
Binary Decision Diagram Visualization: A Research
Experience for Undergraduates�

M. A. Thornton, R. W. Skeith, S. M. Karp, J. N. Taylor

Department of Computer Engineering
University of Arkansas

Fayetteville, AR 72701-1201
(501)575-5159 (office)

(501)575-5339 (fax)
mitch@engr.uark.edu

ABSTRACT

A Research Experience for Undergraduates (REU) project is described. A discussion of

the technical aspects of the project is given as well as experiences gained by the

undergraduates. The benefits of including the undergraduates in the research effort

resulted in increased project productivity, encouragement in pursuing graduate work and

a nontraditional classroom experience for the Junior and Senior level students akin to that

derived from other capstone design projects.

The REU aspect of the research project has indicated that it is not only a valuable learning

experience for the undergraduates, but an effective means to obtain tangible contributions

to the research project as a whole and an effective recruiting incentive for future graduate

students. Both undergraduates have already committed to staying in school to obtain the

M. S. degree. Among their peers, the undergraduate research appointment is viewed as

desirable and has beneficial effects on the entire undergraduate student population. The

success of the REU involvement in the project has motivated the authors to always

attempt to include undergraduates in research projects.

� This project is sponsored by NSF grant CCR-9633085

1.0 INTRODUCTION

A NSF sponsored research project has been underway at the University of Arkansas for

the past 2 years. As part of this project, an REU supplement was requested and granted in

August 1997 and August 1998. Since then, two undergraduate students have been

employed to assist in the project. Their duties have been to aid the GRA in developing

code and to design and implementation of a graphical user interface for visualizing

research results. Our experience from this REU project is that the research laboratory is

one of the most effective learning environments for both graduate and undergraduate

students on a campus. Some specific areas where undergraduate students benefited from

this project are:

• Hardware Description Language (HDL) syntax
• Familiarity with elementary parsing theory
• Pass-Transistor Logic (PTL) circuits
• Digital logic design
• Data Structures
• Netlist syntax and translation

2.0 PROJECT DESCRIPTION

The existence and use of Computer Aided Design (CAD) tools for digital circuit design is

due to the recent development and improvement of techniques to efficiently represent

large and complex designs. Binary Decision Diagrams (BDD) are internal computer data

structures that are used to represent digital logic circuits. BDDs are similar to binary trees

with the addition of shared nodes. With shared nodes, a BDD may reuse common nodes

of the circuit for efficiency. BDDs are characterized by the number of outputs, inputs,

levels, and graph nodes present in the structure. Circuit designers can use BDD reduction

tools to reduce circuit size and complexity. In most cases, the BDD representation of a

circuit is so large that it is difficult – almost impossible – to visualize the BDD. The

focus of this project is to create a tool to visualize the BDD.

2.1 PROJECT IMPLEMENTATION

The goal of the project is to produce a graphical representation of a BDD for output to a

display. This tool is used in support of the overall research project to produce new

methods for minimizing the size of BDDs. The input circuit is defined by an ISCAS

netlist (figure 3) and a BDD variable order file. The output is a Visual Compiler Graph

(VCG) graphical view (figure 6) that supports zoom in, zoom out, and pan. Alternatively,

a high resolution GIF, Postscript, JPG, or bitmap can be generated for a more portable

output. For illustrative purposes, the C17 benchmark circuit (figure 1) will be used to

describe the process.

Figure 1: The logic gate representation of the C17 circuit

VCG is a high performance, graphing tool that is capable of graphing trees. Given a

unique list of nodes, edges, labels, and node order, VCG creates one of two things. It can

create an interactive representation of the BDD within the VCG viewer that incorporates

zoom, pan, and search capabilities. Alternatively, it will output a bitmap image of the

BDD with a user defined resolution and file name. The later option is useful for

displaying the BDD in other applications such as web browsers and graphic viewers. As

the number of nodes in the BDD increase, the user-defined resolution for the bitmap must

also increase to ensure that the zoom feature is smooth. VCG is not resource intensive

and is extremely fast – drawing large BDDs in a matter of seconds.

The first step in the process is to convert the ISCAS (figure 3) netlist and the BDD

variable order file into a usable format. Figure two contains the format of the ISCAS file.

Unique ID for
each net

Net name Type Number of
Fan-outs

Number of
Fan-ins

Extra
information

Figure 2: The format of the ISCAS file

The net name may be “#gat” or “#fan” where “#” is the unique identification number for

the net. Gat and fan mean logic gate and fan in/out respectively. Type is the either the

name of the logic gate (ie. NAND) or “from” if the net is a fan in/out from another net.

