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Qubits

A viewpoint of the Qubit
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Summary so Far
• New Model Developed Since Classical 

Physics Could Not Explain 
Wave/Particle Duality

• Heisenberg/Schrödinger Developed 
Quantum Theory

• von Neumann Developed Mathematical 
Model known as Hilbert Space

• Quantum State Vector (the wave 
function) Represents Superposition of 
States
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Summary so Far
• Quantum States Evolve over Time and 

Evolution Modeled as Hermitian Operators
• Observable is Attribute of Physical System 

that is (in principle) Measurable
• Measurement of Observable Associated with 

a Hermitian Operator
• Outcome of Measurement is Eigenvector of 

Hermitian Operator
• Hermitian eigenvalues predict which 

eigenvector will be measured
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Quantum Bit
• Elementary Quantum Object used to Store 

Information
• For now, We view Qubit as a Mathematical 

Abstraction
• Qubit is a Vector in 2-D Complex Vector 

Space
• State of a Qubit a Superposition of Pair of 

Orthonormal Basis Vectors

 |y ñ = a0 | 0ñ +a1 |1ñ
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Qubits versus Bits

• Classical Bit:
– Only two Possible States: (a0=0, a1=1) or (a0=1,a1=0)

• Quantum Bit:
– Many Possible States:

• Measurement of Classical Bit Yields State with 
Probability of 1

• Observation/Measurement of Qubit Yields:

 |y ñ = a0 | 0ñ +a1 |1ñ
  b = a00 + a11
Classical Bit Quantum Bit

0 1,a a Î!  |a0 |2 + |a1 |2= 1

 | 0ñ with probability |a0 |2  |1ñ with probability |a1 |2
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Qubit
• Vector Length (Norm) Must be 1 for this Probability 

Relation to hold:

• EXAMPLE:

• Superposition and Effect of Measurement Force 
Qubit to Lose Superposition and Collapse into an 
Observable Operator Eigenvector

 |a0 |2 + |a1 |2= a0
*a0 +a1

*a1 = 1

 
|y ñ = 1

2
| 0ñ + 3

2
|1ñ

 Prob[| 0ñ measured] = (1 / 2)2 = 25%

 Prob[|1ñ measured] = ( 3 / 2)2 = 75%
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Orthonormal Basis
• Qubit may be Expressed as Superposition of 

any Two Orthonormal Basis Vectors
• Consider:

• In this Case:
 
| +ñ = | 0ñ+ |1ñ

2  
| -ñ = | 0ñ- |1ñ

2

 
|y ñ = a0 | 0ñ +a1 |1ñ = a0

| +ñ+ | -ñ
2

+a1

| +ñ- | -ñ
2

 |y ñ = ? | +ñ + ? | -ñ
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| +ñ = | 0ñ+ |1ñ

2  
| -ñ = | 0ñ- |1ñ

2

 
| +ñ- | -ñ = | 0ñ+ |1ñ

2
-

| 0ñ- |1ñ
2

=
1
2

| 0ñ+ |1ñ- | 0ñ+ |1ñéë ùû =
2
2

|1ñ

 
|1ñ = 2

2
(| +ñ- | -ñ) = | +ñ- | -ñ

2

 
| +ñ+ | -ñ = | 0ñ+ |1ñ

2
+

| 0ñ- |1ñ
2

=
1
2

| 0ñ+ |1ñ+ | 0ñ- |1ñéë ùû =
2
2

| 0ñ

 
| 0ñ = 2

2
(| +ñ+ | -ñ) = | +ñ+ | -ñ

2
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Orthonormal Basis
• Qubit may be Expressed as Superposition of 

any Two Orthonormal Basis Vectors
• Consider:

• In this Case:
 
| +ñ = | 0ñ+ |1ñ

2  
| -ñ = | 0ñ- |1ñ

2

 
|y ñ = a0 | 0ñ +a1 |1ñ = a0

| +ñ+ | -ñ
2

+a1

| +ñ- | -ñ
2

 
|y ñ =

a0 +a1

2
| +ñ +

a0 -a1

2
| -ñ
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Single Qubit Transformations
• Single bit Transformations by Means of 

Operators
• Pauli Matrices Represent an Observable 

Describing the Spin of a Fermion in 3-D
• Denoted as:

• Often the Following Notation is Used:
  s1  or X   s 2  or Y   s 3  or Z

  s 0  or I
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Derivation of σ0
• This Operator Performs an Identity 

Transformation of the Basis Vectors:

• Computed as:
| 0 | 0ñ ñ! |1 |1ñ ñ!

  s 0 = I =| 0ñá0 | + |1ñá1|

  
s 0 = I = 1

0
é
ëê
ù
ûú
Ä 1 0éë ùû +

0
1
é
ëê
ù
ûú
Ä 0 1éë ùû

  
s 0 = I = 1 0

0 0
é
ëê

ù
ûú
+ 0 0

0 1
é
ëê

ù
ûú
= 1 0

0 1
é
ëê

ù
ûú
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Derivation of σX
• This Operator “Flips” or “Negates” a Qubit:

• Computed as:
| 0 |1ñ ñ! |1 | 0ñ ñ!

  s1 = X =| 0ñá1| + |1ñá0 |

  
s1 = X = 1

0
é
ëê
ù
ûú
Ä 0 1éë ùû +

0
1
é
ëê
ù
ûú
Ä 1 0éë ùû

  
s1 = X = 0 1

0 0
é
ëê

ù
ûú
+ 0 0

1 0
é
ëê

ù
ûú
= 0 1

1 0
é
ëê

ù
ûú
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Derivation of σY
• This Operator Multiplies a Qubit by i (shifts 

the phase by 90 degrees) then “Flips” or 
“Negates” it:

