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Abstract—Multimodal machine learning, in the context of deep
learning, allows a neural network to process various sources of
data and combine information from each data source. However,
there are an exponential number of ways in which modalities
can be combined for processing which can result in large
architecture design searches to inform the most optimal manner
of combining data streams. To mitigate this problem, we present
a way to inform the creation of multimodal machine learning
convolutional neural network architectures in the domain of time
series datasets. Specifically, we propose the use of time series
clustering as a method for informing the creation of a model’s
multimodal architecture. We investigate two different approaches
to this method (a Euclidean- and Granger-based approach) and
demonstrate effectiveness with multiple time series datasets. We
find that our proposed methods can improve a model’s predictive
capabilities while decreasing the training time required for the
model to converge. Moreover, our method eliminates the need
for a costly architecture search.

I. INTRODUCTION

Multimodal machine learning, in the context of deep learn-
ing, describes methods for processing input modalities in
distinct ways and fusing the information from each modality
to best support prediction [2, 8]. This means that a model can
be designed in a way that individualizes how one or more
modalities are processed. Ideally, fusion methods can cus-
tomize the network structure in a way that best represents the
relationships within the dataset. However, identifying an opti-
mum customized model structure is a time-consuming process,
requiring all possible modality configurations to be explored
(i.e., a grid or brute-force search that scales exponentially with
the number of modalities). Some previous works use genetic
algorithms to facilitate neural architecture searches, which are
also highly computational [6, 5]. In this work, we present a
method to identify relationships among modalities as a single
preprocessing step that can then “inform” the creation of a
multimodal model architecture. We explore this approach in
the domain of time series datasets and convolutional neural
network (CNN) architectures. Specifically, we propose the
use of time series clustering as a method for informing the
creation of a model’s multimodal architecture. Using the
resulting dendrogram from time series clustering, we design
a CNN architecture such that modalities are fused to mirror
the structure of the dendrogram. This method provides a
computationally efficient alternative to brute force searches.

We first explored such a methodology in 2019 where we
utilized Granger causality based time series clustering as a

Fig. 1: The pairwise testing followed by hierarchical agglom-
erative clustering to produce a dendrogram that influences
modality fusion.

pre-processing step to inform the creation of wide-and-deep
networks ¡todo: insert white paper ref¿. Since then we have
updated the methodology to work in the context of CNNs.

Granger causality was designed to determine predictability
between variables, specifically for determining how well one
time series can forecast another [9]. Substituting this method
for traditional time series clustering methods provides a novel
approach for identifying meaningful relationships in time
series datasets. In addition to the Granger-based clustering
method, we investigate Euclidean-distance-based approach and
cosine-similarity-based time series clustering approaches in a
higher dimensionality dataset. For each method we construct
a model architecture based on the method’s resulting den-
drogram, we call these the “Granger-informed”, “Euclidean-
informed”, or “cosine-informed” models. We compare these to
a “generic model” architecture (shown in Figure 2) in which
the modalities are processed in an identical manner (i.e., with
the same number of convolutional layers containing the same
kernel sizes and number of filters) before all the modalities
are fused simultaneously. For all models, after modalities are
fused, they are further processed through several additional
convolutional layers.

Our main research question is: does a multimodal CNN
architecture, informed by time series clustering, exhibit higher
performance and faster training time than the generic model?
Additionally, we investigate which of the clustering ap-
proaches produces a superior CNN architecture, if any. We
hypothesize that the “Granger-informed” model could prove
to exhibit higher performance for certain datasets. In our pre-
vious works, we have observed that Granger-Causality-based
clustering can identify more complex time series relationships,
even when the clustered time series are not correlated [12,979-8-3503-5952-7/23/$31.00 ©2023 IEEE



18]. This is an artifact of the assumptions used in Granger-
Causality-based clustering, where the measure of affinity is
based upon common statistical influences, rather than direct
distance or correlation measures.

II. RELATED WORK

Much of the current research into multimodal model archi-
tectures has focused on advancements in applying these archi-
tectures to different real-world datasets and analyzing how in-
cluding different data modalities can affect performance. Such
real-world datasets include flight, medical, spatial, text, speech
or image data [14][10][1]. Other research has focused on the
architectures behind multimodal models and how adjusting
them can affect model performance [16]. In the paper by D.
Cheng et al., the authors used multi-modal architectures with
a proposed multi-modality graph neural network (MAGNN)
to learn from these multimodal inputs for financial time series
prediction and leveraging a two-phase attention mechanism
for joint optimization to increase model interpretability [4].
Research has also focused on Convolutional Neural Networks
that perform feature representation learning from a concate-
nation of sensor types [14]. Some research has focused on
aspects of the data like time series analysis that should allow
a clearer insight into how the data is arranged [15].

