.1 The Cache Model 
\Vc investigate three different levels of granular- 

itr of caching a database item in an object-oriented 
database (OODB), namely, attnbute caching, object 
caching. and hybrid caching. Intuitively. in attribute 
caching. frequently accessed attributes of database ob- 
jects are cached in a client’s local storage. In object 
caching. the objects themselves are cached. Finally, in 
hybrid caching, only frequently accessed attributes of 
those frequently accessed database objects are cached. 
This ensurrs that the cached attributes of the cached 
objects xvi11 have a high likelihood to be accessed in 
the future. 

Sercral d&n issues need to be addressed in the 
implrmentatior~. First. a cache table is needed in each 
client, to idcntifv if a database item (attribute “T ob- 
jcct) is cxl~~d .io local storage. Second. if a client 
is connccttxl t.o a scnw. the client, sbould bf abtc to 
rctricrr thr rached items from the local storage and 
ttw uocxbt~i items from the senw The client will 
only rrtriwx tbr cacbed items otherwise. Third, an 
&&iv<, roh,wwcc strategy is needed to mairltain tbc 
frrsbrwss of ttlc, cached items sod finall!_. au effective 
rrplacrnwr~t lwlicy nwds to be identilicd t,” retain the 
mast fwquu1tly acccsscd items in a client‘s local star- 
agr. 

3.1.1 Thr Cache Table 

I 
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Figure 1: .-\ sample ATIS database application 

the ~licot’s local databae. This local object is called 
a loc;d ,~urq~ate for the remote ohjwt z at the server. 
Each loc;d surrogate of X will inherit two &tributes 
from Remote: R.oid holding t.he object idcntificr used 
by t.hc server to reference z and R-host holding the 
;~ldrws of t,hc servrr where I originally resides. The 
local surrogate z is added to CX via multiple rnerw 
bership rnorlcling construct of OODB rnodcl. The sur- 
rogate. thus. inherits attributes defined for CX. pro- 
viding storages as placeholders to rachc attributes of 
2. The value of an attribute. a. of au object. .r, U(I), 
will be cached under c.n of CX. For instance. in Fig- 
ure lb, me object, belonging to class Places to Stay is 
cachrd in t.hr local storage of a clirnt. 

Each at.t,ributc of class X in a clieut’s local database 
is a method. This rnct,ho<l cnc;qxul;~tcs the tasks iw 
voived in query processing. First. the initiated query 
is sent to the server. Second, for each attribute, a. re- 
quired by t,hc query, it rctricws C-R(L), for each local 
snrrognte I of 1.1~s X from the local storage if a(z) 
has ;rlrcxiy been cached in c-a(r) of the local data- 
base. Third. it sends an existent list of (R-oid. a) to 
t,he server. informing, the wrvrr ahout those attributes 
which have been satlsiiwl locally. so that they do not 
need tc be t.r;msmitted back. Finally. uporl rccei~- 
irig such a list and evaluating the qUcr!-. the SeTI-er 
replies with a list of (oid, attribute value) pairs, 
for those t,hat satisfy the query hut are not cnched in 
the client‘s storage. ;1n advantage for encapsulating 
the cache model within a method is its transparent? 
to a client. By simply having the method returning 
a null result during disconnection. the client can con- 
tinue to operate using its locally cached items. without 
concerning if it is connected to the vireless network. 

3.1.2 Attribute Caching 

In attribute caching, after the server S has evaluated 
the query submitted by a client C. S only returns 
those attributes of those qualiiied objects that are re- 
quested by C. To illustrate. consider the following 
OQL query, (2, being evaluated against the .1TIS data- 
base of Figure la by C: 

select s.name. z.cit 
from z in Places to r tay 
where r.vacancy > 0. 

