
Proceedings of the 2004 American Society for Engineering Education Midwest Section
Conference

39th ASEE Midwest Section Meeting

A Modular and Specifications Oriented Digital Circuit Design
Laboratory

Jason Moore, Mitchell A. Thornton, Ronald W. Skeith

Southern Methodist University / University of Arkansas
Dallas, Texas / Fayetteville, Arkansas

Abstract:

A laboratory for a second undergraduate course in digital logic design is
described based on the philosophy of decomposing the circuits into control and datapath
portions. Modular designs are strongly encouraged by requiring later designs to need
some of the same pieces of earlier designs. The unique aspect of this laboratory is that
students are required to generate designs that meet criteria other than correct
functionality; both performance and area are specified. This gives the students a good
idea of what life as a circuit designer might be like. They are faced with the real-world
problem of speed versus size. This often leads to friendly competitions between students
on whose design is smaller or faster. The specifications and difficulty of the assignments
force students to use proper design techniques. The remainder of the paper will focus on
the experiences gained both while teaching and taking the laboratory.

Introduction:
 This paper describes a Digital Circuit Design Lab that focuses on modular design
and is specification oriented. The lab is a companion course to the Digital Logic course
described in [2]. Students are taught to break their designs into modules in a hierarchical
fashion starting with initially breaking the entire circuit into a control unit and a data
path. Then, students are encouraged to further divide the circuit as they see fit. Students
are also given a glimpse into what life as a circuit designer might be like. They are given
specifications and a due date for their assignment. The lab instructor strongly suggests
that they set a schedule to meet certain milestones and to start early.
 Students learn how to use datapath diagrams. A datapath diagram is a block
diagram that shows the movement of data through the circuit without worrying about the
control logic of the circuit. Below is an example of a datapath block diagram.

Figure 1: Example of Datapath block diagram

Proceedings of the 2004 American Society for Engineering Education Midwest Section
Conference

 In addition to datapath block diagrams, students also utilize Algorithm State
Machine (ASM) charts for the control logic of the circuit. ASM charts are very similar to
flow charts used for software design. The three basic components that make up a ASM
chart are listed below [1]:

When combined appropriately, the above components can create an ASM chart

that completely describes the control logic. Although ASM charts are like fingerprints in
the sense that no persons’ diagram is exactly the same as someone elses’, below is an
ASM chart that describes the control logic for the datapath shown in the datapath block
diagram in Figure 1.

Figure 2: Example of an ASM chart

The remainder of this paper focuses on the method of design taught in the lab and
how the lab assignments build on each other not only to give students the experience
using design software, but to also teach them how to design in a modular manner and to
reuse those modules. Also included in this paper is a course outline for the lab.

State box Decision box Conditional output box

Proceedings of the 2004 American Society for Engineering Education Midwest Section
Conference

Method of design:
 The design method taught in the lab is that of top-down, hierarchical modular
design. Once the circuit has been divided into a data path and a control unit, students are
encouraged to divide the data path into smaller data paths. The control unit is usually
coded in VHDL while the data path is generally a combination of schematic capture and
VHDL code.
 Before starting the design-entry program, students should have already drawn out
his or her datapath block diagram. Students should design, build, and test the smaller data
paths before using them to build the overall datapath. Since, if the smaller data paths
work, then the only thing the student has to worry about is the glue logic. The datapath
should definitely be done before the control unit because there is no sense in building a
control unit for a data path does not work. The control unit can be simulated directly
through the use of the waveform editor. The signals produced by the control unit can be
treated as inputs to the datapath circuit and appropriate test waveforms can be generated.
This approach allows the student to test their datapath before the design of the control
unit of the circuit has occurred.
 After designing and testing the datapath, students should start drawing the ASM
chart for the controller circuit for his or her datapath. If the ASM chart is drawn properly,
the actual coding of the control unit should be very easy for the student. However, a
poorly done ASM chart or no ASM chart causes the task of creating a control unit fairly
difficult. Many students when given task of designing the control logic for the first time
will not draw the ASM chart until after they start trying to write the VHDL code for it.
Many of these students end up taking a step back and drawing the ASM chart and starting
over with the code while the remainder of the students who have not drawn their ASM
chart continue struggling through the VHDL code without an ASM chart. This situation
usually does not occur more than once with the student still being able to meet the
deadline. A very important issue to point out to students when they are designing their
ASM charts is that the ASM chart is not carved in stone but is intended as a guide. Now
that the student has used his or her ASM chart to design the control unit of the circuit, it
can be tested by comparing the output of the control unit with the signals that were used
to simulate the control unit when testing the data path.
 Once the datapath and control unit have been tested, all that is left is to put them
together. In theory, this task should be as easy as creating symbols for both and
connecting the right outputs to the right inputs. However, students sometimes learn that
everything is not as easy as it seems in theory. Sometimes, connecting the data path to the
control unit requires a small amount of logic between them i.e. an OR gate, AND gate,
…, etc. This experience provides the student with an idea of the difficulty that is often
encountered in system integration.
 Once the circuit is completed, the top level of the schematic should look
something like the example below although some students will choose to have multiple
smaller data paths and/or control units in the top level schematic.

