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Shor’s Factoring Algorithm 
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| xn−1〉 

| fa,N (x)〉

Shor’s Factoring Algorithm 
•  Factoring Composite Numbers Very 

Important and Used for Security 
(Encryption) 

•  Method Reduces Factoring Problem to 
Finding Period of Function 

•  Deterministic Polynomial Algorithm Exists 
for Determining if a Value is Prime 
– Agrawal, Kayal, and Saxena, 2004 

•  Assumed Number is Already Checked for 
Primality 
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Modular Operation 
•  Modular Arithmetic 
•  Notation Where k, j, and r are Integers 

•  Denotes the Congruence: 

•  Such that: 

•  Examples: 

| k | j= r

k ≡ r mod j( )⇒ k mod j( ) = r mod j( )
j > 0 0 ≤ r ≤ j −1

| 7 |15= 7
| 99 |15= 9

| 199 |15= 4
| 5317 |371= 123

| 23374 |371= 1
| 1446 |371= 333

Euclid’s Algorithm 
•  Method for Computing the Greatest 

Common Divisor (GCD) 
•  GCD of Two Numbers is the Largest 

Number that Divides Both WITH a Zero-
Valued Remainder 

•  Principle is GCD of Two Numbers Does Not 
Change if Smaller Number is Subtracted 
from Larger Number: 

GCD(252,105) = 21
GCD(252,105) = GCD(252 −105,105) = GCD(147,105) = 21
= GCD(147,105) = GCD(147 −105,105) = GCD(42,105)

GCD(42,105) = GCD(63,42) = GCD(42,21) = GCD(21,0) = 21
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CoPrimes 
•  Coprime Definition: 
•  Two Numbers a and b are Coprime if: 

•  When Searching for Factor of Number N: 
– Randomly Choose some value a Where a<N 
–  Invoke Euclid’s Algorithm for GCD(a, N) 
–  If GCD(a, N)≠1, Then Factor of N is Found 
–  If GCD(a, N)=1, Then a is Coprime to N and can 

be Used 
•  Next, we Find Powers of a Modulo N: 

GCD(a,b) = 1

| a0 |N ,| a
1 |N ,| a

2 |N ,| a
3 |N ,....

Modular Powers Function 
•  Finding Powers of a Modulo N Equivalent to 

Finding Values of Function: 

•  EXAMPLE: N=15 and a=2: 

•  EXAMPLE: N=15 and a=4: 

fa,N (x) = a
x (mod N ) =| ax |N
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Modular Powers Function 
•  Finding Powers of a Modulo N Equivalent to 

Finding Values of Function: 

•  EXAMPLE: N=15 and a=13: 
fa,N (x) = a

x (mod N ) =| ax |N

Modular Powers Function 
•  Useful Identities: 

 

if a ≡ a ' mod N( )  and b ≡ b ' mod N( )
then a × b ≡ a '× b ' mod N( )

| a × b |N = | a |N × | b |N N

| ax |N =| a
x−1 × a |N = | a

x−1 |N × | a |N N

•  Since a<N and |a|N=a, Above Reduces to: 
| ax |N = | a

x−1 |N ×a
N

•  This Identity Allows Larger Values to be 
Used 
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Modular Powers Function 

•  EXAMPLE: N=371 and a=2: 

•  EXAMPLE: N=371 and a=6: 

•  EXAMPLE: N=371 and a=24: 

fa,N (x) = a
x (mod N ) =| ax |N

Modular Powers Function 
•  These Functions are Periodic 
•  We Only Need Period of Function 
•  Period: Find Smallest x > 0 Such That: 

•  Number Theory Theorem: For any coprime 
a≤N, the function fa,N will evaluate to 1 for 
some x<N.  After, fa,N evaluates to 1, the 
sequence of function values repeats. 

