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Abstract

We introduce an inheritance property and related ta-
ble lookup structures applicable to simplified evaluation of
the modular operations “multiplicative inverse”, “discrete
log”, and “exponential residue” in the particular modu-
lus 2k. Regarding applications, we describe an integer
representation system of Benschop for transforming integer
multiplications into additions which benefits from our table
lookup function evaluation procedures.

We focus herein on the multiplicative inverse modulo 2k

to exhibit simplifications in hardware implementations real-
ized from the inheritance property. A table lookup structure
given by a bit string that can be interpreted with reference
to a binary tree is described and analyzed. Using observed
symmetries, the lookup structure size is reduced allowing a
novel direct lookup process for multiplicative inverses for
all 16-bit odd integers to be obtained from a table of size
less than two KBytes. The 16-bit multiplicative inverse op-
eration is also applicable for providing a seed inverse for
obtaining 32/64-bit multiplicative inverses by one/two iter-
ations of a known quadratic refinement algorithm.

1 Introduction and Summary

Hardware integer arithmetic is generally provided for ad-
dition and multiplication modulo 2k for k=16, 32, and pos-
sibly 64. Benschop [1] has shown a transformed binary rep-
resentation that allows multiplication to be performed as an
addition of “discrete logarithms”. Specifically, Benschop
employs the fact that every integer j in the range [0, 2k − 1]
can be represented by the exponent triple (s, e, p) such that
(−1)s3e2p ≡ j (mod 2k). Multiplication is then reduced
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to componentwise modular addition of the terms in Ben-
schop’s exponent triple analogous to the use of traditional
logarithms for performing real-valued multiplication as a
sum of the argument’s logarithms.

In this paper we employ modular function notation [12]
using |n|2k = j to denote the congruence n ≡ j (mod 2k)
for k ≥ 1, with the further condition that j is the stan-
dard residue for modulus 2k satisfying 0 ≤ j ≤ 2k − 1.
Thus, the exponent triple (s, e, p) for j is specified by
|(−1)s3e2p|2k = j.

Note that Benschop’s representation is essentially a “dis-
crete log triple transform”. Conversion between standard
binary and Benschop’s exponent triples requires efficient al-
gorithms for the exponential residue operation |3e|2k and
the discrete logarithm dlg(j), which is the exponential
residue inverse operation (when it exists) satisfying j =
|3dlg(j)|2k . The modular multiplicative inverse |n−1|2k is
defined for every odd integer 1 ≤ n ≤ 2k−1 by the relation
|nn−1|2k = 1. Collectively the three unary operations of
discrete log, exponential residue, and multiplicative inverse,
provide a set of arithmetic operations with regard to the par-
ticular modulus 2k that has the potential both to simplify
and significantly extend standard integer arithmetic hard-
ware. The three operations share significant fundamental
properties that simplify their evaluation, in practice allow-
ing 16-bit evaluations by relatively small new lookup table
structures (e.g. less than 2 KBytes each).

Our focus in this paper is on the multiplicative inverse
modulo 2k. The discrete log and an improved exponential
residue algorithm are covered in [4, 5, 8, 9]. The multi-
plicative inverse is particularly efficiently evaluated by the
quadratic refinement formula (e.g. see [7])

|i−1|22k = ||i−1|2k(2 − i|i−1|2k)|22k (1)

given that we may start with a substantially sized multi-
plicative inverse seed (e.g. 16-bit modular inverses).

Note that Equation 1 doubles the number of bits in the
modular multiplicative inverse with each iteration in a man-
ner strikingly similar to determining a more accurate ap-



proximate divisor reciprocal. Recall that the Newton Raph-
son reciprocal refinement ρ′ = ρ(2 − yρ) realizes twice
the “number-of-bits-of-accuracy” where ρ is an approxima-
tion of 1

y accurate to a specified “number-of-bits”. Oper-
ationally, at the bit level, the Newton-Raphson reciprocal
refinement procedure employed for some floating point di-
vision implementations is an approximation process gener-
ating accurate bits of the reciprocal from left-to-right, where
excess low order bits are rounded off. The important dis-
tinction herein is that the modular Equation 1 is an exact
process generating the modular multiplicative inverse bits
right-to-left with excess overflow bits simply truncated off
the top in each iteration.