;\ssume that the local database schema at C is as 
shown in Figure lb. Further a~sune that before the 
query is initiated. C’s local database only contains 
surrogate L and only vacancy of I is cnchcd as in- 
dicated by the shaded region (a) in Figure lb. Fi- 
nally, assume that only two objects. .r and y, in S 
satisfy the query. When rvalunting t.he where clatw 
of the query, the method vacancy of Places to Stay will 
retrieve vacancy(z) from c-vacancy(z). .I remote re- 
quest will be sent to S containing the list: (R_oid(z), 
vacancy), as vacancy(z) has been cached. S will return 
a list of values for name(z), city(z), name(y), city(u), 
and vacancy(y) since only objects z and y satisfy the 
query. C can then. cache name and city, of surrogate r 
under c-name and c-city respectively, as indicated by 
shaded region (b) in Figure lb. .-\ new surrogate for 
object y will also he created in the local database. C 
can then cache name, city, and vacancy of ?/_ 

3.1.3 Object Caching 

Each mobile client tends to have its own set of objeas 
that it accesses most frequently. Furthermore. a client 
might xcess different attributes of an object in diffcr- 
ent queries it initiates. \Vhcn the server receives a 
request. it might be worthwhile for the server to push 
all attributes of a qualiiied object, 2, to the initiated 
client, thus eliminating future requests for z from the 
client. The client can rachc the returned attributes 
under class CX as in attribute caching. For instance, 
the shaded region (c) in Figure lb shows that ail at- 
tributes of .c are cached when query Q is evaluated. 

3.1.4 Hybrid Caching 

In object caching, the database server will prcfctch all 
attributes of a qualified object, .r, to the client. It is 
xw?; ofwn that not all attributrs of .r will bc accessed. 
This not only xastes the transmission bandwidth. but 
also occupies storage for caching other more frequcr~tlg 
accessed attributes. Hybrid cxhing restricts the data- 
base server to prcfetch only those attributes of a quali- 
tied object with a high likelihood to be accessed in the 
future. Only attributes with access probability above 
a prefetching threshold. c, will be prefetched. 

3.2 Cache Coherence 
;\ cache coherence strategy usually involves cache 

invalidation and update schemes to invalidate and up- 
date an out-dated cached item. We note that most np- 
plications in a mobile environment will generate more 
read operations than write operations [a]. Further- 
more. a mobile client usually can accept a slight de- 
gree of out-dated d&a in return for faster data re- 
trieval. We propose a “lazy pull-based” invalidation 
approach in which wch client is responsible to inval- 
idate its cached itnn. In addition, we employ an on- 
demand update approach in which a stale cached item 
is only updated w-hew it is next accessed. We illustrate 
the idea using object caching; coherence for attribute 
caching and h!-hrid caching mill he similar. 

\\‘c horroa the idea proposed in the Leases file 
caching mechanism [iI by estimating a refresh time 
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(RT) for each cached object. The estimation of the 
refresh time for an object depends on its update prob- 
abilitv. If an object is updated frequently. its re- 
fresh’time vi11 be shorter. Consider an object, z, 
cached in a mobile client, C. The refresh time for 
I. RT,, indicates the duration that z could be cached 
in a client. while remaining valid. In attribute and 
hvhrid caching, since individual attributes of T are 
cached, the refresh time is associated with individual 
attributes. \Vhen C accesses z in response to a query, 
it checks the validity of z by determining if RT, has 
expired. If RT, has expired, z becomes stale. The ex- 
istent list to the server will then not contain an entry 
for z. When the server returns z, in response to the 
request from C, it will estimate the refresh time for 
z and the new estimate will be sent along with z to 
C. In other words, the refresh time for an object is 
updated dyxxnically whenever the object is sent to a 
client from the server. This approach does not require 
a client to be aiwavs connected in order to invalidate 
2. Furthermore, ii z is never accessed again, z will 
never be refreshed even after its refresh time expires. 

To estimate the refresh time for each cached object. 
I. the inter-arrival duration of consecutive write oper- 
ations. d,. oo .c is maintained. The mean. d,> and the 
standard deviation, sI, of the durat,ions are computed. 
The refresh time of z is estimated as z + &s,. The 
value of b, governs the frequency of refreshing z. It 
indicates the degree of deyiation a client, can tolerate 
on z. The smaller the value of fir, the smaller is the 
refresh time and the higher the possibility that a client 
needs to request z when it accesses z in a query. 