•  If fa,N (x)=1, then 

fa,N (x) = a
x (mod N ) =| ax |N = 1

fa,N (x +1) = fa,N (1) fa,N (x + s) = fa,N (s)
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Finding the Period 
•  For Small Numbers (15, 371, 247) Easy to 

Compute the Period 
•  Large Numbers with Hundreds of Digits are 

Beyond Capability of Classical Computers 
•  Use Quantum Computer with Qubit 

Superposition to Calculate fa,N(x) for all 
Needed x 

•  Must First Synthesize fa,N(x) into a Quantum 
Cascade 

Period Finding Quantum Circuit 
•  Number of Qubits Required 

–  fa,N Always Evaluates to to Value Less Than N 
– Need n=log2(N) Qubits to Represent Function 

Value 
– Need to Evaluate fa,N  for at Least First N2 

Values of x, Thus Need m=log2(N2)=2log2(N)=2n 
Qubits for x Values 

•  Quantum Circuit Represented by Operator: 

U fa ,N
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Period Finding Quantum Circuit 

•  Discussion of Circuit Structure Postponed 
for Now 

U fa ,N

m


n
 n


m
| x〉

| y〉

| x〉

 | y fa,N (x)〉

  
| x,y〉 | x,y fa,N (x)〉 = | x, y⊕ ax

N
〉

n = log2 (N )⎡⎢ ⎤⎥
m = log2 (N

2 )⎡⎢ ⎤⎥ = 2 log2(N )⎡⎢ ⎤⎥ = 2n

Quantum Circuit 

•  Evaluate All Input Simultaneously Through 
Superposition 

•  Quantum Circuit Transfer Matrix: 

U fa ,N n


m
| 0〉 H⊗m

n


m

QFT†

m
m


| 0〉

|ϕ0 〉 |ϕ1〉 |ϕ2 〉 |ϕ3〉 |ϕ4 〉

Measurem ⊗ In( ) QFTm† ⊗ In( ) Im ⊗Measuren( )U fa ,N
H⊗m ⊗ In( ) | 0m ,0n 〉
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Quantum Circuit 

U fa ,N n


m
| 0〉 H⊗m

n


m

QFT†

m
m


| 0〉

|ϕ0 〉 |ϕ1〉 |ϕ2 〉 |ϕ3〉 |ϕ4 〉

|ϕ0 〉 =| 0m ,0n 〉 =| 0m 〉⊗ | 0n 〉

|ϕ1〉 = H⊗m ⊗ In( ) | 0m ,0n 〉 =
| x,0n 〉

x∈{0,1}m
∑

2m

|ϕ2 〉 = H⊗m ⊗ In( )U fa ,N
| 0m ,0n 〉 =

| x, fa,N (x)〉
x∈{0,1}m
∑

2m
=

| x, ax
N
〉

x∈{0,1}m
∑

2m

Example Calculation 1 
|ϕ2 〉 = H⊗m ⊗ In( )U fa ,N

| 0m ,0n 〉 =
| x, fa,N (x)〉

x∈{0,1}m
∑

2m
=

| x, ax
N
〉

x∈{0,1}m
∑

2m

•  Assume N=15 and a=13: 
n = log2 (N )⎡⎢ ⎤⎥ = log2 (15)⎡⎢ ⎤⎥ = 4

m = log2 (15
2 )⎡⎢ ⎤⎥ = 2 log2(15)⎡⎢ ⎤⎥ = 2 × 4 = 8

|ϕ2 〉 =
| 0,1〉+ | 1,13〉+ | 2, 4〉+ | 3, 7〉+ | 4,1〉 + ...+ | 254,4〉+ | 255,7〉

256
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Example Calculation 2 
|ϕ2 〉 = H⊗m ⊗ In( )U fa ,N