• Computed as:
| 0 |1iñ ñ! |1 | 0iñ - ñ!

   s 2 = Y = -i | 0ñá1| +i |1ñá0 |

   
s 2 = Y = -i 1

0
é
ëê
ù
ûú
Ä 0 1éë ùû + i 0

1
é
ëê
ù
ûú
Ä 1 0éë ùû

   
s 2 = Y = -i 0 1

0 0
é
ëê

ù
ûú
+ i 0 0

1 0
é
ëê

ù
ûú
= 0 -i

i 0
é
ëê

ù
ûú
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Derivation of σZ
• This Operator is an Identity with a Negation 

Operation (180 degree phase shift):

• Computed as:
| 0 | 0ñ ñ! |1 |1ñ - ñ!

  s 3 = Z =| 0ñá0 | - |1ñá1|

  
s 3 = Z = 1

0
é
ëê
ù
ûú
Ä 1 0éë ùû -

0
1
é
ëê
ù
ûú
Ä 0 1éë ùû

  
s 3 = Z = 1 0

0 0
é
ëê

ù
ûú
- 0 0

0 1
é
ëê

ù
ûú
= 1 0

0 -1
é
ëê

ù
ûú
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Pauli Operator Examples
• Assume the Following:

  |jñ = s i |y ñ = s i[a0 | 0ñ +a1 |1ñ]

 
|jñ = s 0 |y ñ = 1 0

0 1
é
ëê

ù
ûú
a0

a1

é

ë
ê

ù

û
ú =

a0

a1

é

ë
ê

ù

û
ú

 
|jñ = s1 |y ñ = 0 1

1 0
é
ëê

ù
ûú
a0

a1

é

ë
ê

ù

û
ú =

a1

a0

é

ë
ê

ù

û
ú

  
|jñ = s 2 |y ñ = 0 -i

i 0
é
ëê

ù
ûú
a0

a1

é

ë
ê

ù

û
ú = i

-a1

a0

é

ë
ê

ù

û
ú

 
|jñ = s 3 |y ñ = 1   0

0 -1
é
ëê

ù
ûú
a0

a1

é

ë
ê

ù

û
ú =

a0

-a1

é

ë
ê

ù

û
ú
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Hadamard Operator
• This Operator is Commonly used to Maximize 

Superposition of a Qubit in a Basis State

• Example:   
H =

1
2

1   1
1 -1
é
ëê

ù
ûú

 |y ñ = 0 | 0ñ +1|1ñ =|1ñ

  
H |y ñ = 1

2
1   1
1 -1
é
ëê

ù
ûú

0
1
é
ëê
ù
ûú
= 1 / 2

-1 / 2

é

ë
ê
ê

ù

û
ú
ú
= (1 / 2) | 0ñ - (1 / 2) |1ñ

 Prob[| 0ñ measured] = (1 / 2)2 = 50%

 Prob[|1ñ measured] = (1 / 2)2 = 50%
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Operator Commutativity
• In General Matrix Multiplication Does not 

Commute

• Test for Operator Commutativity

• Commutativity Test for Pauli Matrices:

  [A,B] = AB -BA

 AB ¹ BA

  
[A,B] = 0,   A,B commute

do not commute
ì
í
î

   [s1,s 2] = 2iZ    [s 2 ,s 3] = 2iX    [s 3,s1] = 2iY

Does       Commute? s is i

17

Quantum Interference

Lecture From Prof. David Deutsch  (42 min)

18
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Geometrical Interpretation
• Bloch Sphere is Geometric Interpretation of 

Qubit State and Single Qubit Operators
• Express State of Qubit using 3 Real Values 

Interpreted as Angles

 |y ñ = a0 | 0ñ +a1 |1ñ

  
a0 = eig cosq

2   
a1 = eig eij sinq

2

  
|y ñ = eig cosq

2
| 0ñ + eij sinq

2
|1ñ

é

ë
ê

ù

û
ú
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Geometrical Interpretation
• Recall that Phase Factors are not Observable
• Can be Ignored for our Calculations
• Verify Norm of State Vector is Unity

 |a0 |2 + |a1 |2= 1

  
a0 = eig cosq

2   
a1 = eig eij sinq

2

20
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Geometrical Interpretation

 |a0 |2 + |a1 |2= 1

  
eig cosq

2

2

+ eig eij sinq
2

2

=| eig |2 cos2 q
2
+ | eig |2 | eij |2 sin2 q

2

 
= cos2 q

2
+ sin2 q

2
= 1

Note that:   | e
ig |2=| eij |2= 1

21

Bloch Sphere
• Qubit State is Vector from
Origin to Point on Unit Sphere

• Position of Point Defined by
2 Real-valued Angles

• Named after Physicist Felix
Bloch

First Director of CERN
Studied with Heisenberg, Pauli, Bohr, Fermi
1961: Max Stein Chair Stanford

22
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Bloch Sphere
EXAMPLE:

 |y ñ = (| 0ñ+ |1ñ) / 2

 a0 = a1 = 1 / 2

! 

a0 = cosq
2
=

1
2

Þ
q
2
= 45oÞq = 90o

!  

a1 = eij sinq
2
=

1
2

Þ eij = 1Þj = 0o

This means quantum
state lies along the positive
y-axis in the Bloch sphere
which is an even superposition
of the two eignekets or the 
eigenbasis

23

Bloch Sphere

24
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Rotations on Bloch Sphere

• Single Qubit state Transformation 
Corresponds to Rotation over Bloch 
Sphere

• When Qubit is Represented by Fermion, 
Pauli Matrices Describe Rotations

• Need Another Mathematical Tool:
– Matrix Exponentiation

25

Matrix Exponentiation
• Assume A is a Matrix such that A2=I

and β is a Real Number, then:

• Recall Taylor Expansion Series for:
   e

ibA = cos(b)I + isin(b)A

2 3

0
1

2! 3! !

k
x

k

x x xe x
k

¥

=

= + + + + =å!

xÎ!