Hardware integer arithmetic units already provide addi-
tion and multiplication modulo 2k for values of k typically
including k = 8, 16, 32 and possibly k = 64. Thus, a
seed lookup table for inverses modulo 216 would immedi-
ately expand modular integer arithmetic capability for typ-
ical small (k = 8) and half word (k = 16) size inte-
gers. From a half word (k = 16) modular inverse, only
one iteration of quadratic refinement employing Equation 1
would be needed to obtain a 32-bit integer modular inverse.
Just two iterations would yield a 64-bit integer modular in-
verse. In addition to assisting in algorithms for realizing
Benschop’s novel integer transform representation, the in-
verse operation modulo 2k can also be employed for more
specific applications such as obtaining extremal rounding
test cases for floating point division [10].

In Section 2 we introduce the fundamental inheritance
property that simplifies the representation of all three oper-
ations: multiplicative inverse, discrete log, and exponential
residue. We provide further details on Benschop’s exponent
triple representation to justify our focus on operations in the
particular binary modulus family 2k.

In Section 3 we show how the table lookup structure for
inverses modulo 2k can be given by a bit string of size 2k−1
which can be interpreted with reference to a binary “lookup
tree”. We also provide Binary Decision Diagrams (BDDs)
and flowgraph visualizations of the multiplicative inverse
operation to show how the inheritance property is reflected
in simpler structures in both cases. The lookup tree struc-
ture is noted to be efficient to realize and represent by an
array, with access specified by the well known heap data
structure indexing procedure. Symmetries in the tree reduc-
ing needed array storage size are investigated in Section 4,
with a resultant table size of less than 2 KBytes sufficient
for a 16-bit multiplicative inverse table.

In Section 5 we discuss circuit implementation issues.
Section 6 provides a conclusion and identifies further direc-
tions for research and implementation optimizations.

2 The Inheritance Property and Operations
Modulo 2k

There are three unary operations which have the poten-
tial to simplify and extend the applications of integer arith-
metic utilizing k-bit strings for typical values k=16, 32, 64,
and 128. All three operations inherently employ reductions
for residues modulo 2k and share fundamental properties
in their computation. These operations are the unary op-
erations of determining the inverse |i−1|2k for an odd in-
teger 1 ≤ i ≤ 2k − 1, which satisfies |ii−1|2k = 1, the
exponential residue function |3i|2k here utilizing the base
3, and the discrete logarithm dlg(j), which is the appro-
priately defined inverse (when it exists) to the exponential
residue function yielding j = |3dlg(j)|2k .

There is an application of the exponential function |3e|2k

that has motivated our interest in all three of these opera-
tions. It is readily shown that the set of odd k-bit integers
is given by the set of residues modulo 2k determined by
{|(−1)s3e|2k |s ∈ {0, 1}, 0 ≤ e ≤ 2k−2 −1}. For example,
for k = 4, note that {|3e|16|0 ≤ e ≤ 3} = {1, 3, 9, 11}, and
{| − 3e|16|0 ≤ e ≤ 3} = {5, 7, 13, 15}. Benschop [1] de-
veloped an innovative application of this fact in fashioning a
representation system where each k-bit integer in [0, 2k−1]
is encoded as a triple (s, e, p) of exponents employing the
modular factorization |(−1)s3e2p|2k .

Conversion of standard k-bit positive integers to Ben-
schop’s exponent triples allows integer multiplication to be
performed by additions and the operation of raising an inte-
ger to any power from 2 to 10 to be performed by shifts and
at most a single addition/subtraction. To utilize Benschop’s
representation in practice it is essential to obtain efficient
hardware implementable algorithms for the discrete log and
exponential residue operations with regard to the particu-
lar modulus 2k. In implementing and understanding these
two operations it is helpful to also have an efficient algo-
rithm for the multiplicative inverse modulo 2k. All three
of these unary operations satisfy an important “inheritance”
property simplifying their computation.