| 0m ,0n 〉 =
| x, fa,N (x)〉

x∈{0,1}m
∑

2m
=

| x, ax
N
〉

x∈{0,1}m
∑

2m

•  Assume N=371 and a=24: 
n = log2 (N )⎡⎢ ⎤⎥ = log2 (371)⎡⎢ ⎤⎥ = 9

m = log2 (371
2 )⎡⎢ ⎤⎥ = 2 log2(371)⎡⎢ ⎤⎥ = 2 × 9 = 18

|ϕ2 〉 =
| 0,1〉+ | 1,24〉+ | 2,205〉+ | 3,97〉+ | 4,102〉 + ...+ | 218 −1, 242

18−1

371
〉

218

Quantum Circuit 

U fa ,N n


m
| 0〉 H⊗m

n


m

QFT†

m
m


| 0〉

|ϕ0 〉 |ϕ1〉 |ϕ2 〉 |ϕ3〉 |ϕ4 〉

•  Measure Bottom n Qubits of  
•  Bottom n Qubits are in State of 

Superposition Before Measurement 
•  Assume We Measure: 
•  For Some Particular Bitstring: 

ax
N

x
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Quantum Circuit 

U fa ,N n


m
| 0〉 H⊗m

n


m

QFT†

m
m


| 0〉

|ϕ0 〉 |ϕ1〉 |ϕ2 〉 |ϕ3〉 |ϕ4 〉

•  Assume We Measure: 
•  For Some Particular Bitstring: 
•  Since fa,N is Periodic: 
•  For any  

ax
N

x
ax ≡ ax+ r

N 
And  ax ≡ ax+2r

N

 s ∈
ax ≡ ax+ sr

N

Quantum Circuit 

U fa ,N n


m
| 0〉 H⊗m

n


m

QFT†

m
m


| 0〉

|ϕ0 〉 |ϕ1〉 |ϕ2 〉 |ϕ3〉 |ϕ4 〉

•  There are 2m Superpositions in 
•  The Number of Superpositions that have 

as the Result are 

•  This Result is used in the Expression for  

|ϕ2 〉
ax

N

2m

r
⎢

⎣
⎢

⎥

⎦
⎥

|ϕ3〉
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Quantum Circuit 

U fa ,N n


m
| 0〉 H⊗m

n


m

QFT†

m
m


| 0〉

|ϕ0 〉 |ϕ1〉 |ϕ2 〉 |ϕ3〉 |ϕ4 〉

•  t0 is the Offset, the First Occurrence of: 

|ϕ3〉 =

| x, ax
N
〉

ax ≡ ax
N

∑

2m

r
⎢

⎣
⎢

⎥

⎦
⎥

=
| t0 + jr,

j=0

2m / r−1( )∑ ax
N
〉

2m

r
⎢

⎣
⎢

⎥

⎦
⎥

at0 ≡ ax
N

Quantum Circuit 

U fa ,N n


m
| 0〉 H⊗m

n


m

QFT†

m
m


| 0〉

|ϕ0 〉 |ϕ1〉 |ϕ2 〉 |ϕ3〉 |ϕ4 〉

•  t0 is Called the Offset 
•          Stage Employs Entanglement 
•  Top m and Bottom n Qubits are Entangled 

Such That When Bottom n are Measured, 
the Top m Retain Their State 

|ϕ3〉
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Example Calculation 1 
•  Recall Earlier Result: 

•  Assume that After Measurement of Bottom 
n=4 Qubits, the Value 7 is Obtained: 

•  The Quantum State Becomes: 

|ϕ2 〉 =
| 0,1〉+ | 1,13〉+ | 2, 4〉+ | 3, 7〉+ | 4,1〉 + ...+ | 254,4〉+ | 255,7〉

256

x = 0111 = 7

|ϕ3〉 =
| 3, 7〉+ | 7, 7〉+ | 11,7〉+ | 15,7〉 + ...+ | 251,7〉+ | 255,7〉

256
4

⎡
⎣⎢

⎤
⎦⎥

Example Calculation 2 
•  Recall Earlier Result: 

•  Assume that After Measurement of Bottom 
n=9 Qubits, the Value 222 is Obtained: 

•  The Quantum State Becomes: 
x = 011011110 = 222 = 245

371

|ϕ3〉 =
| 5,222〉+ | 83,222〉+ | 161,222〉+ | 239,222〉 + ...