3 5 2 1

0
sin ( 1)

3! 5! (2 1)!

k
k

k

x x xx x
k

+¥

=

= - + + = -
+å!

2 4 2

0
cos 1 ( 1)

2! 4! (2 )!

k
k

k

x x xx
k

¥

=

= - + + = -å!

26
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Taylor Expansion of Matrix
• Assume A is a Square Matrix, then:

• Note that:
• We Regroup the Terms as Shown 

on the Following:

2 3

2! 3! !

k

e
k

= + + + + + +A A A AI A ! !

2 3( ) ( ) ( )( )
2! 3! !

k
i i i ie i

k
b b b bb= + + + + + +A A A AI A ! !

  A2 = I   i = -1

27

Taylor Expansion of Matrix
• Regrouping:

2 3( ) ( ) ( )( )
2! 3! !

k
i i i ie i

k
b b b bb= + + + + + +A A A AI A ! !

2 4 2

3 5 2 1

( )1 ( 1)
2! 4! (2 )!

( )( 1)
3! 5! (2 1)!

k
i k

k
k

e
k

i
k

b b b b

b b bb
+

æ ö
= - + + + - +ç ÷
è ø
æ ö

+ - + + + - +ç ÷+è ø

A I

A

! !

! !

   e
ibA = cos(b)I + isin(b)A

28
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Pauli Rotations
• Consider a Finite Rotation through an 

Angle β about a given Vector n on the 
Bloch Sphere:

• In this Operator, note the following:
    R n(b) = exp(-i(b / 2)n •s ) = cos(b / 2)I - isin(b / 2)n •s

   
n •s   yields a matrix and n = (nx ,ny ,nz ),s = (sX ,sY ,sZ )T

  
sX =

0 1
1 0
é

ë
ê

ù

û
ú

   
sY =

0 -i
i 0
é

ë
ê

ù

û
ú

  
sZ =

1 0
0 -1
é

ë
ê

ù

û
ú
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Pauli Rotations
• Rotation Operators about x, y, and z Axes 

through Angle β are Denoted as:

• Observing that:

• Using this Observation and the Previous 
Result:ℛ𝑥 𝛽 = 𝑐𝑜𝑠 ⁄𝛽 2 𝐈 − 𝑖𝑠𝑖𝑛 ⁄𝛽 2 𝝈𝑥

( ), ( ), ( )x y zb b bR R R

T T T[(1,0,0) ( ,0,0) ],[(0,1,0) (0, ,0) ],[(0,0,1) (0,0, ) ]s s s s• = • • •X Y Zn

cos( / 2) 0 0 sin( / 2)
( )

0 cos( / 2) sin( / 2) 0x

i
i

b b
b

b b
-é ù é ù

= +ê ú ê ú-ë û ë û
R

30
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Pauli Rotations (cont)

• Similar Derivations Yield:

cos( / 2) sin( / 2)
( )

sin( / 2) cos( / 2)x

i
i

b b
b

b b
-é ù

= ê ú-ë û
R

cos( / 2) sin( / 2)
( )

sin( / 2) cos( / 2)y

b b
b

b b
-é ù

= ê ú
ë û

R

/ 2

/ 2

0
( )

0

i

z i

e
e

b

b
b

-

-

é ù
= ê ú
ë û

R

31

Rotation Operator Properties
• Angle Addition Property:

• Recall from Trigonometry:

   R x (b1)R x (b2 ) = R x (b1 + b2 )

   
R y (b1)R y (b2 ) = R y (b1 + b2 )

   R z (b1)R z (b2 ) = R z (b1 + b2 )

 sin(b1 ± b2 ) = sin(b1)cos(b2 ) ± cos(b1)sin(b2 )

! cos(b1 ± b2 ) = cos(b1)cos(b2 ) msin(b1)sin(b2 )

   
R y (b1)R y (b2 ) =

cos(b1 / 2) - sin(b1 / 2)
sin(b1 / 2) cos(b1 / 2)

é

ë
ê
ê

ù

û
ú
ú

cos(b2 / 2) - sin(b2 / 2)
sin(b2 / 2) cos(b2 / 2)

é

ë
ê
ê

ù

û
ú
ú

   
R y (b1)R y (b2 ) =

cos[(b1 + b2 ) / 2] - sin[(b1 + b2 ) / 2]
sin[(b1 + b2 ) / 2] cos[(b1 + b2 ) / 2]

é

ë
ê
ê

ù

û
ú
ú
= R y (b1 + b2 )

32
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Qubit Measurement
• In General Qubits are in Superposition 

State:

• Measurement Characterized by set of 
Linear Operators that are Modeled as 
Hermitian Matrices

• Probability of Outcome with Index k as 
Result of Measurement is:

 |y ñ = a0 | 0ñ +a1 |1ñ

   {M k}

   p(k) = áy | M k
 M |y ñ

33

Qubit Measurement
• All Possible Measurements:

• Classical Probability is Used when there 
are “missing details”

• Appears that this is Not True in QM, it 
Occurs Naturally in Models as we 
Understand Them

   
p(k)

k
å = áy | M k

 M k |y ñ
k
å = 1

34
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Measurement on Bloch Sphere
• Measurement Causes Qubit
to Change State:

†

|| |
| |

k

k k

yy j
y y

ñ
ñ ñ =

á ñ
!

