no computational degradation.

Resource Utilization versus Communication Latency
T T T T T

T T
"fig6.dat" —

Avg. CEs

Resource Utilization
IS

Figure 6: Communication Latency versus Resource
Utilization TRAPEZOID Rule Example

5 Conclusion

This paper has described the formulation and im-
plementation of a stochastic model for the D3 ar-
chitecture. The model was constructed as a closed
network of queues. Currently, the network model
is very simple but encouraging results have been
obtained nevertheless. Results were obtained from
this model and were shown to have a close agree-
ment with results obtained from a computer simula-
tion of the architecture. Various performance anal-
ysis measures were generated using the stochastic
model. The results indicated that the D? archi-
tecture has a high degree of tolerance to commu-
nication latency and is also able to achieve a good
amount of exploitation of available parallelism.

References

[1] Arvind and Gostelow, K.P., The U-
Interpreter, IEEE Computer, pp. 42-49,
February, 1882.

[2] Dennis, J.D., Data flow Supercomput-
ers,[EEE Computer, C-29(11):48-56,
November, 1980.

[3] Tanucci, R.A., Toward a Dataflow/von
Neumann hybrid architecture, Proceed-
ings of the 15" Annual International
Symposium on Computer Architecture

Evripidou, P. and Gaudiot, J.L., A De-
coupled

Graph/Computation Data-Driven Archi-
tecture with Variable-Resolution Actors,
1990 International Conference on Paral-
lel Processing.

Evripidou, P., Thornton,M.; and Gau-
diot, J.L..; A Decoupled Data-Driven Ma-
chine with Variable-length Thread Sup-
port, Tech. Rep. 93-CSE-29, SMU, 1993.

Ghosal, D. and Bhuyan, L.N. Performance
Evaluation of a Dataflow Architecture,
IEFEE Trans. on Comp. vol. 39 no. 5,
May 1990, pp.615-627.

Houghton, R.C., Jr., Performance Evalua-
tion of Task Graphs on Parallel Architec-
tures Ph.D. Dissertation, Duke Uni-
versity, Department of Computer Sci-
ence, 1991.

Russell, E.C., SIMSCRIPT IIL5 Pro-
gramming language, 4-th FEdition,
CACI Products Company, LaJolla, CA,
1987.

around 40 and several with threadlengths less than
ten, hence the average value is around 25, but in
reality there are no actors with a thread length of
this size. So, the exponential distribution of service
time for the RQ 1s a very approximate assumption
for this particular example.

To determine how well the architecture exploits
the inherent parallelism in a particular D3 graph,
the parameters from one of the examples above and
varied the available parallelism parameter. This is
equivalent to assuming the same communication la-
tencies (queue arrival rates) and threadlengths (RQ
mean service times) as in the original example, but
assuming that more or less parallelism is available
in the D graph being executed. The plot in fig-
ure 4 illustrates how the resource utilization versus
the available parallelism varies for the DOT exam-
ple. The results indicate that resource utilization
grows linearly with respect to available parallelism
with a nearly unity slope for the maximum number
of CE’s used. The ideal case would be a slope of
1.0 for this curve indicating 100% exploitation of
available parallelism. The stocahstic model seemed
to be more optimistic with this parameter than the
simulator did. Typically, the simulator would indi-
cate a slope of approximately 0.6 to 0.7 while the
stochastic model would predict results from 0.7 to
0.9. This is most likely due to the absence of ac-
tors requiring more than two operands before being
scheduled for execution and the exponential service
time distributions.

Resource Utilization versus Available Paralellism
16 T T T T T T T

T
"dot.dat" —

14 —H

Max. CEs

Resource Utilization
©
T
L

0 2 4 6 8 10 12 14 16 18 20
Available Paralellism
Figure 4: Available Parallelism versus Resource
Utilization for the DOT example

Another interesting result was obtained by vary-
ing the average thread length (the mean RQ service
time) and observing the effect on resource utiliza-
tion. These results are displayed in the plot shown

in figure 5. This experiment represents trading off
the two virtues of increased performance due to lo-
cality in the PE and increased performance due to
inherent parallelism in the data-driven graph. The
results for the FIBONACCI generator example indi-
cated that increasing the the threadlength by 100%
degraded parallelism by only 33%. This result is
encouraging because it means that greater perfor-
mance can be achieved by exploiting locality with
a minimal resulting degradation due to decreased
parallelism.

