
 1

Abstract-- A self-timed programmable architecture used for
the implementation of Phased Logic (PL) systems is described.
PL systems are automatically translated from clocked designs
and result in self-timed circuits that are insensitive to delays
between gates. The target implementation is a self-timed FPGA
architecture composed of PL gates. A PL gate design based on a
4-input lookup table is presented. Power and performance
estimates of two designs are given and are compared to their
clocked counterparts.

Index Terms--self-timed, asynchronous, programmable

I. INTRODUCTION

HROUGHOUT the ITRS-99 Roadmap on Design, continual
references are made to clock and timing related

challenges facing designers through and beyond 2005. Many
of the problems stem from simply taking the current design
methodology for computing systems (a global clock between
components, with higher rate clocks within components) and
projecting this usage within the System-on-a-Chip circa 2005
and beyond. Asynchronous and self-timed systems have been
proposed in the past to avoid global clock timing and to
achieve improved performance, noise immunity, and low
power [1]. These systems typically require special design
methods and result in circuits with area overhead to
implement asynchronous signaling such as dual-rail or
bundled data and handshaking. In this paper an architecture
for a programmable logic implementation of Phased Logic
(PL) systems is described [2] [3] [4]. This approach takes
advantage of the well-established synchronous design
methodology and commercial synthesis tools. Level Encoded
two-phase Dual-Rail (LEDR) encoding of signals [5] [6] and
phased logic gates are used in the implementation. The
resulting self-timed PL systems are insensitive to delays
between PL gates. The area overhead of the phased logic
gates using a lookup table (LUT) implementation of the logic
function is comparable to the overhead in synchronous FPGA
and CPLD logic cells and we show some potential advantages
in performance and power. In section II we will put this work
in context of others who have researched similar topics. This
will be followed by an overview of the PL design method and
a specification of the PL gate behavior. Section IV will

This work was supported in part by an internal grant from the MSU/NSF
Engineering Research Center..

Cherrice Traver is with the Electrical Engineering and Computer Science
Department, Union College, Schenectady N.Y., USA, (e-
mail:traverc@doc.union.edu).

Robert B. Reese is with the Electrical and Computer Engineering
Department, Mississippi State University, Starkville MS, USA, (e-
mail:reese@ece.msstate.edu).

Mitch A. Thornton is with the Electrical and Computer Engineering
Department, Mississippi State University, Starkville MS, USA, (e-
mail:mitch@ece.msstate.edu).

describe the PL gate design based on a 4-input LUT, Section
V will describe an enhanced version of this gate that takes
advantage of data-dependent early evaluation, and Section VI
will present some power and performance results from
designs composed from these gates. A summary and
description of further work is given in Section VII.

II. BACKGROUND

A self-timed FPGA based upon 3-input LUTs (LUT3) and
using LEDR encoding was presented by How in [7]. The
author uses the cell in the context of Sutherland’s
micropipelines [14] and self-timed iterative rings [15] and
provides support specifically for those architectures. Another
FPGA architecture for asynchronous logic was proposed in
[16]. Two types of function blocks were provided; a
LUT3+Dlatch block and a block that could implement an
arbiter, enabled arbiter, or synchronizer. This FPGA
architecture was aimed at accommodating a range of
asynchronous design styles, and allowed for mixed
synchronous and asynchronous designs. By contrast, our
proposed function block is aimed at only supporting the PL
design style, and would implement PL designs more
efficiently than [16] or [7].

The asynchronous design methodology known as Null
Convention Logic (NCL) also offers automated synthesis of
asynchronous designs using commercial synthesis tools [[8].
NCL uses a NULL/DATA/NULL encoding instead of LEDR
and their designs are targeted at standard cell
implementations [17] [18] rather than FPGAs.

In comparing physical implementation characteristics,
NCL has some delay sensitivity between NCL gates whereas
PL systems are insensitive to delays between PL gates.