Formalization of the inheritance property is a main con-
tribution of this paper that is introduced in a general form.

Definition 1. Let f(ak−1ak−2 · · · a0) = bk−1bk−2 · · · b0

be a one-to-one mapping of k-bit strings to k-bit strings
defined for all k ≥ 1. Then f satisfies the inher-
itance property and provides a k-bit hereditary func-
tion if f(ak−1ak−2 · · · a0) = bk−1bk−2 · · · b0 implies
f(an−1an−2 · · · a0) = bn−1bn−2 · · · b0 for all n ≤ k. That
is, the nth output bit bn−1 of f(ak−1ak−2 · · · a0) depends
only on the low order n-bit input an−1an−2 · · · a0 indepen-
dent of the value of the input bits ak−1ak−2 · · · an.

From the definition it follows that an arbitrary k-bit
hereditary function has 2k choices for the leading bit



bk−1, 2k−1 choices for the next bit bk−2, and so on. In total,
an array of

∑k
n=0 2n = 2k+1 − 1 bits is sufficient to fully

express an arbitrary k-bit hereditary function.
The three modular operations of multiplicative inverse,

discrete log, and exponential residue modulo 2k all yield
one-to-one bit-string mappings that satisfy the inheritance
property. As a one-to-one mapping, the multiplicative in-
verse is its own inverse and the discrete log and exponential
residue are inverses to each other. The discrete log and ex-
ponential residue operations are considered in [4, 5, 8, 9]. In
this paper we focus on the multiplicative inverse operation
modulo 2k.

Lemma 1. [Inheritance Lemma]
Let n = ak−2ak−3 . . . a1 1 have the multiplicative in-

verse m = |n−1|2k−1 = bk−2bk−3 . . . b1 1. Then i =
ak−12k−1 + n has the multiplicative inverse j = |i−1|2k =
bk−12k−1 + m. In particular for modulus 2k, each bit bq

(for 1 ≤ q ≤ k − 1) of the inverse|i−1|2k depends only on
the low order bits aqaq−1 . . . a1 of i = ak−1ak−2 . . . a1 1.

Proof. Let |ii−1|2k = 1. Reducing both sides modulo 2k−1

we obtain
1 = |ii−1|2k = ||i|2k−1 |i−1|2k−1 |2k−1 =

|n|i−1|2k−1 |2k−1 .
So |i−1|2k−1 is the modular inverse of n, and |i−1|2k−1 =

m = bk−2bk−3 . . . b1 1. Thus, appending the leading
bit ak−1 to the string ak−2ak−3 . . . a1 1 impacts only the
leading bit bk−1 of the inverse bk−1bk−2 . . . b1 1, with the
trailing bits bk−2bk−3 . . . b1 1 inherited from the inverse
|(ak−2ak−3 . . . a1 1)−1|2k−1 = bk−2bk−3 . . . b1 1.

3 Lookup Trees for Inverses Modulo 2k

The inheritance property allows us to realize a lookup
table array with reference to a binary tree structure signif-
icantly reducing the necessary table storage in comparison
to a (k × 2k)-bit direct lookup table. We have noted that
any k-bit hereditary function can be expressed as an ar-
ray of total size 2k+1 − 1 bits. For 5-bit modular inverses
where the low order bit of the input word and the output
word is fixed at unity, we obtain a 4-bit hereditary func-
tion that may be expressed by the 24+1 − 1 = 31 bit array
T5 = 1 | 01 | 0101 | 01101001 | 0110010101011001. The in-
terpretation of this bit string is provided by recognizing the
string as an array form in the fashion of heap indexing of
a full binary tree, which we term the multiplicative inverse
lookup tree.