WC define the notion of an error in accessing an ob- 
ject. Assume that a mobile client refreshes an object, 
I. at time t, and t2. Between tl and tr, the client 
might issue read operations on its local cached copy 
of z. For each read operation, rrz initiated betaecn tl 
and t2: if the server performs a writ,c operation. wr. 
on z. before rz ~ the value of r used by the client will 
be inconsistent, with the actual value maintained at, 
the server and hence. the rend operat.ion I*= resuit,s in 
an error. This definition is used io chxxterizing the 
performance versus coherence tradeoff in Section 5. 

3.3 Cache Replacement 

\Ve consider a spectrum of replacement policies that 
adopt the access probabilities of database items as an 
indicator for the nccessiry of replacing a cached item. 
!Ve illustrate the idea in the context of object caching; 
replacement policies under attribut,e caching and hy- 
brid caching arc similar. 

For each object. a repIncement score indicating the 
predictioo of its access probability is rstimated. The 
higher the score. t,he higher the estimated access prob 
ability, and the lower is its chance of being replaced. 

mated score x,,,,, can be computed incrementall! 

as (n;iT,., + hJw,+,)/(~~ + 1). 
The mean scheme probably does not adapt well to 

changes in access patterns since every single trace from 
the beginning of the access history remains in effect: .4 
better approach is to use a window for the statist& 
measures. Each object is associated with a window 
of size Ii-, storing the access time of II. most recent 
operations. The cached object with the highest mean 
arrival duration within the window is replaced. This 
is known as the window scheme, whose effectiveness 
depends on the window size, +I.. With a window size 

ri;, the new score $“:$ for object z is computed as 

R;:’ + (Af,,,,i - hl,,,_a:+l)/&vv A problem for 
the’windoa scheme is the amount of storage needed 
in maintaining the li; intermediate values. 

To avoid the need of a moving windorv and to adapt 
quickly to changes in access patterns. our third scheme 
assigns weights t,o each arrival duration. such that re- 
cent durations have higher weigh6 and the weights 
tail off as the durations become aged. The repiace- 
ment score is the Ezponentially Weighted Moving Aw 
emgr of arrival durations and is called the EWMA 
srhrmr. .4 par;rmrter to E1VM.4 is the wright, n. 
which ranges from 0 to 1. The current duration re- 
ceives a xwight of 1; the previous duration receives 
a w-right of o: the next previous duration receives a 
weight, of o2 ;md so on. For object z with weight cxz; 

-101,) 
the estimatctl wore for z, AJ,,,,,,. when adding a new 
measure. d!J,.,,+ , could bc computed incrcmentaliy as 

4 The Simulation Model 
The expvriment.s presented hew are organized 

around thru, ohjrctives. First. we would like to stud) 
the performnnw differcnres among attribute caching, 
rrbiect caching. and hybrid caching. Second. we would 
likr to rompare our replacement policies with conven- 
tional ones. Tllird. we would like to study the effec- 
tiveness of our coherence strategy in maintaining the 
freshness of r~xhrrl database items. 

Thv sinndat,ion model is implemented using CSIhl. 
It consists of on<’ OODB sewer and 10 mobile clients. 
Tao channels. each having a typical wireless band- 
width of 19.2 Kbps, are shared among all clients to 
romrnuoicatr with the server. One chaonel is used 
for upstream qurries while the other is used for down- 
stream re~ulfs. The OODB has one class. Root. aith 
2000 oljjrcts. all residing in the server‘s disk initially. 
Eacll object cont,aios 9 attributes of primitive-\;llucd 
types imd 3 on<,-f0-onP relationships to another object 
of Root. Each ob,jcc:t has a size of 102-l bytes. 
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to 19:OO (with InCRn arrival riltv of 0.027t. rno<leting 
t,he busty traffic for taking otf from work. The two 
non-bursty periods will absorb 211% of t,he qrwrics: the 
period from IO:00 to 1F:OO has n mcim arrival rate “f 
0.005 and the one1 from 1wo to i)i:OO has an PW” 
lower mean arrival rate of 0.0013. mod~~ling workiq 
hours and happy/rrst hours rrsprctiwl>-. 

The sixth dimension studies the eifcct of update 
probability of an object. U. on the caching perfor. 
mancc. For each object accessed by a query. there wilt 
he a probability U that it will be updated. Ail selected 
attributrs of an object for update will be modified. 