III. PHASED LOGIC DESIGN

A. PL Design Methodology

Phased Logic designs are specified in VHDL RTL and
synthesized by Synopsys Design Compiler to a netlist of D
flip-flops (DFF) and 4-input logic gates. This netlist is then
translated to a netlist of PL gates.

B. LEDR Encoding and Netlist Translation

A Phased Logic netlist can be thought of as a marked
graph with data tokens flowing throughout the graph. Each
data token, encoded using LEDR, has a phase that is either
even or odd. A PL gate also has an internal even or odd phase
(state). A PL gate fires and changes phase whenever all of the
phases of the inputs matches the internal gate phase.

Cell Designs for Self-Timed FPGAs
Cherrice Traver, Robert B. Reese, Mitch A. Thornton

T

 2

Figure 1a illustrates the encoding of the dual rail signals
used between PL gates. Notice that the “value signal” (top),
is the logical value and two signals together define the phase.
A sample gate firing is shown in 1b. The controlled firing of
PL gates is what gives a phased logic system its delay
insensitivity to wiring delays between PL gates.

PL GatePL Gate

ODD

EVEN

EVEN

a. LEDR encoding

EVEN
 “0”

ODD
 “1”

EVEN
 “1”

ODD
 “0”

phase:
EVEN

EVEN

EVEN

EVEN
phase:
ODD

b. Ready to fire c. After gate fires

Figure 1. LEDR Encoding and PL Gate Firing
The mapping of a clocked netlist (DFFs+ combinational

logic) to a phased logic netlist consists of the following
operations:
q All gates are replaced by PL gate equivalents. A PL

gate equivalent is the original combinational logic
function plus the control logic necessary for gate
firing. A DFF in the original netlist can be absorbed
into the combinational gate that provides the DFF’s
input signal.

q Feedback signals are synthesized for the PL netlist to
ensure safety and liveness of the resulting netlist.
Feedback signals carry no value information, just
phase information and are single wires. The details of
feedback generation are described in [2] [3] [4]. Muller
C-elements [9] [10]are used to concentrate feedbacks
at a particular gate when needed.

Figure 2. Translation and First Fire of 2-bit Counter

Figure 2 illustrates the translation of a 2-bit counter to a PL
netlist and a sample firing of the circuit. Buffers replace the
DFFs in this case, although most of the time they can be
absorbed into neighboring gates. The “wedge” placed on the
outputs of gates G1 and G2 indicate that he net is connected
to the inverted phase outputs of the gate to ensure that a gate
is ready to fire in the loops formed by gates G1-G2, G1-G4
and G3-G4. The feedback net from gate G4 to G1 is added to
make the netlist safe. Figure 2a shows the circuit after reset
and Figure 2b shows the state of the circuit after it fires once.

C. PL Gate Behavior

Each PL gate must compute a logical function and enforce
the firing rule. The logical function is the function translated
from the synchronous netlist, such as the XOR and NOT in
Figure 2. The firing rule specifies that the PL gate wait until
its inputs (including the feedback inputs) are the same phase
as the gate before it fires. When the gate fires, the internal
phase changes, the value signal of the output becomes the
logical output, and the output phase becomes the opposite of
the gate phase.

IV. PHASED LOGIC GATE DESIGN

In [3] a SRAM-based PL gate is described. This gate uses
decoders and an SRAM to implement the detection of LEDR
inputs and gate firing (control) as well as the computation of
the logical function. This means that the SRAM array is read
anytime the input phases match, even if the data values have
not changed. This has a negative impact on power
consumption in a phased logic system since the logical
function must be switched every time the gate fires.

A new gate design, illustrated in Figure 3, has been
developed with separate control and compute logic. This
separation is important as it eliminates computation
transitions for cases when the gate fires, but the input values
remain constant.

In this gate design, the input completion is detected using a
Muller-C element (C-gate) and the gate phase is held at its
output. The LUT4 computes the logical function in parallel
with the input completion. When a new set of inputs are
detected, the C-gate toggles and causes the output latches to
be updated. The delay block is necessary to ensure that the
internal timing constraints are met.