Definition 2. The binary multiplicative inverse lookup tree
Tk is a (2k − 1) vertex binary tree where at depth n, for
1 ≤ n ≤ k, the left edges are labeled by an = 0 and
right edges labeled by an = 1. The table lookup index
i = ak−1ak−2 . . . a11 read right-to-left (low order bit first)
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Figure 1. The binary modular multiplicative
inverse lookup tree T5. Values on the eight
highlighted vertices on the left determine all
vertex values by appropriate complementa-
tion.

directs a path down from the root. For 2 ≤ n ≤ k, the vertex
reached by the (n-1)-bit path a1a2 . . . an−1 is labeled by
the leading bit bn−1 of the multiplicative inverse determined
from |i−1|2n = bn−1bn−2 . . . b11.

Figure 1 shows the tree T5 providing the inverses |i−1|32
for all odd 1 ≤ i ≤ 31. The highlighted path for i =
a4a3a2a11 = 11101 = 29 follows edges from the root
labeled a1 = 0, a2 = 1, a3 = 1, and a4 = 1, with
the successive vertex labels starting from the root labeled
b0 = 1 concatenated from right-to-left giving |29−1|32 =
10101 = 21. Note further that following the path dictated
by a4a3a2a11 = 21 yields the output b4b3b2b11 = 29 as
necessary for |(|i−1|32)−1|32 = i. Figure 1 includes the
values of i and |i−1|32 at all leaves to further illustrate the
lookup tree structure.

The storage and retrieval array indexing method we em-
ploy is derived from the indexing structure used for the
“heap” data structure. Specifically, for a complete bi-
nary tree such as Tk, the 2k − 1 vertices may have their
single bit labels stored in a one dimensional bit array of
length 2k − 1 bits, where the qth bit of the array has
its left child in location 2q and right child in location
2q + 1, with parent at � q

2�. The 31 bit array for T5 is then
1 | 01 | 0101 | 01101001 | 0110010101011001. In this binary
tree array format, the lookup tree contains the full lookup ta-
ble for Tk in just 2k − 1 bits, with the table size just under
32 bytes for k = 8 bit integers and to a manageable size



of just under 8 Kilobytes for k = 16 bit integers. Further
results on the heap data structure can be found in most data
structure and algorithm texts, e.g. [3].

In array form note that the 4-bit modular inverse tree
is T4 = 1|01|0101|01101001. In general the inheritance
property assures that the array form of Tk−1 is simply the
(2k−1−1)-bit prefix of the (2k −1)-bit array for Tk for any
k. Thus, the multiplicative inverse function modulo 2k for
all k leads to a universal unique labeling of the full binary
tree to infinite depth.

The lookup tree structure described here is implemented
as a bit-string that can be stored in a standard row by column
memory structure with multiplexers employed to select ap-
propriate bit fields to form the modular inverse. The lookup
tree indexing structure allows for the determination of the
multiplexing operations needed to extract a specific bit field
corresponding to a multiplicative modular inverse operation
as will be shown in Section 4.

For our purposes, the lookup tree to a fixed depth (e.g.
k = 16) is considered to be precomputed and stored. This
is analogous to a direct reciprocal lookup table for division
algorithms. Thus, we are considering a hardware imple-
mentation of the data in the tree as may be stored in a ROM
or synthesized. If logic synthesis is employed to store the
lookup structure, we believe the area reduction obtained by
the lookup tree design is an important first step that can then
be followed by logic synthesis tools.
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Figure 2. BDD Representing a 4-bit Multiplica-
tive Modular Inverse Function

Figure 2 contains an alternative data structure for the 4-
bit modular multiplicative inverse function known as a Bi-
nary Decision Diagram (BDD) [2]. The BDD represents
the Boolean binary functions for each bit bn in the multi-
plicative modular inverse word b3b2b1b0 that corresponds to
a3a2a1a0. The edges shown as dotted lines represent paths
that are traversed when the vertex variable an is 0-valued

and the solid directed edges indicate an = 1. To deter-
mine the bn value, a path is traversed from an initial vertex
to a terminal vertex. In Figure 2, there are three terminal
vertices labeled with ‘0’, ‘1’, or ‘D’ where ‘D’ indicates a
“don’t care” value that corresponds to a3a2a1a0 being an
even value. The BDD clearly shows that each bq value de-
pends only on an values for n ≤ q and thus provides a
method for visualizing the inheritance property. The struc-
ture we propose here for describing the modular multiplica-
tive inverse lookup table is also a tree structure; however,
the differences between the lookup tree and the BDD are
apparent when comparing Figures 1 and 2.