Additionally, researchers have focused on when features
should be fused in multimodal models when working with
time series datasets. This work includes experimenting with
several different architecture fusion methods such as late
feature fusion, decision fusion, mid-fusion, fusion schemes,
auxiliary supervision and temporal dropout to name a few
[15]. Other work by Srivastava and Salakhutdinov utilizes
a multimodal generative model, based on deep Boltzmann
machines, where multimodal representations are learned via
fitting the joint distributions of multimodal data over various
generative models [7]. These previous works differ from our
proposed work in that they require large architecture searches
to find an optimal architecture configuration, whereas our
proposed method discovers the architecture directly.

One work by Tan et al. explored using symbolic transfer
entropy as an equivalent process to Granger causality to
identify features to be merged prior to classification in Random
Forest models [19]. We also utilize Granger causality-based
clustering butour work uses the clustering procedure to identify
how features should be merged within the network itself,
rather than being merged prior to being input into the model.
Specifically, we aim to provide a novel approach to designing
mulitmodal CNN models specific to time series datasets. Using
time series clustering as the method for identifying relation-
ships within a given dataset should allow for models to be
designed whose structure mirrors these identified relationships
within the dataset.

III. METHODOLOGY

Our methodology uses hierarchical agglomerative clustering
(HAC) with complete linkage to cluster input time series in a
dendrogram based on how they affect one or more target time

series. Figure 1 demonstrates this process of pairwise testing
/ comparison resulting in a similarity vector which can then
be used for clustering.

This dendrogram is then used to “inform” the creation of
a multimodal CNN. We use the term “inform” loosely as
this is a heuristic where the CNN architecture is constructed
to reflect the structure of the dendrogram. The intuition is
that initializing the model in this way will effectively “pre-
program” relationships of interest into the network architec-
ture. The hypothesis is that this process will help the model to
distill and process information more effectively and ultimately
lead to better performance than a “generic model”. A “generic
model” is a multimodal architecture as shown in Figure 2 in
which the features are processed in the exact same manner
and merged simultaneously late in the network.

We analyze three methods for performing the pairwise
testing step of this process which determines the similiarity
vector between the input and target time series. In the context
of a low dimensional dataset we explore a Euclidean-based
approach and a Granger-causality-based approach. In the con-
text of a higher dimensional dataset we also include a third
method, cosine-similarity-based approach. The three methods
will be compared and contrast both with each other and with a
“generic model”, shown in Figure 2 and discussed in Section
IIIe.

Fig. 2: Diagram of the generic model. All features are pro-
cessed with the same configuration of convolutional layers.
The kernal sizes and number of filters may change as a feature
descends through the layers but these same layer adjustments
are consistent across modalities.

.

A. Granger-based Clustering

Granger causality is used to determine the level of forecasta-
bility that one time series has on another [9]. It does so by
taking a bivariate autoregressive model consisting of variables
x and y and testing whether the variance of the residuals
increases when the values of x are reduced to zero and
the model becomes univariate. The formulation for Granger
causality is shown in equations 1 and 2 where equation
1 represents the restricted model, or univariate case, and
equation 2 represents the unrestricted model, or bivariate case.



The methodology also utilizes lags of x and y, in equations 1
and 2, m represents the maximum lag. During testing, if the
variance of the residuals in the restricted model is larger than
that of the unrestricted model, this suggests x Granger-causes y
since including x increased the unrestricted model’s predictive
capability.[9].

yt = a0 + a1yt−1 + a2yt−2 + ...+ amyt−m + ϵt (1)

yt = a0 + a1yt−1 + a2yt−2 + ...+ amyt−m + ...

+amyt−m + b1xt−1 + ...+ bmxt−m+ ϵt
(2)

We conduct a Granger causality test between each of the
input feature time series and each output time series collecting
the resulting p-values [18] [12]. These p-values are then put
through a logistic function transformation such that smaller
p-values are mapped to larger values and larger p-values are
mapped to smaller values [12]. The purpose of doing so is to
make the results more intuitive where larger values indicate a
higher level of Granger causality between two time series. The
resulting values are then clustered using HAC to produce the
dendrogram which will “inform” the Granger-informed CNN
architecture.