A. PL Gate Delay Constraints

The delay constraints that must be met for proper operation
of the gate are derived from the timing requirements of the
latches and the PL gate firing rules. A D-latch must have a
minimum pulse width on the enable input, and the D input
must be stable one setup time before the trailing edge of the
pulse. In addition, the firing rule requires that the PL gate t
and v outputs change only once per gate fire, which puts a
further restriction on the D inputs: that they arrive before the
latch is enabled.

When these constraints are applied to the PL gate design,

E

feedback (odd)
G4 G3

G2 G1

E

E

E

odd 1

even 0

even 0

odd 0

E

feedback (even)
G4 G3

G2 G1

E

O

O

even 1

even 0

even 0

even 0

D Q

D Q

a. Clocked 2-bit Counter

b. Translated PL Counter (reset state) c. PL Counter after G2,G4 fire

 3

D Q

EN

R r-bit

Q

D Q

EN

R r-bit

Q

D-latch

D-latch

 v_rbit

t_rbitreset

reset

new_t

new_v

out_phase = gate_phase

out_phase

LUT4

gate_phase

de
la

y

C

reset

fi
a_v
a_t
b_v
b_t
c_v
c_t
d_v
d_t

a_v
b_v
c_v
d_v

fo
fo_b

v

t

t_b

Input completion detection

G1

G2

G3

Figure 3. LUT4-based PL Gate

we find that the delay of the completion logic (Dcomplete) and
delay element (Ddelay) must be greater than the delay of the
LUT4 gate (DLUT4). This ensures that the new_v value is
defined before the latches are enabled. In addition, the delay
of G2 (DG2) must be larger than the delay of G1 (DG1) so that
only the final value of new_t is latched, enforcing the
requirement of a single transition per PL gate fire. Since the
pulse width of the enable signal is defined by the enable to Q
delay of the latch (DEN-Q) and the delays of G3 and G4, the
sum of these delays must be greater than the minimum pulse
width of the latch (Tpulse-min). These one-sided delay
constraints are not difficult to satisfy in the implementation.

 Dcomplete + Ddelay > DLUT4 (1)
 DG2 > DG1 (2)

 DEN-Q + DG2 + DG2 > Tpulse-min (3)

 The worst case delay through this gate is given by the
sum of the completion logic delay, the delay block, Dg2 and
the latch delay.

 DPL-GATE = Dcomplete + Ddelay + DEN-Q (4)

Note that the PL gate delay can be approximated by the sum
of the LUT4 and the latch delay.

V. AN EARLY-EVALUATION PL GATE

Because there is no global clock, the performance of any
self-timed system is a function of the average case of data-
dependent delays in the system. A feature that improves the
performance of PL systems by speeding up computation for
some cases is called early evaluation (EE). Early evaluation
is a speedup mechanism by which a PL gate is allowed to fire
when only a subset of its inputs has arrived. Figure 4
illustrates how two PL4gates (termed a master and a trigger)
can be combined to form one early evaluation PL4gate. The
master contains the normal evaluation function while the
trigger contains the early evaluation function. When the
early evaluation function is true, then the master gate is fired
and the current value of the master LUT4 is used. Obviously

the trigger gate should be based upon early arriving signals,
and the trigger function should depend upon a subset of the
master function signals such that the late arriving signals are
don’t cares.

An example of an early evaluation function is Carry
generation within a ripple carry adder. The master LUT
would have the normal carry equation, while the trigger LUT
would have the function F = AB + A’B’, which causes the
carry to be generated early for either generate (AB) or kill
(A’B’). Note that the Cin value for these cases is a don’t care,
so the master gate can be fired early.