Finally, we experiment with rhe performance of 
a caching scheme during disconnrction. since discon- 
ncctcd operation is an important aspect in a mobile 
environment [ll]. Here. we would like to study the 
performance from two different perspectires. First, 
we vary the duration of disconnrction of racb client. 
2). Second. we vary the number of clients that are 
disconnected, .V. Each experimt~nt is conduct,cd for a 
prriod of 4 sirnutatcd days, i.e.. 96 simulated hours. 
Thf average metrics arr measur~l. Thcx srnndard de- 
viation of our mcuuwmc*lts is fouurt to be very small. 
t.hus yielding wry tight contidcnrc intervals. 

5 Performance Evaluation 
WC chnracterizc the performance of a caching 

schcmc by three metrics. ;\wrage cache hit ratio of 
all mobile clients mcnsures the perccntagc of accesses 
that can be satisfied by rctriwing a locally unexpired 
cnchcd database itrm (attritmte or object). ;\verage 
x7pot~se time of all mobile clients mcasurrs t.hc avcr- 
age time spent (in scco~ls) from the *n”mPnt a quq 
is issurd to the moment thtz rrsrdts to thr query arc 
gencmtcd. cithcr by using tocnll\- unrxpired datahasp 
itrms or rmlot,r wsults from the wrv<‘r. Fin;rlly, err”, 
rnte menswcs ttx pcrcrntagc of wad errors the cticnt.s 
rnco~mtcwd (SW Scctiou 3.2). Sir sets of csperiments 
arc conducted. The parurwtcr settings of the erprri- 
rncnt,s presentrd are summarized in Tabtf 1. 
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Figure 2: Performance of storage caching schemes versus no caching 

5.1 Experiment #l 

Our first set of experiments compares the perfor- 
mance of AC, OC. and HC with the base case, i.e., 
NC. In HC. tbr, prrfctrhing tbrrsbotd, L, is set to two 
standard deviations. 0. betow the mean access rates 
of all attributes, 1~. The base case is achieved by dis- 
abling st,oragr caching at each client; only memory 
caching employing LRC at the server and each client, 
is enabled. For storage caching. EWhIA with a = 0.5 
(EWMA-0.5) is e~~~plo,~e~l for 7Ydlst. The number of 
clients is fixed at 10. and update probability U is 0.1. 

The results are depicted in Figure 2, arranged a? a 
two-dimensional array of graphs. The first row (Fig- 
ures 2a to 24 illustrates the performance of AQ while 
the second row (Figures 2e t,o 211) illustrates that of 
NQ. The first two columns show tho perforrnanw of 
Poisson arrival pattern while the last tvfo columns 
show that of Bursty arrival pattcrrl. For the sake of 
clarity, only cache hit ratios and response times are 
depicted hew \Vr will leavr the error rates measure- 
ment to Experiment #S. 

In Figure 2, it is clear that, the base case performs 
a lot worse than any storage caching scheme. It has 
a much lower hit ratio and a much higher response 
time than those of any storage caching scheme. This 
is because a storagr caching scheme trades network 
transmission for local disk access which has a much 
higher bandwidth than that of a wireless channel. 
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Figure 3: Performance of various rcplaccment policies 

hit ratios and response times arc measured There will 
be no error Iu there is no write operation. 

For ;\Q, Figures 312 and 36 indicate resprctivety 
the cache hit ratios and response times for different 
replacement policies under SH xcws pattern. Here. 
LRU. LRU-3, LRD. and Win-10 perform similarly. rc- 
suiting in a cache hit ratio in the range of 60%. Both 
Mean ad EWMA-0.5 seem to be capable of capturing 
a larger portion of hot objects. yielding hit ratios in 
the range of 70%, as well ;ts a Iow~r response time. 
Both Poisson and Bursty arrival pattrvx exhibit sim- 
ilar behavior. 

For SQ, Figures 3r and 3f depict lhc average cxhc 
hit ratios and response times for diffw19t r~placrnrent 
policirs ~mdt~ SH access pnttcrn. The intrrpretation 
XKI ixplanatiou of the figures are similar. \Ve further 
obsav that the response times are double those of 
;\Q. This is because in KQ, for each object ncccssed 
in a query. (2, = I additional “bjwt would also be 
referenced. This doubles the select&ty of each query. 