B. Euclidean-based Clustering

The Euclidean-based method simply measures the Eu-
clidean distance in a pairwise manner between each input
and target time series. However, instead of calculating the
Euclidean distance using the entirety of an input time series
and target time series, we instead take the Euclidean distance
between subsections of the two time series and then average
these distances together. This is done to more closely resemble
how the Granger method uses subsections, or lags, of the time
series. This should mean for a more direct comparison between
the Granger and Euclidean methods. These resulting Euclidean
distances will then be clustered using HAC to produce the
dendrogram used in constructing the Euclidean-informed CNN
architecture.

C. Cosine-based Clustering

In the case of a high dimensional dataset, we also employ a
cosine-similarity-based clustering technique where the cosine
similarity between each input and target time series pair-
ing is calculated. Similarly to the Euclidean-based clustering
method, we also perform this process on subsections of each
time series pairing and average the similarity together for each
time series pairing.

D. Datasets

We will be utilizing two datasets for our investigation. The
first is an occupancy detection dataset [3] 1. The second is

1The Occupancy Dataset can be found here: https://archive.ics.uci.edu/ml/
datasets/Occupancy+Detection

an airplane maintenance prediction dataset 2. The occupancy
detection dataset exists in a lower dimensional space with
7 inputs and 1 target time series, whereas the maintenance
prediction dataset exists in a higher dimensional space with
20 input time series and 20 target time series.

The occupancy dataset consists of several different environ-
mental time series collected in an office room. These time
series include light levels, temperature, humidity, and CO2.
The timestamps can be used to create two additional time
series containing temporal information. One is the number
of seconds from midnight, denoted as NSM. The second is
whether or not the current day is a weekday or weekend,
denoted as week status (WS). There is a single target time
series consisting of binary values indicating whether or not the
office room is occupied at a given timestamp. The intuition is
that these time series should exhibit very clear relationships,
for example we would expect the office room to be occupied
if the CO2 levels are up, there are higher light levels, and the
current day is a weekday.

The occupancy dataset was published consisting of 3 sets.
A training set, and two test sets. The training set has ap-
proximately 8,000 examples, the first test set has approx-
imately 2,500 examples, and the second test set contains
approximately 10,000 examples. Measurements are recorded
in approximately 1 minute intervals.

The maintenance prediction dataset consists of hundreds
of thousands of records of maintenance actions and error
codes across several different airplanes which can be organized
into time series. There are over 200 unique maintenance
actions and over 1000 unique error codes. The dataset was
created particularly to investigate error codes which com-
monly decreased following a maintenance action associated
with fixing corrosion. The dataset was subset into the top-
20 unique corrosion-associated maintenance action codes and
the top-20 error codes which showed the most significant
decrease following a corrosion-associated maintenance action.
We create time series for each of the unique codes where
each value in the time series represents the frequency of that
code on a given day. We note that there is not an explicit
prediction task for the maintenance dataset. Therefore, we use
this dataset only to investigate the model size as a result of
different clustering methods.

E. Model Creation

To create an “informed” CNN architecture we utilize the
dendrogram created during the corresponding clustering step
to create an architecture design which mirrors the structure of
the dendrogram, Figure 3 demonstrates this process. The left-
side of the figure shows the dendrograms identified from the
Granger and Euclidean-based clustering methods on the occu-
pancy dataset, and the right-side shows the associated CNN
model architectures. As an example of the mapping process,
take the humidity and light features shown in the Granger-
based clustering dendrogram. They are clustered separately

2The Maintenance Prediction Dataset was accessed here in (Fall 2019)
https://www.hackthemachine.ai/s/HTM\ MSP\ Final.csv



from the rest of the input features. This is represented in
the CNN architecture such that the two feature branches are
merged together initially but are not merged with the rest of
the network until all other feature branches have been merged
together themselves.

Fig. 3: Dendrograms and diagrams of the associated in-
formed multimodal model architectures. The top row shows
the Granger-based method’s dendrogram and model while the
Euclidean-based method’s dendrogram and model is shown in
the bottom row

1) Occupancy Detection: For the occupancy dataset ex-
periments, each input is first put through a convolutional
layer with 25 filters and a 9 × 1 kernel. The choice of 25
filters was made so that the input layer would have enough
complexity, while also allowing room for the number of filters
to increase deeper into the network without exploding. Using
a kernel size of 9 allows longer temporal dependencies to be
captured in the early layers. Following the input convolutions,
feature branches are then merged in the order indicated by
the dendrogram. After each merging of feature branches, the
number of filters is increased by 25 filters to capture more
complex information deeper in the network and the kernel
size is reduce by 2 to focus on more specific temporal details
while also balancing computational efficiency.