*c17 iscas example
*---
 1 1gat inpt 1 0 >sa1
 2 2gat inpt 1 0 >sa1
 3 3gat inpt 2 0 >sa0 >sa1
 8 8fan from 3gat >sa1
 9 9fan from 3gat >sa1
 6 6gat inpt 1 0 >sa1
 7 7gat inpt 1 0 >sa1
 10 10gat nand 1 2 >sa1
 1 8
 11 11gat nand 2 2 >sa0 >sa1
 9 6
 14 14fan from 11gat >sa1
 15 15fan from 11gat >sa1
 16 16gat nand 2 2 >sa0 >sa1
 2 14
 20 20fan from 16gat >sa1
 21 21fan from 16gat >sa1
 19 19gat nand 1 2 >sa1
 15 7
 22 22gat nand 0 2 >sa0 >sa1
 10 20
 23 23gat nand 0 2 >sa0 >sa1
 21 19

Figure 3: Sample ISCAS file for C17 circuit

The bdd_print_bdd() function accepts an ISCAS and an ordering and outputs a human

readable format (figure 4). The human readable format describes the traversal of the

BDD. All the information necessary to generate the VCG input file is contained in the

human readable format. This project converts human readable format into VCG input

format. The conversion is implemented in the bdd_print_vcg() function.

Output 1
if var.0
 if var.1
 1
 else if !var.1
 var.2
 endif var.1
else if !var.0
 if var.1
 if var.2
 !var.3
 else if !var.2
 0
 endif var.2
 else if !var.1
 var.2
 endif var.1
endif var.0

Output 2
 if var.0
 if var.1
 !var.2
 else if !var.1
 1
 endif var.1
else if !var.0
 if var.1
 if var.2
 0
 else if !var.2
 var.3
 endif var.2
 else if !var.1
 var.3
 endif var.1
endif var.0

Figure 4: Human readable format of C17

The second step is to parse the human readable format line by line. The lex C library

provided the support needed to break each line into tokens and pass them to

bdd_print_vcg(). The lex code feeds a C switch statement in bdd_print_vcg() that

converts human readable format into VCG format. The lex parser and the switch case are

the framework of bdd_print_vcg(). The bdd_print_vcg() code compiles the VCG input

file (figure 5) from the human readable format (figure 3). VCG reads the VCG input file

and generates the graphical representation of the C17 circuit (figure 6).

graph: { title : "Graph"

 width: 700
 height: 700
 x: 90
 y: 30

 color: aquamarine
/***Output 1 EDGE/TARGET LIST***/

/***************************************/
edge: { sourcename: "1.var.0.1" targetname: "1.var.1.2" }
edge: { sourcename: "1.var.1.2" targetname: "1.1.4" }
edge: { sourcename: "1.var.1.2" targetname: "1.var.2.3" }
edge: { sourcename: "1.var.2.3" targetname: "1.1.6" }
edge: { sourcename: "1.var.2.3" targetname: "1.0.5" }
edge: { sourcename: "1.var.0.1" targetname: "1.var.1.1" }
edge: { sourcename: "1.var.1.1" targetname: "1.var.2.2" }
edge: { sourcename: "1.var.2.2" targetname: "1.var.3.4" }
edge: { sourcename: "1.var.3.4" targetname: "1.0.8" }
edge: { sourcename: "1.var.3.4" targetname: "1.1.7" }
edge: { sourcename: "1.var.2.2" targetname: "1.0.3" }
edge: { sourcename: "1.var.1.1" targetname: "1.var.2.1" }
edge: { sourcename: "1.var.2.1" targetname: "1.1.2" }
edge: { sourcename: "1.var.2.1" targetname: "1.0.1" }

/***Output 2 EDGE/TARGET LIST***/
/**/
edge: { sourcename: "2.var.0.1" targetname: "2.var.1.2" }
edge: { sourcename: "2.var.1.2" targetname: "2.var.2.4" }
edge: { sourcename: "2.var.2.4" targetname: "2.0.8" }
edge: { sourcename: "2.var.2.4" targetname: "2.1.7" }
edge: { sourcename: "2.var.1.2" targetname: "2.1.3" }
edge: { sourcename: "2.var.0.1" targetname: "2.var.1.1" }
edge: { sourcename: "2.var.1.1" targetname: "2.var.2.2" }
edge: { sourcename: "2.var.2.2" targetname: "2.0.4" }
edge: { sourcename: "2.var.2.2" targetname: "2.var.3.3" }
edge: { sourcename: "2.var.3.3" targetname: "2.1.6" }
edge: { sourcename: "2.var.3.3" targetname: "2.0.5" }
edge: { sourcename: "2.var.1.1" targetname: "2.var.3.1" }
edge: { sourcename: "2.var.3.1" targetname: "2.1.2" }
edge: { sourcename: "2.var.3.1" targetname: "2.0.1" }