M

M M

• Two Possible Outcomes
• Measurement Operators:

[ ]0

1 1 0
| 0 0 | 1 0

0 0 0
é ù é ù

= ñá = =ê ú ê ú
ë û ë û

M

[ ]1

0 0 0
|1 1| 0 1

1 0 1
é ù é ù

= ñá = =ê ú ê ú
ë û ë û

M

35

Measurement on Bloch Sphere
• Measurement Operators are Hermitian:

†
0 0

† 2
0 0 0 0

1 0
0 0

1 0 1 0 1 0
0 0 0 0 0 0

é ù
= =ê ú
ë û

é ù é ù é ù
= = = =ê ú ê ú ê ú

ë û ë û ë û

M M

M M M M

†
1 1

† 2
1 1 1 1

0 0
0 1

0 0 0 0 0 0
0 1 0 1 0 1

é ù
= =ê ú
ë û

é ù é ù é ù
= = = =ê ú ê ú ê ú

ë û ë û ë û

M M

M M M M
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Measurement
• Probability of Outcome Corresponding 

to ket-zero:

• Also

†
0 0 0 0| | | |p y y y y= á ñ = á ñM M M

0 0
0

1

1 0
|

0 0 0
a a

y
a
é ùé ù é ù

ñ = =ê úê ú ê ú
ë û ë ûë û

M

0* * 2
0 0 0 1 0| ( | ) | |

0
p

a
y y a a a

é ùé ù= á ñ = =ê úë û ë û
M

* * 2
1 1 0 1 1

1

0
| ( | ) | |p y y a a a

a
é ù

é ù= á ñ = =ê úë û
ë û

M
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Measurement
• Note that:

• State of Qubit after Measurement is:

• Likewise:

0 0
0 0 0

1

1 0 1
| | 0

0 0 0 0
a a

y a a
a
é ùé ù é ù é ù

ñ = = = = ñê úê ú ê ú ê ú
ë û ë û ë ûë û

M

0 0 0
0 †

0 00 0

| | 0| | | 0
| | | || |

y a ay j
a ay y

ñ ñ
ñ ñ = = = ñ

á ñ
!

M

M M

1 1 1
1 †

1 11 1

| |1| | |1
| | | || |

y a ay j
a ay y

ñ ñ
ñ ñ = = = ñ

á ñ
!

M

M M

38
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Measurements Require:
• INPUT: Object to be observed or measured
• OUTPUT: A Real-value called the “measurement outcome”
• METHOD: Choosing the appropriate device to perform the 

measurement/observation
• Destructive measurements affect the object (change its form) 

but the outcome is NOT the object, it is the real-value or 
measurement outcome; object transformation is a side effect
– example: measuring the heat capacity (in units of energy) of a piece 

of wood requires measuring the amount of temperature increase 
over time as the wood is converted in form from a solid to a gas 
(i.e., “Burning” the wood)

real value
(Energy in units 

of calories)wood (logs)

measuring device
(calorimeter)

39

Observables and Measurement
• Quantum observables are anything we can observe about a quantum 

object; a quantity like position, energy, momentum, etc.
• We “observe” such quantities by making a “measurement” of the 

quantum state; often Denoted:

• QM postulate states that some observables can only be 
probabilistically measured.  This is Born’s rule.
– Such as measuring the value of a qubit.  Thus the real value is a 

single classical bit, but measurement outcome can differ among 
multiple measurements.

• Quantum State measurements are Absolute measurements and 
depend upon the frame of reference (vector space basis)

• Quantum State measurements are Destructive; they cause the 
quantum state to change

real valuequantum state

measuring device

40
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Observables are Mathematical
• Recall that Mathematical Operators exist that can be applied 

to a quantum state to yield different Observables

• For this reason, an Observable is ALSO a Mathematical 
Operator applied to a quantum state

Photon Location

Superconducting
Solid-State Circuits

Ion Traps

Other
Photon Properties
(polarization, 
OAM; orbital 
angular momentum)

41

Notation can be Confusing
• Measurement:

• Quantum State transformation (or evolution):

• Measurements also change the quantum state, but the 
OUTCOME is a real-value.  The quantum state is 
destructively changed according to a probability distribution.

• If state change due to measurement is IDEAL (no energy loss 
to environment), we have a Projective Measurement

Outcome
real value

quantum state

measuring device

evolved quantum state
(deterministic)

quantum state

transformation

H

Ψ t1( ) = e
−i
!
Ĥ t1−t0( )

Ψ t0( )

Ψ t
1( )Ψ t

0( )
H = e

−i
!
Ĥ t1−t0( )

42
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Transformations versus Measurements
• Projective Measurements cause the Quantum State change 

to conserve energy in a closed system
– the destructive measurement transforms the state according to an 

evolution with no energy loss to environment
• General Measurements account for realistic energy loss to 

environment
– energy loss to the environment is decoherence
– destructive state change is NOT modeled as a time evolution in a 

closed system
• Positive/Probability Operator-Valued Measures (POVM) are 

Intermediate Measurement model that accounts for energy 
loss to the environment by assuming the Vector Space is of 
additional dimension to account for states “lost” to the 
environment, Hn+m , (H2+m for qubits)
– quantum state is n-dimensional, environment adds m dimensions to 

account for case where destructive measurement causes energy to 
transfer outside the closed quantum system