218

78
⎡

⎣
⎢

⎤

⎦
⎥

|ϕ2 〉 =
| 0,1〉+ | 1,24〉+ | 2,205〉+ | 3,97〉+ | 4,102〉 + ...+ | 218 −1, 242

18−1

371
〉

218
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Quantum Circuit 

U fa ,N n


m
| 0〉 H⊗m

n


m

QFT†

m
m


| 0〉

|ϕ0 〉 |ϕ1〉 |ϕ2 〉 |ϕ3〉 |ϕ4 〉

•           Step of the Quantum Part of Algorithm 
is Application of the Inverse Quantum 
Fourier Transform 

•  Final Step of Algorithm Measures the Top m 
Qubits 

|ϕ4 〉

Quantum Circuit 

U fa ,N n


m
| 0〉 H⊗m

n


m

QFT†

m
m


| 0〉

|ϕ0 〉 |ϕ1〉 |ϕ2 〉 |ϕ3〉 |ϕ4 〉

•  Make Simplifying Assumption that r Evenly 
Divides into 2m 

•  Shor’s Actual Algorithm Does Not Make this 
Assumption 
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Quantum Circuit 

U fa ,N n


m
| 0〉 H⊗m

n


m

QFT†

m
m


| 0〉

|ϕ0 〉 |ϕ1〉 |ϕ2 〉 |ϕ3〉 |ϕ4 〉

•  With Simplifying Assumption, We Measure: 

•  Where      is Some Whole Number 

x =
λ2m

r

λ

Quantum Circuit 
•  Known Values After Measurement are 2m 

and x 
•  Dividing Whole Number x by 2m Yields 

•        is Reduced to an Irreducible Fraction 
and Denominator Then Becomes the 
Sought After r Value (the period) 

•  Without Simplifying Assumption, Process is 
Repeated and Results are Analyzed to 
Obtain r 

x
2m

=
λ2m

r2m
=
λ
rλ

r
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Using Period to Get Factors 
•  We now Know the Period of fa,N for Some 

Value of a 
•  Number Theory Theorem States that for the 

Majority of a Values, r is an Even Number 
•  If it Turns Out that r is Odd, We Throw the 

Result Out and Try Again by Choosing 
Another a Value 

•  Once Even r is Found, We Have: 

ar ≡ 1 N

Using Period to Get Factors 
•  Subtracting 1 From Both Sides of the 

Congruence Yields: 

•  Using the Facts: 

•  Results in: 

ar −1 ≡ 0 N

N | ar −1( )

1 = 12 x2 − y2 = x + y( ) x − y( )

N | ar −1( ) = N | ar +1( ) ar −1( ) = N | a r
2 +1

⎛
⎝⎜

⎞
⎠⎟
a
r
2 −1

⎛
⎝⎜

⎞
⎠⎟
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Using Period to Get Factors 
•  Since r is Even, Exponent Yields a Whole 

Number 

•  Any Factor of N is Also a Factor of 

•  Can Employ Classical Euclid’s Algorithm to 
Search for Factor of N 

 
a
r
2 +1

⎛
⎝⎜

⎞
⎠⎟
 or a

r
2 −1

⎛
⎝⎜

⎞
⎠⎟

 
GCD a

r
2 +1

⎛
⎝⎜

⎞
⎠⎟
,N

⎛

⎝⎜
⎞

⎠⎟
 or GCD a

r
2 −1

⎛
⎝⎜

⎞
⎠⎟
,N

⎛

⎝⎜
⎞

⎠⎟

N | ar −1( ) = N | ar +1( ) ar −1( ) = N | a r
2 +1

⎛
⎝⎜

⎞
⎠⎟
a
r
2 −1

⎛
⎝⎜

⎞
⎠⎟

Using Period to Get Factors 
•  Problem Can Occur if: 

•  When This Occurs Right Side of Following 
Equation Becomes Zero and no Information 
about N Results 

•  If This Occurs Must Try Again With Different 
Value of a 

a
r
2 ≡ −1 N

N | a
r
2 +1

⎛
⎝⎜

⎞
⎠⎟
a
r
2 −1

⎛
⎝⎜

⎞
⎠⎟
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GCD and Factor Example 
•  Period of f2,15 is 4 or: 