Proceedings of the 2004 American Society for Engineering Education Midwest Section
Conference

Data Path

Control Unit

Input A

Input B

Clock

Figure 3: Top level view

Building from one lab to the next:
 In laboratory experiments 0, 1, and 3 students become familiar with the design
tools. Experiment 0 is quite simply a tutorial out of the back of student’s textbooks [1],
and there is no design work required on their part. Experiment 1 is an exercise designed
to teach the students how to use the schematic capture tool including such things as the
different synthesis option available. Experiment 3 teaches them how to use the LPM
modules. This is very important since we emphasize design reuse and hierarchy.
 In experiment 2 students are given the schematic below and are asked to
implement the 2×8 multiplier in one VHDL entity. The students are also given a
waveform to test their circuitry and a “golden” waveform to compare their output with.

The students are now familiar with the 2×8 multiplier circuit when in lab 6 they
are asked to modify the above schematic to run at 70 Megahertz or greater. Bonus points
are offered in 5-point increments for reaching the following plateaus 90, 100, and 110
Megahertz. Additional bonus points are also offered if the student can modify the above
circuit to be an 8×8 multiplier. In addition to allowing students to make up for some
points lost, the bonus points serve to teach two very important lessons. The first is that
you should first meet the specifications before trying to improve on them. The second
lesson is a little less obvious since it is a lesson in cost and rewards. Gaining the 5 bonus
points from increasing the speed from 100MHz to 110MHz is much more difficult than
gaining the 10 points from designing and pipelining the 8×8 multiplier.

The last bonus part becomes particularly important for experiment 8 since the
student must implement a Newton-Raphson inverter using the 8×8 multiplier described in
experiment 6. In experiment 8, the students are also given an explanation of the theory of
the Newton-Raphson inversion approximation and are assigned to work out some
examples by hand. Experiment 8 is broken into three parts. The first part is to build the
Newton-Raphson circuit using LPM-multipliers. The second part is to replace the LPM-
multiplies with the 8×8 multiplier that he or she designed. The final part is to pipeline the
circuit to try to achieve maximum speed yet still fit on the device given.

Proceedings of the 2004 American Society for Engineering Education Midwest Section
Conference

Figure 4: 2×8 Multiplier
Course Outline:

 This section of the paper is meant to briefly describe what each lab
assignment is meant to accomplish. Since the skills taught are more important than the
actual assignments, we will just provide the skill gained from each lab assignment.

Lab 0: Altera Max Plus 2 tutorial and installation guide.
Lab 1: Introduction to schematic capture and simulation.
Lab 2: Design of 2X8 multiplier circuit that will be used in later lab assignments.
Lab 3: Introduction to LPM modules and data paths
Lab 4: Using LPM modules in VHDL
Lab 5: Explore timing issues such as register to register and clock to delay. It also
serves as an introduction to circuit pipelining.
Lab 6: Forces the use of pipelining in order to meet the specifications
Lab 7: Sequential logic in VHDL
Lab 8: Introduces the split design of data path and synchronous control unit
Lab 9: Uses previous lab assignments as building blocks to build a more
complicated circuit.

Conclusion:
The lab is designed as a companion design experience that accompanies the

lecture portion of the class not only by implementing subjects talked about in class, but
also by encouraging students to design circuits using methods taught in class. This is
accomplished by having the lab assignments build on top of each other by using a
previous lab as part of the datapath of a later lab which also allows for further testing of
the previous labs since sometimes problems occur in the circuit when used as part of a

Proceedings of the 2004 American Society for Engineering Education Midwest Section
Conference

larger circuit that do not get exposed by the test vectors used initially. As the semester
goes along, students begin to design in a modular way on their own and test their
modules before inserting them into the overall data path.

References:
[1] Stephen Brown and Zvonko Vranesic, Fundamentals of Digital Logic with VHDL

Design, McGraw-Hill Higher Education, Boston, 2000 pp. 504-505.

[2] Mitchell A. Thornton and Aaron S. Collins, “A Second Undergraduate Course in

Digital Logic Design: The Datapath+Controller-Based Approach”, ASEE Southeastern
Section 2003.