Figure 4. Early Evaluation Gate from Two PL4gates

A. Early Evaluate Gate Operation

The trigger gate shown in Figure 4 is the same gate as
shown as in Figure 3. The master gate is augmented with
additional gating to support early evaluation. Configuration
bits in the master gate allow the gate pair to function as two
independent PL gates, or as one Early Evaluation (EE) gate.
Two signals link the master gate and trigger gate during early
evaluation operation - the output of the trigger gate LUT4
(enable) and the phase of the trigger gate (pt). An early
firing occurs if the trigger gate fires before the master gate
and if the enable from the trigger gate is a ’1’. The circuitry

Feedback
from master
destinations

fo_b

A
B
C

fi

v
t

enable

PL4gate
master

fo_b

A
B

fi

v
t

PL4gate
trigger

C

F = C(A+B) + AB

F = A’B’ + AB
Feedback
to all
master
sources

C

new_v

pt

 4

Figure 5. Master gate for Early Evaluation

in the master gate labeled as phase select (see Figure 5) in the
master gate detects an early fire (enable = ’1’ and master
phase not equal to trigger phase) and uses the trigger phase
for the output phase.

Early Evaluation (EE) gates cause a slight modification of
the feedback generation rules presented in [2]. Because it is
not known which gate will fire first (master or trigger), both
the master feedback signal and the trigger feedback signal
must go to all master sources (these two signals can be
combined via a 2-input C element to form one feedback
signal for the master/trigger pair). Also, feedback signals
from a master destination must terminate on both the master
and trigger gate instead of being allowed to terminate on a
source feeding the master/trigger pair. This is needed in order
to provide a single point of control for a preventing a possible
deadlock situation. The deadlock arises if a destination gate
for the master’s output value consumes an early ’fire’ output
value and provides the feedback signal before all of the tardy
inputs have arrived at the master. This causes the feedback
signal to be out of phase with the tardy inputs, preventing the
master gate from ever firing again. The master gate in Figure
4 has additional gating on the feedback input that causes the
master gate to ignore the feedback input until all inputs have
arrived only in the case of an early firing (trigger phase not
equal to master phase).

B. EE-PL Gate Delay Constraints

The equations presented in section IV can be used for
master gate operation as long as the extra delay due to the
phase select circuitry (Figure 5) is lumped into the input
completion detection delay (Dcomplete) of equation (1). In
order to determine the minimum value of Ddelay we need to
consider the shortest path through the selection logic of
Figure 5. After a completed EE gate firing, both master
phase and trigger phase will be equal, selecting the master
phase as the phase value for the next output value. It is easy
to see that this is the shortest path of the selection logic and is
exercised for a non-early firing of the master/trigger pair. An
early firing (trigger fires first) will exercise a longer delay

path in the select circuit, causing the master output latches to
be enabled well after the master LUT value is ready.

VI. POWER AND PERFORMANCE COMPARISONS

In this section we present two PL design examples and
compare them to their clocked counterparts. We do not have
enough design experience with PL circuits yet to draw any
sweeping conclusions, and present these for information
purposes only. For clocked versus PL delay comparisons, we
assigned a LUT4 a normalized delay of 1.0, a PL gate (Figure
4) a delay of 1.4 (40% output latch delay penalty), and an
early firing of a master/trigger pair as 1.6 (recall that an early
firing exercises a longer delay path in the master gate phase
selection logic). For power comparisons, the VHDL
simulations are instrumented to track compute and control
signal transitions. A compute transition is counted as any
change of value on a LUT4 input (simultaneous or near
simultaneous arrivals were only counted once). For the
clocked netlist, an active clock edge arrival at a D-Flip-Flop
is a control transition. For the PL netlist, the firing of a PL
gate is a control transition. From Altera Apex [11] and
Xilinx Virtex [12] FPGA power estimation spreadsheets for
0.18µ technologies, a LUT4 is estimated to switch
approximately 1.05 pF, and a D-Flip-Flop 0.14 pF. HSPICE
simulations based on a 0.25µ technology of the pl4gate
control indicate that it switches approximately 0.2 pF per
firing (this value would be expected to shrink somewhat for a
0.18µ process but we will use this somewhat inflated value so
as to help factor in the output token phase or ’t’ bit wiring
capacitance). Four-input Muller C-elements were found to
switch 0.75 pF per output change.