– Ancilla state in m-dimensions is added to the system to account for 
potential energy transfer to the environment (decoherence) during a 
measurement

We Focus on Projective Measurements First
43

Example: Measuring Probability Amplitudes
• We cannot directly observe/measure the probability 

amplitudes
– doing so would mean a single qubit can store more information 

than a single classical bit from an Information Theory point of 
view

– this is a consequence of a QM postulate that is known as 
Born’s rule, probabilistic observations

– if we could conduct a large number of measurements of the 
same qubit, we could obtain an estimate of the probabilities, 
the square of the magnitude of the probability amplitudes; 
however, since measurements are generally destructive, this 
is not possible

• Superposition allows a qubit to “represent” both zero and 
one, but a single measurement causes the qubit to 
“collapse” into a single probabilistic outcome (0 or 1).
– State collapse is a characterization of the Destructive nature of 

the measurement

44
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Measuring the Quantum State

https://www.youtube.com/watch?v=SMbh0GgCN7I (11:29)

45

Born’s Rule (QM Postulate) 
• Consider a Qubit in Terms of the Computational Basis:

• Probability of Observing a Qubit Basis State is the Square 
of Magnitude of Probability Amplitude
– This is a Postulate of QM (Born’s Rule)

• Consider the inner product of a Qubit with itself:

Prob |Ψ〉→ 0⎡⎣ ⎤⎦ = α
2

Prob |Ψ〉→ 1⎡⎣ ⎤⎦ = β
2

Ψ Ψ = α * β *⎡
⎣⎢

⎤
⎦⎥

α
β

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=α *α + β *β = α
2
+ β

2

|Ψ〉 =α | 0〉 + β |1〉

by the Born’s rule Postulate:

46

https://www.youtube.com/watch?v=SMbh0GgCN7I
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Born’s Rule (QM Postulate) 
• Consider Qubit in Terms of the Computational Basis:

• Probability of Observing a Qubit Basis State is the Square 
of Magnitude of Probability Amplitude
– This is a Postulate of QM (Born’s Rule)

• Consider the inner product of a Qubit with itself:

Prob |Ψ〉→ 0⎡⎣ ⎤⎦ = α
2

Prob |Ψ〉→ 1⎡⎣ ⎤⎦ = β
2

Ψ Ψ = α * β *⎡
⎣⎢

⎤
⎦⎥

α
β

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=α *α + β *β = α
2
+ β

2

= Prob |Ψ〉→ 0⎡⎣ ⎤⎦ + Prob |Ψ〉→ 1⎡⎣ ⎤⎦
=1

|Ψ〉 =α | 0〉 + β |1〉

by the Born’s rule Postulate:

47

Projecting a Probability 
Amplitude

• Consider Qubit in Terms of the Computational Basis:

• If we wished to mathematically project the qubit onto the |0〉, 
we could formulate a Projector (projection matrix), P0, and 
we could compute:

• Note that this is NOT a valid quantum operator as P0 is NOT
unitary and thus NOT a solution of the time-dependent 
Schrödinger Equation, but it is Mathematically a valid 
Projection Matrix:

• Also note that P0 is a Hermitian Projection Matrix.

|Ψ〉 =α | 0〉 + β |1〉

|Ψ0 〉 = P0 Ψ = 1 0
0 0

⎡
⎣⎢

⎤
⎦⎥

α
β

⎡
⎣⎢

⎤
⎦⎥
= α

0
⎡
⎣⎢

⎤
⎦⎥
=α 0

P0 = 0 0 = 1 0
0 0

⎡
⎣⎢

⎤
⎦⎥
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Born’s Rule Again
• Consider Qubit in Terms of the Computational Basis:

• Recall that the Probability of Observing the |0〉	basis state is 
the Square of the Magnitude of the |0〉	Probability Amplitude 
(QM postulate, cannot derive), thus:

• From Previous Slide:
• We can express this in terms of the norm of the qubit

projection to |0〉	as:

• Or, likewise in terms of the projection operator matrix P0 as:

Prob |Ψ〉→ 0⎡⎣ ⎤⎦ = α
2

|Ψ〉 =α | 0〉 + β |1〉

α
2
= Ψ0

2
= Ψ0 Ψ0 = α * 0⎡

⎣
⎤
⎦

α
0

⎡
⎣⎢

⎤
⎦⎥
=α *α

α
2
= P0 Ψ

2
= P0 Ψ( )† P0 Ψ( ) = Ψ P0

†P0 Ψ

|Ψ0 〉 = P0 Ψ =α 0
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Hermitian Projectors

• Recall from our discussion of Projector Operators that a 
projection operator is an “orthogonal projection matrix” 
when Hermitian idempotence holds:

• Given that:

• We observe that P0 is Hermitian and that idempotence
holds, thus we can rewrite:

• Using this result and combining with Born’s Rule postulate:

α
2
= P0 Ψ

2
= P0 Ψ( )† P0 Ψ( ) = Ψ P0

†P0 Ψ

P2 = P = P†

P0
2 = 1 0

0 0
⎡
⎣⎢

⎤
⎦⎥
1 0
0 0

⎡
⎣⎢

⎤
⎦⎥
= 1 0
0 0

⎡
⎣⎢

⎤
⎦⎥
= P0 = P0

†P0 = 0 0 = 1 0
0 0

⎡
⎣⎢

⎤
⎦⎥

α
2
= Ψ P0

†P0 Ψ = Ψ P0 Ψ

Prob |Ψ〉→ 0⎡⎣ ⎤⎦ = α
2
= Ψ P0 Ψ
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Complete Sets of Projectors
• Considering all Possible Projectors, we can a Complete set 

of projection operators.
• Completeness means that all of the Projector Operators 

correspond to all Possible Measurement Outcomes.
• In the case of projecting a single qubit to the computational 

basis, all possible outcomes Correspond to either 
measuring a |0〉	or a |1〉	with the Projector set consisting of 
{P0, P1}:

• The Completeness requirement can also be stated as:

P0 = 0 0 = 1
0

⎡
⎣⎢

⎤
⎦⎥
1 0⎡⎣ ⎤⎦ =

1 0
0 0

⎡
⎣⎢

⎤
⎦⎥

P1 = 1 1 = 0
1

⎡
⎣⎢

⎤
⎦⎥
0 1⎡⎣ ⎤⎦ =

0 0
0 1

⎡
⎣⎢

⎤
⎦⎥

P0 ,P1{ } = 1 0
0 0

⎡
⎣⎢

⎤
⎦⎥
, 0 0
0 1

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭
= 0 0 , 1 1{ }

Pi
i=1

n

∑ = I
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Projector Basis Set
• Ultimately, the Complete Set of Projectors depends on a 

Complete Basis set that Spans the n-dimensional Vector 
Space that contains the Quantum State
– for a single qubit, n=2, since the qubit is a quantum state in H2

• Because there are many different Basis Sets, there are 
many different Complete Sets of Projectors

• EXAMPLE: For a single qubit, n=2, and using the 
Computational Basis, we have:

P0 = 0 0 = 1
0

⎡
⎣⎢

⎤
⎦⎥
1 0⎡⎣ ⎤⎦ =

1 0
0 0

⎡
⎣⎢

⎤
⎦⎥

P1 = 1 1 = 0
1

⎡
⎣⎢

⎤
⎦⎥
0 1⎡⎣ ⎤⎦ =

0 0
0 1

⎡
⎣⎢

⎤
⎦⎥

P0 ,P1{ } = 1 0
0 0

⎡
⎣⎢

⎤
⎦⎥
, 0 0
0 1

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭
= 0 0 , 1 1{ } Pi

i=1

n

∑ = I

e0 , e1 ,!, en−1{ }⇒ P0 ,P1,!,Pn−1{ } = e0 e0 , e1 e1 ,!, en−1 en−1{ }

e0 , e1{ } = 0 , 1{ }⇒ P0 ,P1{ } = 0 0 , 1 1{ } = 1 0
0 0

⎡
⎣⎢

⎤
⎦⎥
, 0 0
0 1

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭
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Statistics of Quantum State
• Born’s Rule indicates:

• By Previous derivation, in terms of Projectors, we observed:

• Therefore, Born’s Rule allows a Probability Mass Function 
(pmf) to be derived in terms of Projectors:

• From linear algebra, the pmf can also be expressed as:

Prob |Ψ〉→ 0⎡⎣ ⎤⎦ = α
2|Ψ〉 =α | 0〉 + β |1〉

α
2
= P0 Ψ

2
= P0 Ψ( )† P0 Ψ( ) = Ψ P0

†P0 Ψ = Ψ P0 Ψ

Prob |Ψ〉→ 1⎡⎣ ⎤⎦ = β
2

β
2
= P1 Ψ

2
= P1 Ψ( )† P1 Ψ( ) = Ψ P1

†P1 Ψ = Ψ P1 Ψ

α
2
+ β

2
= Ψ P0 Ψ + Ψ P1 Ψ =1

Prob |Ψ〉→ Ψi
⎡⎣ ⎤⎦ = Ψ Pi Ψ

Prob |Ψ〉→ Ψi
⎡⎣ ⎤⎦ = Ψ Pi Ψ = Trace Ψ Ψ Pi⎡⎣ ⎤⎦
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Expected Value of Quantum State
• We can now express the Quantum State Distribution or 

Cummulative Density Function function as a Summation 
over all the Projectors in a Complete Set of n Projectors (for 
some arbitrary ordering of Projectors) as:

• The Expected Value is expressed in BraKet notation as:

• or simply:

Prob Ψ ≤ Ψi
⎡⎣ ⎤⎦ Ψ Pi

i=1

m=n

∑ Ψ = IProb Ψ ≤ Ψi
⎡⎣ ⎤⎦ = Ψ Pi

i=1

m≤n

∑ Ψ

Pi Ψ
= Ψ Pi Ψ = Trace Ψ Ψ Pi⎡⎣ ⎤⎦

Pi = Ψ Pi Ψ = Trace Ψ Ψ Pi⎡⎣ ⎤⎦
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Observables

https://www.youtube.com/watch?v=eUbbCpqWh-M  (12:54)
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Mathematical Defn of Observable
• An Observable, A, can be defined as a matrix operator that is 

defined over a Complete set of projection operators.
• The Basis Set (used to create the Projectors) specifies the set of 

Measurement Outcomes we are attempting to Observe
• An Observable for a Projective Measurement consists of all 

Possible Measurement Outcomes and is thus a Basis Set of 
Vectors Spanning the Vector Space of the Quantum State

• In the case of Measuring a Qubit to Determine if it is in one of the 
Computational Basis States, we choose the Computational Basis 
vectors to serve as the Eigenvectors of our Observable, A: 

• These are used to form the Projectors, {P0, P1}:

• The Resulting Observable Operator is:

P0 = 0 0 = 1
0

⎡
⎣⎢

⎤
⎦⎥
1 0⎡⎣ ⎤⎦ =

1 0
0 0

⎡
⎣⎢

⎤
⎦⎥

P1 = 1 1 = 0
1

⎡
⎣⎢

⎤
⎦⎥
0 1⎡⎣ ⎤⎦ =

0 0
0 1

⎡
⎣⎢

⎤
⎦⎥

P0 ,P1{ } = 1 0
0 0

⎡
⎣⎢

⎤
⎦⎥
, 0 0
0 1

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭
= 0 0 , 1 1{ }

e0 , e1{ } = 0 , 1{ }

A = λiPi =
i=1

n

∑ λiPi = 1( )P0 + 1( )P1 =
i=1

2

∑ 1( ) 1 0
0 0

⎡
⎣⎢

⎤
⎦⎥
+ 1( ) 0 0

0 1
⎡
⎣⎢

⎤
⎦⎥
= 1 0
0 1

⎡
⎣⎢

⎤
⎦⎥
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https://www.youtube.com/watch?v=eUbbCpqWh-M
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Mathematical Defn of Observable (cont.)
• An Observable, A, can be defined as a matrix operator that is 

defined over a Complete set of projection operators.

• The Eigenvalues are those of the Observable, A.
• Recall the Spectral Decomposition theorem of a Hermitian

Matrix:

• The Spectral Decomposition holds for the Observable since the 
Projectors are Hermitian, and hence the Observable A is 
Hermitian

• The Projective Measurement Outcome is the Real-valued 
Eigenvalue, and the Quantum State “Collapses” (destructive 
measurement)

A = λiPi =
i=1

n

∑ λiPi = 1( )P0 + 1( )P1 =
i=1

2

∑ 1( ) 1 0
0 0

⎡
⎣⎢

⎤
⎦⎥
+ 1( ) 0 0

0 1
⎡
⎣⎢

⎤
⎦⎥
= 1 0
0 1

⎡
⎣⎢

⎤
⎦⎥

A = λiPi
i=1

n

∑ = λi ei ei
i=1

n

∑

|Ψ〉 A λi
Initial state

measuring device Real-value

Collapsed state

|Ψ〉→
Pi Ψ

Ψ Pi Ψ
Pi Ψ

Ψ Pi Ψ
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Measurement “Collapses” the Qubit
• Each Vector used to form the Projector Operator, Pi, that 

Comprises the Observable, A is an Eigenvector, |ei〉.
– Thus, the Complete set of Projectors {Pi|i=1,...,n} is formed from n

Orthogonal Eigenvectors, |ei〉, that Span a Vector Space wherein the 
Quantum State is an Element.

• Measurement of a Qubit results in the Qubit “collapsing” to 
one of the Eigenvectors of the Observable A.

• The Destructive “Collapse” is a result of the Born’s Rule 
QM Postulate and is not something that can be Derived!

|Ψ〉 A λi
Initial state

measuring device Real-value

Collapsed state

Ψ →
Pi Ψ

Ψ Pi Ψ
Pi Ψ

Ψ Pi Ψ
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Measurement “Collapses” the Qubit
• Consider the following Measurement where the Observable 

is Represented by A and thus, the qubit Collapses to one of 
the scaled Eigenvalues of A.

• The following relationships hold:

• In general, a Projection Operator, Pi, may not yield a 
normalized projected vector, in which case, the un-
normalized projected quantum state is:

|Ψ〉

A

A = λiPi =
i=1

n

∑ λi ei ei
i=1

n

∑

real value = λi
Initial quantum

state before
measurement

measuring device

Ψ →
Pi Ψ

Ψ Pi Ψ

|ΨUN−NORM 〉 = Pi Ψ ⇒ |Ψe 〉 =
|ΨUN−NORM 〉

Ψ Pi Ψ

Pi Ψ

Ψ Pi Ψ
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Measurement Example
• Assume that Observable A is formed from the 

Computational Basis for a Single Qubit:

• Assume Qubit to be Measured is expressed in the 
Computation Basis as:

• Multiplying both sides by an Eigenbra of Observable A:

• Using the Sifting property, we observe:

• Squaring both sides of this result yields the Probability by 
Born’s rule:

A = λi i i
i=0

n−1

∑ = λ0 0 0 + λ1 1 1 =
i=0

1

∑ λ0P0 + λ1P1
i=0

1

∑

|Ψ〉 = a0 | 0〉 + a1 |1〉 = ai i
i=0

1

∑

j Ψ = ai j i
i=0

1

∑ = aiδ ji
i=0

1

∑

j Ψ = ai j i
i=0

1

∑ = aiδ ji
i=0

1

∑ = a j

j Ψ
2
= ai j i

i=0

1

∑
2

= aiδ ji
i=0

1

∑
2

= a j
2

Prob Ψ → j⎡⎣ ⎤⎦ = a j
2
= j Ψ

2
= ai j i

i=0

1

∑
2
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Measurement Example (cont.)
• Assume that Observable A is formed from the 

Computational Basis for a Single Qubit:

• Perform the Projective Measurement wrt to Observable, A:

• This results in a measurement outcome of:
• With the Collapsed state of either:   