For CSH access pattern. LRU, LRU-3, and Win-10 
perform similarly. They are still able to maintain a 
cache hit ratio in the range of 50%. Mean performs 
a lot worse. Since Mean takes every access into ac- 
count. it cannot adapt to the continuous changes in 
access pattern. LRD performs better due to its adap 
tive nature, about 5% higher hit ratios than those 01 
LRU, LRU-3, 01 Win-lo. EWMA-0.5 adapts even bet- 
ter, achieving another 5% higher hit, ratios than LRD. 

5.3 Experiment #3 

We now compare the performance of various re- 
placement policies for storage caching under n more 
realistic environment with write operntions and mul- 
tiple clients. We repeat Experiment #2 with idrntical 
settings except that U = 0.1 and there are 10 mobile 
clients. ;\gain. only the performance of HC is reported 
here. For the sake of clarity, only ca& hit ratios and 

response times are dcpictcd. We wilt leave the error 
rates measurement to Experiment #5. The results of 
this experiment art? depicted in Figure 4, arranged in 
the same manner as Figure 3. 

In the presence of write operations, the cache hit 
ratios drop considernbt~~ up to 10% decrease which 
accounts to the increase in response times. This is 
because a query accessing an expired cached item will 
have to request the item from t,he server again. \Ve fur- 
ther note that the response times from Burstv querv 
arrival pattern are higher than those from Poiison a;- 
rival pattern This is b~causc for Busty arrival par- 
tern. queries arrive in a burst at the server. The re- 
sults will be queued up at the downstream channrl 
during burst?; pcrio~l since the low bnndaidtb wir&ss 
chanrrrl is not sutticient for delivering the results fast 
enough. This etIect is especially serious for NQ since 
the selectivity is double that of .iQ. One approach 
to address this problem is by a timeout heuristic. If 
the results of a query has been queued at the top of 
a queue for more than a duration threshold, the de- 
livery of prcfctchcd items for current query will he 
terminated. 1i’e will report more on the effect of this 
heuristic in the future. 

From Experiments #2 and #3: we observe that 
mean is not stable. Its performance is very sensi- 
tive to changes in access patterns. LRLJ. LRU-3, LRD. 
and EWMA-0.5 perform better than Win-lo. LRU per- 
forms slightly better than LRU-3 white LRD performs 
slightly bett.er than LRU. EWMA-0.5, in turn, per- 
forms slightly brtwr than LRD. 

5.4 Experiment #4 

iVe next rompare the performance of LRU. LRU- 
3, LRD, and EWMA schemes since our previous two 
experiments have shown that t,hese schemes perform 
similarly, within 10% difference, and relatively invari- 
ant to access patterns. 
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IVr exprrimentcd these four schrrnw on CSH a~- 
cess patteru with changing rata of 300. XXI. and 700 
queries. Dur to spacr limitation. only prrformanw of 
AQ arriving in a Poisson pattrrn arp drpicted. Thv 
numbrr of clients is tired at 10 and update prababiIit> 
is fixed at 0.1. Again. we look at NC only. Thr results 
are depicted in Figure 5. 

St, far. our rxpcriments have shwn that LRU prr- 
forms slighrly I~,t~vr than LRU-3. 111 [ll]. it was shown 
that LRU-3 will lwrform bcttc?r than LRU if the access 
pattern of dntalxasr qwrics exhibits a cyclic behavior, 
i.e., the same wt of datab;~sc itrms arc, rrfcrcrrcN1 b) 
data1xl.v qurri,,s after a rrrtain duration. In order to 
cxpcrimfnt this cyclic access pattern m our environ- 
ment, WC follow [l-l] in generating the set of database 
items to bt? aux~sst~l by each databae query. The 
performanw of LRU, LRU-3. LRD. and EWMA-0.5 is 
show11 in FiRurv G. Again, only performance of AQ 
arriving in Poisson pattern is depicted. 