The first example design is a 32-bit accumulator with a
synchronous clear. A carry look-ahead adder is used for the
clocked netlist and a ripple carry adder with early evaluation
is used for the PL netlist. Figure 6 shows the second design,
a shift/add 16x16 iterative multiplier using a single adder.
Again, the clocked design used a CLA while the PL design
used a ripple adder with early evaluation. The PL design had
an extra speedup path in that a kill line was used to early fire

 D Q

EN

R r-bit

Q

 D Q

EN

R r-bit

Q

D-latch

D-latch

 v_rbit

t_rbit reset

reset

new_t

new_v

out_phase = gate_phase

out_phase

LUT4

de
la

y

C

reset

fi

a_v
a_t
b_v
b_t
c_v
c_t
d_v
d_t

a_v
b_v
c_v
d_v

fo
fo_b

v

t

t_b
G1

G2

G3

C

0 1

0

1

pt

pt

enable

config

config

Phase select

 5

every carry bit in case the multiplier bit was ’0’. This did not
cost any extra LUT4s since there was a free input available on
the LUT4 for the carry function. A multiplication required
17 clocks, one clock for input of multiplier and multiplicand
operands, and 16 clocks for computation. A four bit counter
was used in the FSM for counting purposes. Handshaking
lines irdy and ordy were used for I/O purposes.

Figure 6. 16 x 16 Iterative Multiplier
Table 1 gives the delay, capacitance and energy per sample

measured from the VHDL gate level simulations. The delay
values are normalized to LUT4 delays. The energy value is
simply a figure of merit for work obtained by multiplying the
capacitance column times the delay column, and dividing by
a constant scale factor.

Table 1: Performance values for Design Examples

Design dly(LUT4s) cap(fF) Energy %diff

Clk (acc) 12 205 24.7
PL (acc) 8.2 193.1 15.8 -36.0%
Clk (mult) 187 3415 6385
PL (mult) 151 3557 5357 -16.1%

The accumulator design is designated as ’acc’ and the

iterative multiplier as ’mult’. In both cases, the PL designs
are more energy efficient than the clocked designs. The PL
iterative multiplier actually switched slightly more
capacitance than the clocked design, but was more energy
efficient due to higher performance.

In looking at the performance figures of Table 1, the ripple
early evaluation capability allows the PL designs to overcome
the 40% gate delay penalty and to outperform the clocked
LUT4 netlists. We are aware that both Xilinx and Altera
include fast carry generation logic within their cells, while
our clocked netlists had the carry logic as a dedicated LUT4.
Obviously, the carry logic along with the early evaluation for
the carry could be integrated into the pl4gate design. The
exact effect upon the performance and capacitance values in
Table 1 is an area of future study.

Table 2 shows the transition counts from which the
capacitance values of Table 1 were generated. The reduction
in compute transitions in the PL designs is due the different
adder structures (CLA versus ripple) and also from the
filtering of transient computations.

Table 2: Transition Counts for Design Examples

Design Compute %diff Control Cgate
Clk (acc) 110133 38115 0
PL (acc) 81031 -26.4% 112135 80454
Clk (mult) 1806621 791863 0
PL (mult) 1155446 -36.0% 3735097 1750466

While PL designs can reduce compute transitions, PL

dramatically increases control transitions since there is now
control in every cell, and every cell changes phase during a
compute cycle. Because of this control overhead, it is critical
that the ratio of compute capacitance to control capacitance
be large. In our LUT4 based pl4gate design, this ratio is 5 to
1, and we believe that this might be near the lowest ratio in
order for a PL system to be power competitive with clocked
control.

VII. SUMMARY AND FUTURE WORK

We have presented LUT4-based cell designs for a self-
timed design methodology called Phased Logic. The cell
design supports data dependent computation by pairing two
normal gates into a master/trigger combination that allows
firing of the pair based upon arrival of a subset of the inputs.
We presented two sample designs that made use of this early
evaluation capability. Comparison of the two designs to their
clocked counterparts showed that the designs were
competitive in both performance and power. The impact of
early evaluation on more complex designs is an area of future
study.