Additionally, when two branches consisting of c1 and c2
channels are merged, they are first checked to see if their
respective number of filters and kernel sizes are equal, and
if they are not, a convolution containing max(c1, c2) filters
is applied to the branch with fewer filters. Similarly, the
minimum kernel size between the two branches is used in this
additional convolution. Following this additional convolution,
the two branches are concatenated. The motivation behind this
branch alignment process is to provide more focus on the
impact of when and where feature branch fusion occurs and
ensure that differing filter counts or kernel sizes are not biasing
results.

After merging all of the branches, 3 additional convolutional

layers are added with the final layer acting as the output
for the network (500 filters with a 5 × 1 kernel, 50 filters
with a 3 × 1 kernel, and 1 filter with a 1 × 1 kernel). The
choice of 500 filters was made to capture the large amount of
features resulting from the final branch fusion in the model.
The scaling down of filters and kernel size was then performed
so that the output of the final convolution will represent the
model output removing the need for a linear layer. Doing so,
allows the model to handle variable-shaped inputs, which is
of particular importance as the time series in the occupancy
detection dataset are of varying lengths.

The “generic model” constructed for the occupancy dataset
consists of a branch in the network for each input feature. Each
of these branches consists of 4 convolutional layers which start
with 25 filters and scale up to 100 filters. The kernel size
starts at 7 × 1 and scaling down to a 1 × 1. Then each of
the branches is concatenated and put through three additional
convolutional layers, (500 filters with a 5×1 kernel, 50 filters
with a 3×1 kernel, and 1 filter with a 1×1 kernel). These layer
configurations were chosen to closely mirror the configuration
choices made in the “informed” models.

2) Maintenance Prediction: For the creation of “informed”
CNN architectures in the context of the maintenance prediction
dataset, we perform a similar procedure to the one discussed
previously with some slight modifications to the convolutional
layer configurations. Each branch in the model starts with a
convolution using 10 filters and a 3 × 1 kernel. The kernel
size will stay consistent throughout the network; however, as
two branches are merged, the number of filters in the next
convolutional layer increases to accommodate the additional
features. Due to the higher dimensionality of the dataset, we
explore the use of a consistent scaling factor when scaling the
number of filters following the fusion of two feature branches.
We explore three different scaling factors, 1.125, 1.25, and 1.5.
As an example of how this works, consider two inputs each
being processed by a convolution of 10 filters and a scaling
factor or 1.5. After fusing the two feature branches the next
convolutional layer will contain 15 filters. As will show in
Table V, the number of parameters increase rapidly with the
depth dendrogams from the maintenance prediction dataset,
because of this we do not apply branch alignment process
discussed in the last section to reduce effects on the exploding
parameter count.

F. Method of Evaluation

For the occupancy detection dataset, we compare the
“generic”, Euclidean-informed, and Granger-informed models.
The methods will be evaluated on the occupancy dataset and
comparisons will be performed using accuracy, area under
the curve (AUC), the time it takes to train the model to
convergence, and the epochs it takes to train the model to
convergence. The McNemar test will be used to compare the
resulting models [17] [13]. The McNemar test evaluates the
marginal homogeneity of two dichotomous variables, which
can be used to compare two machine learning models and



evaluate whether the models’ predictions are statistically dif-
ferent.

For the maintenance prediction dataset, we explore the
Euclidean and Granger-based clustering procedures and also
include a cosine-based procedure due to the higher dimen-
sionality of the dataset. Because there was a lack of ground
truth labels for this dataset, we only investigate the clustering
procedure and possible model parameters. There is no explicit
training task for this model.

IV. RESULTS

A. Occupancy Detection Dataset Results

The Euclidean-based and Granger-based clustering methods
produced two different dendrograms which in turn inform the
creation of two different model architectures. These dendro-
grams and constructed models are shown in Figure 3.