Figurr 1: Performance of various replacement policies with write operations 

-- -b)- 

F@xr 6: Coruparison among LRU, LRU-3. LRD, and 
EWMA-0.5 srhrmrs on cyclic access pattern 
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Figure 7: Error rates uersus update probabilities 

rates, hit ratios_ and response times for AC. OC. and 
HC are mensurcd. Due t,o spare limitation. xve only 
present the results for AQ with Poisson arrival pat- 
tern, operating on SH access pnrtern. with EWMA-0.5 
replacement policy. The fi value ranges from -1. 0. to 
1 while update prohahility. U. ranges from 0.1. 0.3. to 
0.5. LVe do not present the results for higher values of 
U since we believe that the number of write operations 
should be less than the number of read operations, es- 
pecially ill a mobile environuwnt. Figure 7 depicts the 
results. The first row ilhlstrntes rhe mea~uremeuts for 
.Y = -1. the second row for .I = 0. and the third 
row for ,J = 1. The first column presents error rates. 
the second column hit ratios. and the third colurrm 
response t,imes. 

We observe that OC. in gcnrral. has higher error 
rates than those of AC and HC. This could be ex- 
plained as follows. Assume that a client reads at- 
tribute a of a cached object, .r, at time t, and t2 while 
attribute b of z is updated by another client at time 
t. t, < t < tp, at the server. For OC. since the update 
of attribute b is an update on I. the object being read 
at ty, the read operation at t? is an error. For AC 
and HC, the read operation at tz is not an error since 
attributes o and b are considered as different items. 

AC and HC result in similar number of errors. How- 
ever, HC can satisfy more read operations using locally 
cached items due to the higher hit ratios. Thus, the 
error rates of HC are slightly lover than t,hose of AC. 

The error rates increase with the update probabil- 
ity U. When U is low, there are few write operations. 
Since an error only occurs when there is a write op- 

eration follonwl by a read operation within any two 
consecutive refreshes. the error rate is low. \Vhcn U 
increases. the prohahility that there is a read opera- 
tion following a write operation within a refresh dura- 
tion increases and the error rates increase accordingly. 
One might also obscrvc that the error rates increae 
as :j incrrasw This is because when :j increases. the 
refresh time of n database item increases accordingly. 
This increases rhe prohahility of reading a stale item 
before the item is rcfreshcd 

The hit rnrios increase as 7 i increases. since the re- 
fresh time of a database item incrrascs with 3; thus 
increasing t,hr probability that a locally cached item 
could be accessed. In contrast, the response times de- 
crease as J increases due to increased hit ratios. 

5.6 Experiment #6 

Our final wt of experiments is to study the error 
rates during disconnection. The duration of a discon- 
nection period. ‘P. for each client ranges from I to 10 
hours. IL’e xarv the number of clients that are discon- 
necwd .I.. frok 1, 3, 5, 7, to 9. The total number of 
clients’is still fixed at 10. Figure 8 presents the error 
rates of AQ with Poisson arrival pattern, 0peratW 
on SH access pattern, employing EWMA-0.5 replaCc’- 
ment policy. The error rate is measured based on a 
“perfect” knowledge of all the events in the simulated 
system. Figures 8a to 8c depict the error rates for AC. 
OC. and HC respectively. 

As show in Figure 8, the error rates increase as 
the duration of disconnection increases in all sdv?~~~s~ 
This is because during disconnecrion. a client will ror’- 

i 
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Figure 8: Error rates during disconnection 

tinue to use its locally cached, but expired, items. As 
more clients are disconnected, the total number of er- 
rors will increase. The increase is relatively slow, how- 
ever, as illustrated in Figure 8d, which shows the re- 
lationship between error rates and number of discon- 
nected clients when the disconnected duration is fixed 
at 5 hours. 

6 Conclusion 
We have presented a framework for caching mech- 

anism as one way to improve data access performance 
in a mobile environment. The caching mechanism is 
illustrated and implemented on object-oriented data- 
base model. We have shown that page-based caching 
is not suitable in this mobile context and proposed 
three different caching granularities, namely, attribute 
caching, object caching, and hybrid caching. We have 
also shown that conventional cache coherence and re- 
placement schemes are not a effective and modified 
strategies which adapt to object access patterns have 
been proposed. The behavior of our caching mecha- 
nism is illustrated through a series of simulated exper- 
iments. 