•  Using Previous Result with GCD: 

24 ≡ 115

15 | 22 +1( ) 22 −1( )
GCD 5,15( ) = 5 GCD 3,15( ) = 3

GCD and Factor Example 
•  Period of f6,371 is 26 or: 

•  It Is Also True That: 

•  This is the Problem Case 
•  Must Discard a=6 and Try Again With New a 

Value 

626 ≡ 1 371

6
26
2 = 613 ≡ 370 371 ≡ −1 371
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GCD and Factor Example 
•  Period of f24,371 is 78 or: 

•  Checking for Problem Case: 

•  Can Use This a Value 

2478 ≡ 1 371

24
78
2 = 2439 ≡ 160 371 ≠ −1 371

371 | 2439 +1( ) 2439 −1( )
GCD 161,371( ) = 7 GCD 159,371( ) = 53

371 = 7 × 53

Shor’s Factoring Algorithm 
Input: Positive Integer N with 
Output: Factor p of N if it Exists 

1)  Use classical polynomial algorithm to 
determine of N is prime or a power of a 
prime.  If N is prime or power of prime, 
declare that it is and halt. 

2)  Randomly choose an integer a such that 
1<a<N.  Invoke Euclid’s algorithm to 
determine GCD(a,N).  If GCD is not 1, Then 
Halt.  

n = log2 (N )⎡⎢ ⎤⎥
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Shor’s Factoring Algorithm 

3) Use Quantum Circuit to find period r. 

4) If r is odd or is the “problem case”, return 
to step 2 and choose another a value. 

5) Invoke Euclid’s algorithm to calculate: 

    Return at least one of the nontrivial 
solutions.  

 
GCD a

r
2 +1

⎛
⎝⎜

⎞
⎠⎟
,N

⎛

⎝⎜
⎞

⎠⎟
 or GCD a

r
2 −1

⎛
⎝⎜

⎞
⎠⎟
,N

⎛

⎝⎜
⎞

⎠⎟

Implementing Ufa,N 

•  Operation of fa,N(x) Considered on Bit-by-
Bit Basis 

•  Radix Polynomial Representation of x: 
x = xn−12

n−1 + xn−2 2
n−2 + ...+ x2 2

2 + x12
1 + x0 2

0

fa,N (x) = ax
N
= axn−1 2

n−1 + xn−2 2
n−2 + ...+ x2 2

2 + x1 2
1 + x0 2

0

N

fa,N (x) = axn−1 2
n−1

N
× axn−2 2

n−2

N
× ...× ax1 2

1

N
× ax0 2

0

N
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Implementing Ufa,N 

•  Rewrite This as an Inductive Formula: 
fa,N (x) = axn−1 2

n−1

N
× axn−2 2

n−2

N
× ...× ax1 2

1

N
× ax0 2

0

N

y0

y1

yn−2

yn−1
fa,N (x) = yn−1 = yn−2 × axn−12

n−1
N

yj = yj−1 × axj 2
j

N

Implementing Ufa,N 

•  When xj=0 We Have: 

yj = yj−1 × axj 2
j

N

yj = yj−1

•  When xj=1 We Should Multiply yj-1 by: 

axj 2
j

N

•  When a and N are Coprime, Operation of 
Multiplying by This Factor is Reversible 
and Unitary – Realizable as Quantum 
Cascade 
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Implementing Ufa,N 
•  For Each j, There is a Unitary Operator: 

U
a2

j

N

→ U
a2

j

•  Each of These Operators are Performed 
Conditionally Based on Value of xj 

•  To Implement we use a Controlled Version 
of the Operator 

•  The Quantum Cascade has the Form as 
Shown on the Following Overhead 

Implementing Ufa,N 

U
a2
0 U

a2
1 U

a2
2 U... U

a2
n−1

| x0 〉
| x1〉
| x2 〉

| xn−1〉

m


| x0 〉
| x1〉
| x2 〉

| xn−1〉 

| fa,N (x)〉