The method described here based on lookup trees dif-
fers from the approaches in [6] and [11]. In both of these
approaches, graphs or trees are used whose structure is di-
rectly related to the resulting circuit structure. In [11],
BDDs are used to specify the topology of a high fan-in
transistor circuit for implementing multiplier-accumulator
circuits in an adiabatic style. The method described in [6] is
more similar to our approach since a transistor circuit is ul-
timately realized in a ROM structure; however, this method
also initially uses the structure of a tree as the basis for the
topology of a dynamic logic block and then employs graph
reduction rules for minimization of the block. The approach
in [6] is more general than our approach since it may be
used for any arbitrary logic function.

A third alternative to visualize the properties of the mod-
ular multiplicative inverse function is through the use of a
flow graph [13]. Figure 3 contains a diagram of the flow
graph for a 6-bit modular inverse table. The values at the
left side of the figure represent 6-bit values i for which it
is desired to compute the respective modular inverses i−1

such that |ii−1|2k = 1. The values at the right side of
the figure are the corresponding 6-bit modular inverses i−1.
This depiction of the modular inverse operation is useful for
visualizing the one-to-one mapping nature of the function.
The flow graph also illustrates the inheritance property by
showing how modular inverse tables for k-bit values depend
only on two tables of (k − 1)-bit values. As an example,
the first stage or column of the flow graph consists of four
4-bit modular multiplicative inverse operations and the sec-
ond stage consists of two 5-bit inverse operations leading to
the final 6-bit inverse operation.

4 Lookup Tree Storage Reduction

There are two straightforward symmetry properties in
the binary tree Tk that provide storage size reduction by a
factor of four.

Observation 1. [Reflective Complementarity] For any k ≥
2, |(2k − i)−1|2k = 2k − |i−1|2k .

Note that the two’s complement of an odd integer
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Figure 3. A flow graph for 6-bit modular in-
verses.

is just the one’s complement of all bits except the least
significant bit a0 = 1. The reflective complementarity
of T5 about the middle noted in Figure 1 for T5 holds
in general for Tk as a consequence of Observation 1.
Reflective complementarity allows us to compress the
31-bit array for T5 into a 15-bit array TC

5 . In par-
ticular note that q1|q2q3|q4q5q6q7|q8 . . . q15|q16 . . . q31 =
q1|q2q2|q4q5q5q4|q8q9q10q11q11q10q9q8|q16 . . . q23q23 . . . q16

with c1|c2c3|c4 . . . c7|c8 . . . c15 =
q2|q4q5|q8 . . . q11|q16 . . . q2. The bit sequence for TC

5

is then 0|01|0110|01100101.

Observation 2. [Sibling Complementarity] For any k ≥ 2,
every right child of a vertex of Tk has a one bit label that is
the complement of the label of the left child of that vertex.

Proof. This is a consequence of the fact that every odd in-
teger i with 1 ≤ i ≤ 2k − 1 has a distinct inverse modulo
2k.

Sibling complementarity allows us to further compress
the 15-bit array TC

5 to a 7-bit array T l
5. This may be vi-

sualized by viewing the left subtree in Figure 1, where
each of the 7 vertices (deleting the bottom row) has as its
new label the label currently on its left child vertex. In
particular for the array TC

5 , c1|c2c3|c4c5c6c7|c8 . . . c15 =
c1|c2c2|c4c4c6c6|c8c8c10c10 . . . c14c14. So then the left
child reduced tree T l

5 is given by the seven-bit array
l1|l2l3|l4l5l6l7 = c2|c4c6|c8c10c12c14 and is obtained by
setting ln = c2n for 1 ≤ n ≤ 7. The bit sequence for T l

5 is
then 0|01|0100.

Observations 1 and 2 provide elementary storage reduc-
tion techniques removing the observed redundancies in the
data of the tree Tk.