/***Output 1 NODE LIST***/
/**/
node: { title: "1.var.0.1" label: "var.0" horizontal_order: 1 }
node: { title: "1.var.1.2" label: "var.1" horizontal_order: 2 }
node: { title: "1.1.4" label: "1" horizontal_order: 4 }
node: { title: "1.var.2.3" label: "var.2" horizontal_order: 3 }
node: { title: "1.1.6" label: "1" horizontal_order: 6 }
node: { title: "1.0.5" label: "0" horizontal_order: 5 }
node: { title: "1.var.1.1" label: "var.1" horizontal_order: 1 }
node: { title: "1.var.2.2" label: "var.2" horizontal_order: 2 }
node: { title: "1.var.3.4" label: "var.3" horizontal_order: 4 }
node: { title: "1.0.8" label: "0" horizontal_order: 8 }
node: { title: "1.1.7" label: "1" horizontal_order: 7 }
node: { title: "1.0.3" label: "0" horizontal_order: 3 }
node: { title: "1.var.2.1" label: "var.2" horizontal_order: 1 }
node: { title: "1.1.2" label: "1" horizontal_order: 2 }
node: { title: "1.0.1" label: "0" horizontal_order: 1 }

/***Output 2 NODE LIST***/
/***/
node: { title: "2.var.0.1" label: "var.0" horizontal_order: 1 }
node: { title: "2.var.1.2" label: "var.1" horizontal_order: 2 }
node: { title: "2.var.2.4" label: "var.2" horizontal_order: 4 }
node: { title: "2.0.8" label: "0" horizontal_order: 8 }
node: { title: "2.1.7" label: "1" horizontal_order: 7 }
node: { title: "2.1.3" label: "1" horizontal_order: 3 }
node: { title: "2.var.1.1" label: "var.1" horizontal_order: 1 }
node: { title: "2.var.2.2" label: "var.2" horizontal_order: 2 }
node: { title: "2.0.4" label: "0" horizontal_order: 4 }
node: { title: "2.var.3.3" label: "var.3" horizontal_order: 3 }
node: { title: "2.1.6" label: "1" horizontal_order: 6 }
node: { title: "2.0.5" label: "0" horizontal_order: 5 }
node: { title: "2.var.3.1" label: "var.3" horizontal_order: 1 }
node: { title: "2.1.2" label: "1" horizontal_order: 2 }
node: { title: "2.0.1" label: "0" horizontal_order: 1 }

/****END****/
 }

Figure 5: VCG input file for the C17 circuit

3.0 PROJECT RESULTS

This process requires very little memory because it only looks at one line of input at a

time. The amount of disk space required is directly proportional to the number of nodes

in the BDD. This process works efficiently for the C17 benchmark circuit, but currently

has a problem with larger circuits that make use of sub-formula notation. Sub-formula

notation from bdd_print_bdd() is a recursive method of traversing the BDD. It reduces

the number of human readable output lines exponentially. The lex parser currently

recognizes the recursive sub-formula tokens. The core switch statement in

bdd_print_vcg() does not presently handle recursion. A recursive function is needed to

expand the sub-formulae. If the sub-formulae are not expanded into a non-recursive

format, then bdd_print_vcg() will not output unique node names. Duplicate node names

cause VCG to fail and no output graphic is created. The addition of recursion to this

process is a small task compared to the lex parser and the switch case handler.

Once bdd_print_vcg() outputs a VCG acceptable format, VCG can immediately display it,

save it for later, or output a bitmap. Bitmap files are not compressed and are not easily

viewable from web pages. ImageMagick is a set of GNU graphic utilities that is capable

of converting bitmaps to GIF or JPG images. With ImageMagick the bitmaps can be

converted easily web friendly formats.

Figure 6: The VCG graphical display of the C17 circuit

3.0 CONCLUSION

An overview of a research experience for undergraduates has been given. We have

described the benefits derived by the involved undergraduates as well as those achieved

by the investigators. In keeping with the theme of the “non-traditional engineering

classroom”, our experience from this endeavor is that the academic research laboratory is

a very effective setting for undergraduate education and helps to encourage the involved

students to pursue graduate degrees.