Figure 4 shows the receiver operating characteristic (ROC)
curves for the different models across the two test sets. For
both test sets the models informed by time series clustering
appear to have better ROC curves and AUCs than the generic
model. However, the differences are very small and are likely
only due to a few prediction differences. The accuracies for
the various models at the optimal threshold value are reported
in Table I. Also reported in Table I are results from Tan
et al. which applied Granger Causality-based clustering on
this dataset as a preprocessing step before using a Random
Forest for classification. Both of the informed multimodal
architectures achieve higher accuracies than the the generic
model. However, both the Euclidean and Granger informed
models have exactly the same accuracies on both test sets, we
explore the differences in their specific predictions in Table III.

TABLE I: Model Accuracies for test sets

Method Test Set 1 (acc) Test Set 2 (acc)

Generic Model 97.8236% 98.1439%

Euclidean-informed Model 97.8611% 99.4257%
Granger-informed Model 97.8611% 99.4257%
Prev SOTA [3] 97.90% 99.33%

Tan et al. [19] 97.12% Not Reported

The AUCs in Figure 4 demonstrate the Granger-informed
model slightly outperforms the Euclidean-informed model
with AUCs 0.993802 and 0.997231 on test set 1 and 2 respec-
tively, compared to the Euclidean-informed model’s AUCs of
0.991519 and 0.996842.

TABLE II: Model Training Timing Metrics

Model Training Time Epochs to conv. Avg time per epoch

Generic Model 73.16 min 84 52.22 s

Euclidean-informed Model 7.21 min 27 16.03 s

Granger-informed Model 12.83 min 46 16.58 s

The contingency tables shown in Table III and Table IV
can be used to perform a McNemar tests to establish whether
or not the differences in the models predictive capabilities

Fig. 4: ROC Curves generated during model evaluation for
the different methods. The two columns represent the different
test sets. The first row shows the ROC curves for the Granger-
informed model vs the generic model. The second row shows
the ROC Curves for the Euclidean-informed model versus the
generic model. In both sets of figures, the generic model is
always shown as red. AUC is noted in the legend

.

are statistically significant. In the case of comparing both of
the informed models to the generic model (Table IIIa and
Table IIIb), the informed models differences are statistically
significant (p < 0.01) on the second test set and not statis-
tically significant on the first test set (p ≈ 1). This indicates
that the proposed time series clustering-informed model will
perform no worse than a generic model and may increase
performance for certain datasets.

When comparing the Euclidean-informed model to the
Granger-informed model (Table IIIc) we can can see that
while the models have the same accuracies, they do not
actually produce the same predictions. However, assessing
these differences using a McNemar test yields a p-value of
1 on both test sets, indicating the differences in predictions
are not statistically significant.

The contingency table shown in Table IVa compares the
Granger-informed model to the current state-of-the-art method,
latent Dirichlet allocation (LDA), on the occupancy detection
dataset. The differences in the models’ predictions are not
statistically significant on the first test set, but are statistically
significant for the second dataset, (p < 0.05). Similar results
are reported in Table IVb for the Euclidean-informed model vs.
LDA. The models’ prediction differences are not statistically
significant on the first test set but are on the second test set
(p < 0.05).

One important takeaway is that, to achieve the results
reported for the LDA approach previously mentioned, the
authors performed a grid search on all possible combinations
of inputs into their model. Our “informed” model creation
approach bypasses the need to train a model for every feature
combination because the clustering procedure identifies how



TABLE III: Contingency Tables for Occupancy Detection,
Generic Model versus “informed” Models

(a) Generic model vs. the Granger-informed model
Test Set 1

Granger-inf Correct Granger-inf Incorrect
Generic Correct 2606 1
Generic Incorrect 2 56

Test Set 2
Granger-inf Correct Granger-inf Incorrect

Generic Correct 9564 7
Generic Incorrect 132 49

(b) Generic Model vs. the Euclidean-informed model
Test Set 1

Euc-inf Correct Euc-inf Incorrect
Generic Correct 2607 0
Generic Incorrect 1 57

Test Set 2
Euc-inf Correct Euc-inf Incorrect

Generic Correct 9564 7
Generic Incorrect 132 49

(c) Euclidean-informed Model vs. the Granger-informed model
Test Set 1

Granger-inf Correct Granger-inf Incorrect
Euc-inf Correct 2607 1
Euc-inf Incorrect 1 56

Test Set 2
Granger-inf Correct Granger-inf Incorrect

Euc-inf Correct 9693 3
Euc-inf Incorrect 3 53

TABLE IV: Contingency Tables for Occupancy Detection,
SOTA versus “informed” models

(a) SOTA LDA vs. the Granger-informed model
Test Set 1

Granger-inf Correct Granger-inf Incorrect
LDA Correct 2608 1
LDA Incorrect 0 56

Test Set 2
Granger-inf Correct Granger-inf Incorrect

LDA Correct 9683 4
LDA Incorrect 13 52

(b) SOTA LDA vs. the Euclidean-informed model
Test Set 1

Euc-inf Correct Euc-inf Incorrect
LDA Correct 2608 1
LDA Incorrect 0 56

Test Set 2
Euc-inf Correct Euc-inf Incorrect

LDA Correct 9684 3
LDA Incorrect 12 53

each variable should be treated with respect to one another in
the network.