Resource Utilization versus Threadlength
3.5 T T T T T T

T
“fig5.dat" —

Average Number of GEs and CEs

0.5 —H

Avg. GEs

0 L L L L L L L
1 2 3 4 8 9 10

5 6
Average Threadlength

Figure b5: Average parallelism versus Average

Threadlength for the FIBONACCI Example

To study the effects of communication latency
on the D? architecture, the constant service time
of the AQ is varied for a constant available paral-
lelism and mean R() service time. The results of
this experiment are given in figure 6. It is desirable
for this curve to be as flat as possible indicating a
high degree of tolerance to increased communica-
tion latencies. It should be noted that another way
of combating the effects of increased communication
latencies is to increase the threadlength of the com-
putation code templates thereby gaining more com-
putation per scheduling activity. For the purposes
of the stochastic model, the threadlength remained
constant for this experiment.

The results in figure 6 are perhaps the best ob-
tained so far. The average number of CEs remained
nearly constant when the communication latency
was increased by a factor of 10. The communication
latency resulted in an increased average number of
executing GEs. This is precisely why the architec-
ture is designed in a ”decoupled” manner. This
result clearly shows how the D3 architecture toler-
ates communication latencies by letting the DDGE
handle the degradation and allowing for practically

3. The values of m, k, and j are in general greater
than one. This is especially true since an infinite
number of servers are assumed to be present in the
model. In reality any physical realization of the D3
architecture will necessarily contain a finite number
of servers, however when the available parallelism is
less than the number of servers at each queue, the
behavior of the queues is identical to queues with
infinite servers. Allowing infinite servers in a model
of the D3 architecture allows the inherent paral-
lelism present in the D?® graph to fully exploited
and thus a convenient measure of this performance
characteristic is obtained. For this reason, both the
stochastic model and the simulation model offer this
capability.

>
=)

l-p

<
>
=

a=]

RQ
it

Figure 2: Diagram of the Closed Queueing Network
Model for the D® Architecture

Since the RQ has an exponential service rate, the
arrival rates of the AQ and VAQ are approximately
Poisson and the queues are of the following type:

1. RQ - M/M/c
2. AQ - M/D/c

3. VAQ - M/M/c

4 Model Results

The results of the model were obtained by us-
ing the simulation language, SIMSCRIPT [8]. Af-
ter the model was developed, it was verified by
comparing the results obtained to those obtained
by the simulator. There are several different D3
graphs executing on the simulator and 4 of these
were chosen to validate the stochastic model with.

Figure 3: General State for the Markov Chain
model

Table 1: Comparison of Simulation and Stochastic
Model Results
D3

Simulator Stocahstic

Graph Results Model Results
Avg. | Avg. | Avg. Avg.
CE GE CE GE
DOT 2.7 0.54 2.7 0.72
TRAP 5.7 0.21 7.5 0.68
FIBONACCI | 2.0 0.27 1.6 0.16
JACOBI 2.4 0.39 2.4 0.29

Table 1 compares results obtained from the simula-
tor and the stochastic model as implemented with

SIMSCRIPT.

These results indicate a reasonable amount of
agreement between the stochastic model and the
computer simulation of the architecture consider-
ing the assumptions made in the model formula-
tion. Based on these results, experiments were per-
formed with various changes in the input parame-
ters to analyze the performance of the D? architec-
ture. The largest deviation in results between the
simulator and the stochastic model occurred for the
graph that executes the Trapezoid rule for an in-
tegrand that is a third degree polynomial. This is
mostly likely due to the model parameter of average
thread length (i.e., mean RQ server time). This par-
ticular graph has several actors with threadlengths

as a computation engine and a graph execution en-
gine connected by two queues. The two engines are
modeled as multi-servers for the two queues.

The RQ server model is very straight forward
and obeys typical server constraints. The queue
objects (i.e., the actors) in the RQ are pointers to
conventional control-flow code templates of varying
threadlength. The service time of the RQ objects is
equal to the number of operations in each template
since it is assumed that all control-flow instructions
require unity execution time. The threadlength
is modeled as being exponentially distributed with
some mean value. Thus, the RQ is modeled as a
multi-server queue with an exponential service time.
The particular data-driven graph that is being mod-
eled is used to compute sample statistics such as
average threadlength and the percent of dyadic ac-
tors. The average threadlength is then used as the
mean service time for the RQ.