Observation 3. [Left child reduced tree] The labels for all

vertices of Tk can be determined from the labels on the set
of 2k−2 left children in the left subtree of Tk.

The eight left children in the left subtree are highlighted
by the squares around the vertices in Figure 1. It follows
from Observation 2 that a left-child-compressed lookup tree
array T l

16 for 16-bit integer inverses modulo 216 consumes
only 2 Kilobytes of storage.

In the following, we outline the decompression (de-
coding) logic needed to obtain each output bit bn−1 for
k ≥ n ≥ 3 from the left child reduced tree for input
i = ak−1ak−2 . . . a1. First, conditionally complementing
the input bit string based on a1 to obtain an (n−3)-bit table
index a′

n−2a
′
n−3 . . . a′

2.

• table index = a′
n−2a

′
n−3 . . . a′

2 equals:{
an−2an−3 . . . a2 if a1 = 0,
ān−2ān−3 . . . ā2 if a1 = 1.

The index a′
n−2a

′
n−3 . . . a′

2 is used to read down from
the root of T l

k to determine the left-subtree left-child level
(n − 1) bit l(n − 1) which is conditionally complemented
by a′

n−1 to obtain the level (n − 1) left-subtree bit of TC
k

denoted by c(n − 1).

• table output bit = l(n − 1).
• decoded left subtree bit c(n − 1) is:{

l(n − 1) if a′
n−1 = 0,

l̄(n − 1) if a′
n−1 = 1.

The left subtree bit c(n − 1) is then conditionally com-
plemented by a1 to obtain the output bit bn−1.

• decoded output bit = bn−1

{
c(n − 1) if a1 = 0,
c̄(n − 1) if a1 = 1

A combinational logic relation also exists between the
grandchildren of each vertex in Tk. Figure 4 shows the
generic two level subtree labeling that holds for every two-
level subtree within the left subtree of Tk for all k. This
allows our T l

k to be further compressed by 33% with only
the cost of another XOR gate applied to the table output.

Appropriately incorporating the relation of Figure 4 for
reduction at every other level, the lookup tree for 16 bit inte-
ger multiplicative inverses modulo 216 need consume only
1 3

8 Kbytes of storage. This further storage reduction can
be useful for multiple tables for single instruction multiple
data (SIMD) integer instruction sets such as the MMX oper-
ations in the x86 processors. The MMX instructions allow
4 parallel 16 bit integer addition or multiplication opera-
tions to be executed concurrently with the input and output



��
��

��
��

��
��

��
��

��
��

��
��

��
��

�
�

�
�

���

�
�

�
�

���

�
�

�
�

���

�
�

�
�

���

�
�
�
�
���

�
�
�
�
���

0 1

z

x
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Figure 4. Generic 2-level subtree labeling in
the left subtree of Tk

stored in 64 bit words partitioned into four 16-bit integer
sub-words. Employing four (identical) compressed lookup
trees for concurrent lookup of four 16-bit integer inverses
will then employ a total of only 5 1

2 Kilobytes. This would
allow a feasible one or two cycle SIMD implementation of
the multiplicative inverse for four concurrent 16-bit integers
by this direct lookup procedure.

5 Circuit Implementation Issues

In implementing the modular inverse table, a consider-
able amount of circuit area can be saved by utilizing sym-
metries and other properties that are present in the table as
discussed in Section 3.

Figure 5 provides a circuit realization for inverses mod-
ulo 32 that is equivalent to the lookup tree T5 of Figure 1.
The logic circuit shown in Figure 5 is considerably simpli-
fied by the observation that every odd integer {1, 3, 5, 7} is
its own inverse modulo 8, i.e. bn = an for 0 ≤ n ≤ 2.

The logic circuit for T5 takes on greater significance with
the observation that this circuit provides the 5 low order bits
of the inverse modulo 2k for any k ≥ 5. Thus, only the
inverse bits bk−1bk−2 . . . b5 need be obtained from a lookup
process and/or further circuitry.