We intend to extend this study in several direc- 
tions. First. this study assumes that each mobile client 
only communicates kith one server. In real applica- 
tions, a mobile client might request items from multi- 
ple servers, possibly under different cells. This further 
complicates the problem because the contact server for 
a client might have to request and even cache items 
from other remote servers on behalf of the client which 
initiates the query. Second, we would like to inves- 
tigatr into the correctness conditions on concurrent 
query processing. Since mobile clients are highly dy- 
namic and autonomous, the notion of serializability 
for conventional transaction proccssing would be too 
restrictive for cfficicnt concurrency control in this con- 
text. Relnxc~l notions should br explored. Finally. we 
arc incorporating our results int,o our prototype to be 
further validated with the simulated results. 

63 

PI 

PI 

[31 

S. Acharva, R. Alamo, hf. Franklin, and S. Zdonik. 
Broadcast Disks: Data Management for Asymmetric 
Communication Environments. In Proceedings of the 
.ACM SIGMOD, pages 199-210, 1995. 

D. Barbara and T. Imielinski. Sleepers and Worka- 
holics: Caching Strategies in Mobile Environments. In 
Proceedings of the ACM SIGMOD, pages l-12, 1994. 

\I. Choy. \I. Kwan, and H.V. Leong. On Real-time 
Distributed Geographical Database Systems. In 27’” 
Hawaii International Conference on System Sciences, 
pages 33i-346, 1994. 

[41 D. Dewitt and D. Maier. A Study of Three Alter- 
native \Vorkstation-Server Architectures for Object- 
Oriented Database Systems. In Proceedings of VLDB, 
pages lOi-121, 1990. 

[51 

[61 

[71 

\V. Effelsberg and T. Haerder. Principles of Database 
Buffer Management. ACM l+annnsactions on Database 
Systems, pages 560-595. December 1984. 

11. Ranklin, M. Carey, and M. Livny. Global Memory 
!danagement iI1 Client-Server DBMS Architectures. 
In Proceedrngs of VLDB, pages 596-609, 1992. 

C. G. Gra? and D. R. Cheritorl. Leases: An Efficient 
Fault-T&rant Mechanism for Distributed File Cache 
Consistency. In Proceedmgs of SOSP, pages 202~~210, 
1989. 

PI 

PI 

PO1 

1111 

i121 

1131 

Y. Hung. P. Sistla, and 0. Wolfson. Data Replication 
for hlobiie Computers. In Proceedings of the ACM 
SIGMOD. pages 13-24, 1994. 

‘I Imielinski and B. Badrinath. Mobile \Vireless Com- 
puting: Challenges in Data Management. Communi- 
catmns of the ACM, 37(10):18-28, 1994. 

J. Jannink. D. Lam, N. Shivakumar. J. Widom. and 
D.C. Cox~ Data Management for User Profiles in 
\Vireless Communications Systems. Technical report, 
Computer Science & Electrical Enginewing Depart- 
went. Stanford University. 1994. 

J.J. tiistlcr and M. Satyanarayanan Disconnected 
operation in the Coda file system 111 Proccedzngs oJ 
SOSP, pages 213-225, 1991. 

H.\‘. Leong and A. Si. Databax Caching over the 
,Air-Storagr, The Computer Joumol. To appear. 

C. hlin, 11~ Chen. and N. Roussopoulos. The lmple- 
mentaticm and Performance Evaluation of the ADMS 
Query Optimizer: Integrating Query Result Caching 
aud hlatchinr. In Proceedwgs of International Con- 
ference on &tending D&base Technology, pages 
323-336. 1994. 

[I41 E. O’Neil. P. O’Neil, and G. Weikum. The LRU- 
K Page Replacement Algorithm for Databar Disk 
Buffering, In Proceedmgs of the ACM SIGMOD, pages 
297-306. 1993. 

[I51 ,I. Si and H,\.. Lrong. Query Procrssillg and oJ’- 

rimization for Broadcast Database. In Proccedwqs 
of Intemnt,onal Conference on Database and Ezpmt 
Systems Applxntions, pages 899-914. 1996. 

[lG] ;\. Sillwrschatz. H.F. Korth, and S. Sndarshan Dnto- 
hose System Concepts. >lcGraw-Hill, 1996. 