The AQ is modeled as two parallel queues re-
ferred to as 7AQ” and "VAQ”. The VAQ (virtual
AQ) is not present in the architecture. Its purpose is
to simulate the action of dyadic actors. Dyadic ac-
tors require two operands before they can execute.
This means that when an RQ server is finished,
the consumer of that actor may require another
operand before it can be scheduled for execution,
hence the consumer is not immediately scheduled
for execution. The consumer must ”wait” for its
other operand before it can be executed. In the ar-
chitecture, this ”waiting” is accomplished by decre-
menting the status variable of an actor for its re-
spective context. In order to comply with a closed
queueing network model for the D?® architecture,
the VAQ is used to service the dyadic actors. By ob-
serving simulation results for various D3 graphs, it
seemed appropriate to model the VAQ service time
as being exponentially distributed with a mean ser-
vice time determined from the particular program
being executed. The other queue, AQ, is a multi-
server queue with a constant service period. This
directly represents the current state of the archi-
tecture. Communication latencies among the GEs
may be varied by changing the service time of the
AQ. When an actor has been served by the RQ, it
is placed in either the AQ or VAQ depending upon
the outcome of a uniform random number generator
and the input parameter that states the percentage
of dyadic actors. This input parameter is essentially
a routing probability in the network for arrival at

the VAQ.
It should be noted that in reality all actors are

not either monadic or dyadic. It is possible for actor
to require an arbitrary number of operands before it
can be scheduled for execution. However, such ac-
tors can always be transformed into a set of smaller
actors that are all monadic or dyadic in nature.

In order to formulate the model as a Markovian
system, the notion of available parallelism is used.
In other performance analysis studies, this param-
eter has been computed in a variety of ways [6] [7].
In this paper a very simple representation for avail-
able parallelism is used. FEncouraging results are
obtained by setting the available parallelism input
equal to the total number of actors in a given con-
text for the particular D3 graph under considera-
tion. The available parallelism parameter is used
during initialization of the model to determine the
total number of actors present in the network.

Since the total number of actors is fixed, the net-
work is conveniently modeled as a Markov chain
with the states determined by the number of of ac-
tors being served in each queue. These states are
denoted by:

(nla na, n3)

Where

1. ny is the number of actors being served in the

RQ

2. ng 1s the number of actors being served in the

AQ

3. ns is the number of actors being served in the

VAQ

4. Nyot 18 the total number of actors in the system,
or alternatively, the input parameter, available
parallelism

5. paya is the percentage of dyadic actors for a
particular D3 graph

Clearly,
Niot = n1 4+ na + n3

Using this relationship and the definitions above,
the following equation can be written that repre-
sents the relationship for the Markov chain state
transitions:

Niot = n1 4 n2 + paya(ns — na)

Figure 2 shows a schematic representation of the
stochastic model. The number of states in the
Markov chain depend upon the value of Nip;. A
general state of the Markov chain is shown in figure

nization of a von Neumann machine is based purely
upon the program counter (PC) that points to the
next instruction to be executed in the control-flow
of the program. The D? architecture also uses a PC
within a particular thread, but the threads them-
selves are scheduled according to operand availabil-
ity. This allows the benefits of locality to be uti-
lized within each thread and the exploitation of in-
herent parallelism in a particular program due to
data-driven scheduling of the threads. An overall
view of a single node in the D3 architecture is given
in Figure 1.

Graph Computation
Memory Memory
RQ
DDGE PE

Figure 1: Diagram of a Single Node in the D3 Ar-
chitecture

Figure 1 shows how the scheduling of threads and
the thread computation occur concurrently by using
the data-driven graph engine (DDGE) to perform
the synchronization of thread execution and using
the processor engine (PE) to perform the control-
flow execution of threads. This allows for increased
tolerance to scheduling overhead and communica-
tion latency. The DDGE and PE are connected
by two queues, the ready queue (RQ) and the ac-
knowledgment queue (AQ). As soon as a thread (or
actor) has completed execution, the computational
element (CE) within the PE is freed and a pointer
to the particular code template along with a con-
text value is entered into the AQ. The freed CE is
then allocated a new thread and execution begins.

The objects in the AQ are serviced by individ-
ual graph elements (GEs) within the DDGE. The
GE examines the pointer in the AQ and determines

which actor (or actors) require the operand just
computed. These actors may be referred to as ” con-
sumers” of the actor that was retrieved from the
AQ and is currently being processed by a particu-
lar GE. If the consumers only require one operand
they are called monadic actors and pointers to their
respective code templates are placed into the RQ in-
dicating computation may begin. If the consumers
require a second operand, they are not scheduled
for execution but must ”wait” for their remaining
operand. This "waiting” 1s accomplished by using
graph memory that contains a ”status” value for
each actor in the program. Dyadic actors have a
status value of 2 and monadic actors have a status
value of 1. As soon as a producer arrives in the
AQ), the GE processes this actor by decrementing
the status values of all its consumers. Whenever
a status value reaches 0, this actor is deemed exe-
cutable and is scheduled by placing a pointer to its
code template into the RQ.