The 4-bit modular inverse operation can be directly im-
plemented as a combinational logic circuit consisting of a
single 3-input XOR gate. This circuit corresponds to all but
the leading bit portion of the circuit in Figure 5 that includes
the bottom XOR gate and the three pass-through lines for
the least significant bits. The most significant bit in the 4-
bit inverse circuit is the parity of the 3 most significant bits
in the argument value. The remaining three least signifi-
cant bits of the inverse value are identical to the three least
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Figure 5. A combinational logic circuit for 5-
bit modular inverses.

significant bits of the argument value. The behavior of this
circuit is shown in the flow graph in Figure 3 by examining
the top eight inputs at the left side of the flow graph and
considering stage 1 only.

Likewise, the 5-bit modular inverse circuit can be imple-
mented using 2 3-input XOR gates and the equivalent of a
full-adder circuit as shown in Figure 5. Inputs to the carry-
out portion of the full adder are computed as the parity of
groups of 3 bits in the input words and the output is used to
form the most significant bit in the inverse value.
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b1
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Figure 6. A reduced format for T8.

It is possible to continue to build purely combinational
logic circuits to compute the modular inverses for words
of 6 bits or greater. However, the number of logic levels
increases and the delay penalty may make this approach



impractical. For this reason, circuits of 6 or more bits are
implemented using a lookup table for the most significant
bits in the sixth position and higher. The circuit of Figure
5 is used to compute the 5 least significant bits in parallel
with the lookup process for the most significant output bits
bk−1bk−2 · · · b5. We first describe this approach for the cost
of an 8-bit modular inverse table. It is instructive to consider
the tree T8 of 8-bit integer modular inverses, since 8-bits is
often considered a typical small or half word integer type.

Observations on Circuitry for Inverses Modulo 28

Figure 6 shows the left subtree of the root of T8, where
the 16 final two-level subtrees are each denoted as leaves at
level five with the c5, c6, c7 triple on each leaf denoting the
z, x, y values to be expanded as in Figure 4. Thus for 8-bit
inverses, the low order 5 bits can be obtained from the cir-
cuit of Figure 5, and a 4-bits-in 3-bits-out lookup into a 48
bit word can be used to obtain the z, x, y bits for determin-
ing the leading output bits b7b6b5 according to Figure 4 and
Observation 1, with appropriate complementation included
to cover the right subtree output corresponding to a1 = 1.
Thus the 8-bit modular inverse circuit is composed of three
types of circuitry:

1. a 5-bit modular inverse circuit as shown in Figure 5

2. a 4-bit input, 3-bit output lookup table realized as a 48
bit word.

3. a small amount of external logic used to decode the
lookup table content as indicated in Figure 4.

If a lookup tree is constructed for the modular inverse
for the case where n=8 bits, the 16 lowest subtrees (of the
left subtrees of the root) would all have a structure identi-
cal to that shown in Figure 4. For this reason, the lookup
table can be quite compact in that less than 1

16 of the bits
are required to be stored as compared to an exhaustive di-
rect lookup table that would require 128 7-bit words. The
resulting reduced table is the 4-bits in, 3-bits out lookup ta-
ble illustrated in the leaves of the tree in Figure 6. A small
amount of extra decoding logic is required if this reduced
table is used. The additional logic essentially determines
which of the 16 subtrees is currently being accessed and
provides for decoding the values in the lookup table where
appropriate.

This allows for a very compact modular inverse circuit to
be realized that is a combination of a reduced lookup table
with decoding circuitry and a direct circuit implementation
for low order bits. In particular, the lookup table and
decoder portions of the circuit are used to generate the
3 most significant bits b7b6b5 of the inverse and a direct
circuit implementation of the table (Figure 5) is used to

generate the 5 least significant bits b4b3b2b1b0.