When considering the total training time and the numbers
of epochs needed to convergence (shown in Table II), the
Euclidean-informed method is significantly faster with a total
training time of 7.21 min and only 27 epochs needed to
convergence. This is near half the time and epochs required to
train the Granger-informed model and is 10× less training
time and approximately 4× fewer epochs than the generic
model. While the Granger-informed model is not as efficient
as the Euclidean-informed model, it is still about 5× as fast as
the generic model, converging in half as many epochs. These
training efficiency improvements are likely due to the fact that
the clustering informed models do not require near as many
parameters as the generic model. The generic model contained
nearly two million parameters, the Granger-informed method
contained approximately 975k parameters, and the Euclidean-
informed method approximately 800k parameters.

B. Maintenance Prediction Dataset Results

The three clustering dendrograms are shown in Figure 5
for the Granger-based, Euclidean-based, and cosine-based
clustering procedures. In this higher dimensional space, the
Euclidean-based clustering clearly fails to capture any clear
relationships. The cosine-based clustering does a slightly better
job but still struggles for close to half of the maintenance
action codes. Both the Euclidean-based and cosine-based
clustering dendrograms suggest the presence of outliers. The
Granger-based method seems to better handle these outliers as
well as produce more robust representation of the clusters.

The maximum depth for the Euclidean-based clustering is
7, for the cosine-based clustering is 12, and for the Granger-
based clustering is 6. Because of the varying depths of the
clusterings, creating a CNN architecture from each of these
dendrograms results in three models which differ drastically
in their number of parameters. Table V shows the number of
parameters for each of the resulting models across a variety
of scaling factors. Various scaling factors are investigated for
how to alter the number of filters in each layer. A common
ratio suggested by [11] is 1.125.

We can see that for each scaling factor the Granger-informed
model has the fewest number of parameters. As the scaling
factor grows it becomes apparent that the Euclidean-informed
and cosine-informed models grow much more quickly than
the Granger-informed model, further demonstrating the im-
portance of a clustering method which is robust to outliers
and can maintain a smaller tree depth.

V. CONCLUSIONS

We show that using either a Euclidean-based or Granger-
based time series clustering method to inform a multimodal
CNN architecture can produce a model which has improved
predictive capabilities compared to that of a generic model
architecture in some cases, while not impeding its predic-
tive capabilities in other cases. Furthermore, we show that
this increase in performance of the two clustering-informed



Fig. 5: Clustering dendrograms generated for maintenance
prediction dataset. Granger dendrogram (top), Euclidean den-
drogram (middle), and cosine dendrogram (bottom)

.

models also comes with the benefit of drastic training time
improvements over that of the generic model. Contrasting the
Granger-informed and Euclidean-informed models, the AUCs
between the two suggest that further investigation is required
to understand what tradeoffs exist for datasets with relatively
few modalities, if any. On the occupancy dataset we conclude
that the differences are not statistically significant. Despite
this, the Euclidean-informed model requires fewer parameters
to achieve the same evaluation accuracy lead to a faster

TABLE V: Maintenance prediction model parameters

Method Scaling Factor # of parameters

Euclidean-informed Model 1.125 46,159

Cosine-informed Model 1.125 152,962

Granger-informed Model 1.125 27,351
Euclidean-informed Model 1.25 193,986

Cosine-informed Model 1.25 2,571,192

Granger-informed Model 1.25 60,674

Euclidean-informed Model 1.5 3,522,098

Cosine-informed Model 1.5 446,076,676

Granger-informed Model 1.5 347,129

training time, indicating that the Euclidean-informed model
has a slight advantage compared to the Granger-informed
model. In higher dimensionality datasets like the maintenance
datset, we show that the Granger-based clustering approach
can produce informed architectures while minimizing the
amount of excess parameters when compared to its Euclidean
and cosine counterparts.
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