It is important to note that servicing by the
DDGE is always constant. The only way for non-
constant service to occur is if the number of servers
(GEs) is less than the number of actors in the
AQ. When this occurs, the actors must wait in the
queue.

In contrast, the service time of the PE is vari-
able. In the model for the D3 architecture, it is
assumed that all control-flow instructions execute
in unity time, hence the service time 1s equal to the
threadlength.

The programs for the D? architecture are com-
posed of two main entities; the graph (synchroniza-
tion) portion and the computational portion. The
computation portion consists of segments of code
composed of conventional, control-flow instructions
such as ADD, LOAD, STORE, etc. The graph por-
tion contains the status value and the consumers.
Collectively, the graph portion and the computation
portion are called an actor. Thus a D® program (or
D3 graph) is a partially ordered conventional pro-
gram with a data-dependency graph superimposed
on it.

3 Formulation of the Stochastic

Model

In order to model the D? architecture both the
hardware and the particular data-driven graph to
be executed must be accounted for. As discussed
above the architecture is conveniently represented

Performance Evaluation of a Data Driven Architecture

Mitch Thornton
Department of Computer Systems Engineering
University of Arkansas
Fayetteville, Arkansas 72701
(501)-575-5159

matl@engr.uark.edu

Abstract

The Decoupled Data-Driven (D?) architecture
has shown promising results from performance eval-
wations based upon simulations. This paper pro-
vides performance evaluations of the D? architec-
ture through the formulation and analysis of a
stochastic model. The model is validated by compar-
g the simulation and model output results. After
model validation, vartous input parameters are var-
ted and the performance of the architecture is eval-
uwated. The model 1s based upon a closed queucing
network and wutilizes the concepts of available par-
allelism and virtual queues in order to be reduced
to a Markovian system. Frperiments with varying
amounts of computation engine threadlengths and
communication latencies indicate a high degree of
tolerance with respect to exploited parallelism.

1 Introduction

The dataflow model of computation promises to
exploit parallelism through asynchronous instruc-
tion execution on the basis of operand availabil-
ity. Several different architectural approaches have
been proposed and evaluated [1] [2]. The dataflow
model of execution has been criticised for unequal
load balancing and complicated resource manage-
ment issues in general. In addition, scheduling is-
sues have prompted some criticism of this compu-
tation model. Furthermore, the dataflow model of
execution is unable to benefit from the many ad-
vancements in the design of contemporary control-
flow based machines that are based upon the ex-
ploitation of locality such as pipelining, caching,
and delayed accesses and branching.

In order to benefit from both the exploitation of
locality that many control-flow machines utilize and

the use of inherent parallelism found in dataflow
machines, there has been some interest in hybrid
control-flow/dataflow architectures recently [3] [4].
Behavioral simulations have been performed and
promising results have been obtained for the Decou-
pled Data-Driven (D?)architecture [5]. This paper
will address the development and results obtained
of a queueing network model of the D? architec-
ture. This model is verified by comparing its results
to those obtained using the behavioral architectural
model. After verification, various aspects of the ar-
chitecture may be easily varied by changing certain
parameters of the queueing network allowing the
system designer to experiment with architectural
modifications without resorting to changing the be-
havioral model.

First, a brief description of the architecture 1is
presented so that the appropriateness of the model
may be described and the limitations can be pointed
out. Next, assumptions are presented in order
to simplify the model so that it can be analyzed
in a practical manner. The notions of ‘available
parallelism’ and ‘virtual acknowledgment queue’
are presented and incorporated into the stochastic
model. After the model i1s formulated, it is veri-
fied by comparing modeling results with those ob-
tained by computer simulation. Performance analy-
sis measures are then obtained by varying parame-
ters such as available parallelism, processor com-
munication latencies; and average lengths of the
control-flow code templates (hereafter referred to
as ‘threadlength’).

2 The D? Architecture

The D3 machine is based upon the hybrid combi-
nation of von Neumann style (control-flow) proces-
sors and data-driven synchronization. The synchro-