Observations on Circuitry for Inverses Modulo 216

In the case of a 16-bit modular inverse circuit, the im-
plementation technique described for the 8-bit case can be
extended. A block diagram of this circuit with the table
stored in a roughly square row by column format is shown
in Figure 7. As is done in the 8-bit version of the circuit, the
5 least significant bits are obtained using the circuit in Fig-
ure 5 and the remaining 11 bits are computed from a com-
pressed lookup table with decoding logic. The compressed
lookup table is indexed by 7 conditionally complemented
bits of the argument value, a′

8a
′
7a

′
6a

′
5a

′
4a

′
3a

′
2. The content

of the lookup table is 128 lines that each represent a subtree
in the 16-bit lookup tree. Each of the 128 lines in the lookup
table contains the b′5b

′
6b

′
7b

′
8b

′
9 bits and all possible pairs of

the b′10b
′
11 bits (2 pairs), all possible pairs of the b′12b

′
13 bits

(8 pairs), and all possible pairs of the b′14b
′
15 bits (32 pairs).

This leads to a total of 32 × 2 + 8 × 2 + 2 × 2 + 5 = 89
bits of storage per line. The selection of the correct pair
of bits for the cases of b′10b

′
11, b

′
12b

′
13, and b′14b

′
15 is accom-

plished through the use of multiplexers with control line in-
puts set to the lower order a′

i bits. After the appropriate
b′5b

′
6b

′
7b

′
8b

′
9b

′
10b

′
11b

′
12b

′
13b

′
14b

′
15 sub-word is obtained from

the lookup table line, decoding logic is applied to compute
the b5b6b7b8b9b10b11b12b13b14b15 bits. The decoding logic
is used to account for which side of the lookup tree that
the value is stored in and to exploit the complementation
symmetry described in Section 2. Only 128 subtrees are
required to be stored due to the same arguments about mod-
ular inverse properties and symmetries that were described
in the previous section. The total amount of required stor-
age is approximately 11 bytes of storage for each of the 128
lines in the lookup table. Therefore, for a 16-bit modular
inverse circuit, a lookup table size of approximately 1.375
KB is required. This is a significant amount of reduction as
compared with the 60 KB table that would be required in a
naı̈ve direct lookup table implementation that corresponds
to storing 215 15-bit words.

In terms of performance, the circuit structure as shown
in Figure 7 allows for several tradeoffs. The decoding logic
at the output of the circuit can be simplified by increasing
the word size in the lookup table requiring at most the addi-
tional step of conditional complementation. The dotted line
in Figure 7 indicates where the circuit could have pipeline
latches inserted allowing for single-cycle throughput. The
circuit as shown would likely require only two processor cy-
cles to complete since the portions of the circuit to the left
and right of the dotted line each depend on approximately
four to six levels of logic in terms of delay. Further per-
formance enhancement is given by the fact that the control
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Figure 7. Block Diagram of 16-bit Modular In-
verse Circuit

lines for the multiplexer array are stabilized during the time
the lookup table is accessed. The critical path through the
circuit is set by the 32 : 1 (2-bit data inputs and output) mul-
tiplexer and XOR gate for decoding noted in Figure 4. This
is the widest multiplexer in the array and it is responsible
for selecting the appropriate b′14b

′
15 bit pair from the word

retrieved from the lookup table.

6 Conclusions

The initial work we describe here is part of an ongoing
investigation of the operations multiplicative inverse, dis-
crete log, exponential residue, and squaring in the partic-
ular domain of modular arithmetic with modulus 2k. We
have introduced a new lookup tree table format applicable
to lookup tables of inverses modulo 2k. The table is real-
ized as a binary lookup tree which is universal in the sense
that the complete tree to depth k provides all inverses mod-
ulo 2k. We also describe symmetry properties of the lookup
tree that allow table size reduction supplemented by selec-
tion and decoding logic to obtain the desired lookup value.

In this paper, logic design techniques with particular em-
phasis on precomputed stored tables for the moduli 28 and
216 were investigated. The opportunities to exploit symme-
try within the lookup tree structure provides a classic case
of space versus delay investigation. The tradeoff between
the required circuitry and delay is present in the circuit of
Figure 6 by changing the size of the lookup table which,
in turn, impacts the corresponding amount of decoding cir-
cuitry. Further refinement and simplification of the logic
circuits within the blocks of Figure 7 is ongoing.
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