A = λi i i
i=0

n−1

∑ = λ0 0 0 + λ1 1 1 =
i=0

1

∑ λ0P0 + λ1P1
i=0

1

∑|Ψ〉 = a0 | 0〉 + a1 |1〉 = ai i
i=0

1

∑

|Ψ〉 A λi
Pi Ψ

Ψ Pi Ψ

λ0 ,λ1{ } = 1,1{ }

|Ψ〉→
P0 Ψ

Ψ P0 Ψ
=

a0 0

Ψ 0 0 Ψ
=
a0 0

a0
*a0

=
a0
a0

⎛

⎝
⎜

⎞

⎠
⎟ 0

Prob Ψ → 0⎡⎣ ⎤⎦ = a0
2

|Ψ〉→
P1 Ψ

Ψ P1 Ψ
=

a1 1

Ψ 1 1Ψ
=
a1 1

a1
*a1

=
a1
a1

⎛

⎝
⎜

⎞

⎠
⎟ 1 Prob Ψ → 1⎡⎣ ⎤⎦ = a1

2

with

with
OR
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Second Measurement Example
• Assume that Observable AZ is formed as the Pauli-Z Basis 

for a Single Qubit:

• Since Eigenkets are |0〉 and |1〉, the Measurement Basis is 
the Computational Basis, but Measurement Outcomes are 
now:

• Thus, this is typically the form of Projective Measurement 
for a measurements wrt to Computational Basis:

AZ =
1 0
0 −1

⎡
⎣⎢

⎤
⎦⎥
= λZiPZi =

i=0

1

∑ λZ0PZ0 + λZ1PZ1 = 1( ) 0 0 + −1( ) 1 1

λZ0 ,λZ1{ } = +1,−1{ }

|Ψ〉 = a0 | 0〉 + a1 |1〉 = ai i
i=0

1

∑
|Ψ〉→

a0
a0

⎛

⎝
⎜

⎞

⎠
⎟ 0 Prob Ψ → 0⎡⎣ ⎤⎦ = a0

2

|Ψ〉→
a1
a1

⎛

⎝
⎜

⎞

⎠
⎟ 1 Prob Ψ → 1⎡⎣ ⎤⎦ = a1

2

with

with
OR

Meas Ψ⎡⎣ ⎤⎦ = λZ0 = +1

Meas Ψ⎡⎣ ⎤⎦ = λZ1 = −1
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Third Measurement Example
• Assume that Observable AZ is formed as the Pauli-Z Basis 

for a Single Qubit:

• Since Eigenkets are |0〉 and |1〉, the Measurement Basis is 
the Computational Basis, but Measurement Outcomes are 
now:

• Assume that the Quantum State to be Measured is 
specified in terms of a different basis than the measurement 
basis:

• In terms of the Computational Basis, we formulate a change 
of basis and see that:

AZ =
1 0
0 −1

⎡
⎣⎢

⎤
⎦⎥
= λZiPZi =

i=0

1

∑ λZ0PZ0 + λZ1PZ1 = 1( ) 0 0 + −1( ) 1 1

λZ0 ,λZ1{ } = +1,−1{ }

|Ψ〉 = b+ |+〉 + b− |−〉 + =
0 + 1

2
− =

0 − 1

2

|Ψ〉 = b+ |+〉 + b− |−〉 =
b+ + b−
2

⎛
⎝⎜

⎞
⎠⎟
0 +

b+ − b−
2

⎛
⎝⎜

⎞
⎠⎟
1
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|Ψ〉→
P1 |Ψ〉

Ψ P1 Ψ
=

1 1Ψ

ψ 1 1Ψ
=

b+ − b−
2

⎛
⎝⎜

⎞
⎠⎟
1

b+
* − b−

*

2

⎛

⎝⎜
⎞

⎠⎟
b+ − b−
2

⎛
⎝⎜

⎞
⎠⎟

=
b+ − b−

b+
* − b−

*( ) b+ − b−( )
1

Third Measurement Example (cont)
• The Measurement:

• Measurement Result:
AZ

λi

Pi Ψ

Ψ Pi Ψ

|Ψ〉 = b+ |+〉 + b− |−〉

|Ψ〉→
P0 |Ψ〉

Ψ P0 Ψ
=

0 0 Ψ

ψ 0 0 Ψ
=

b+ + b−
2

⎛
⎝⎜

⎞
⎠⎟
0

b+
* + b−

*

2

⎛

⎝⎜
⎞

⎠⎟
b+ + b−
2

⎛
⎝⎜

⎞
⎠⎟

=
b+ + b−

b+
* + b−

*( ) b+ + b−( )
0

Prob Ψ → 0⎡⎣ ⎤⎦ =
b+ + b−
2

2

= 1
2
b+ + b−( )2

Prob Ψ → 1⎡⎣ ⎤⎦ =
b+ − b−
2

2

= 1
2
b+ − b−( )2

with

with

OR
Meas Ψ⎡⎣ ⎤⎦ = λZ0 = +1

Meas Ψ⎡⎣ ⎤⎦ = λZ1 = −1
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Projective Measurement Summary
• Measurement Basis is chosen to construct the Observable

– It spans the Vector Space that contains the Quantum State undergoing 
measurement

• Measurement Outcome is an eigenvalue of the Observable
– Observables are Hermitian, thus Eigenvalues (Measurement 

Outcomes) are Real-valued
• Projective Measurement evolves the Quantum State to one of the 

Measurement Basis functions with some probability
– Destroys superposition with respect to the measurement basis, thus it is 

a destructive measurement
– This is known as “collapsing” the quantum state to a basis function

• Probability of collapse to a particular Measurement Basis function 
is calculated according to Born’s Rule
– Not derivable from Schrodinger’s equation, this is a QM postulate
– Combines QM deterministic theory with the postulated statistical nature 

of QM
• Quantum Superposition is Relative to the Observation Basis Set 

(aka, the Measurement Basis)
– Basis of Quantum Key Distribution (QKD) methods
– Basis of one-way or “cluster-state” Quantum Computation 
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