REFERENCES
[1] C. H. (Kees) van Berkel, Mark B. Josephs, and Steven M. Nowick.

Scanning the technology: Applications of asynchronous circuits.
Proceedings of the IEEE, 87(2):223-233, February 1999.

[2] Daniel H. Linder and James C. Harden, “Phased Logic: Supporting the
Synchronous Design Paradigm with Delay-insensitive Circuitry.” IEEE
Transactions on Computers, Vol 45, No 9, September 1996.

[3] Daniel H. Linder, Phased Logic: A Design Methodology for Delay-
Insensitive Synchronous Circuitry, PhD thesis, Mississippi State Univ.,
1994.

[4] R. Reese, and C. Traver, "Synthesis and Simulation of Phased Logic
Systems", Technical Report MSSU-COE-ERC-00-09, MSU/NSF
Engineering Research Center, June 2000. Presented at International
Workshop on Logic Synthesis (IWLS 2000), Dana Point, CA, June 2,
2000.

[5] A.J. McAuley, “Four State Asynchronous Architectures,” IEEE
Transactions on Computers, vol. 41, February 1992.

[6] M.E. Dean, T.E. Williams, and D.L. Dill, “Efficient Self-Timing with
Level-Encoded 2-Phase Dual-Rail (LEDR),” in Advanced Research in
VLSI, 1991.

[7] Dana L. How, “A Self Clocked FPGA for General Purpose Logic
Emulation”, in proceedings of IEEE 1996 Custom Integrated Circuits
Conference, 1996, pp. 148-151.

[8] Michiel Ligthart, Karl Fant, Ross Smith, Alexander Taubin, Alex
Kondratyev, "Asynchronous Design Using Commercial HDL Synthesis
Tools", In Sixth Int. Symp. on Advanced Research in Asynchronous
Circuits and Systems (Async 2000), Eilat, Israel, April 2000.

[9] D.E. Muller and W. S. Bartky, "A Theory of Asynchronous Circuits", in
Proc. Int. Symp. on Theory of Switching, vol. 29, pp.204-243, 1959.

Adder

LS
Product

MS
Product

MCAND MPLIER

16

16 16

16

LSB

shift
kill
(PL only)

shift
load

FSM

ordy

irdy

 6

[10] Tzyh-Yung Wuu and Sarma B. K. Vrudhula, "A Design of a Fast and Area
Efficient Mult-Input Muller C-element", IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, Vol 1, No. 2, June 1993.

[11] Altera Apex Power Estimator,
http://www.altera.com/html/products/power_calc.html

[12] Xilinx Virtex Power Estimator,
http://www.xilinx.com/support/techsup/powerest/index.htm

[13] Rabaey, Jan M., Digital Integrated Circuits: A Design Perspective,
Prentice Hall, pp 408-412.

[14] I. Sutherland, “Micropipelines”, Communications of the ACM, Vol 32,
No. 6, June 1989, pp. 720-738.

[15] M.R. Greenstreet, T.E. Williams, and J . Staunstrup, "Self-Timed
Iteration", VLSI ’87, C. H. Sequin (Ed.), Elsevier Science Publishers, 1988,
pp. 309-322.

[16] Scot Hauck, Steven Burns, Gaetano Borriello, Carl Ebeling, “An FPGA
for Implementing Asychronous Circuits”, IEEE Design and Test of
Computers, Fall 1994, pp. 60-69.

[17] Gerald E. Sobelman, Karl Fant, "CMOS Circuit Design of Threshold
Gates With Hysteresis", In 1998 IEEE International Symposium on
Circuits and Systems, Monterey, CA, May 1998.

[18] Ross Smith, Karl Fant, Dave Parker, Rick Stephani, Ching-Yi Wang, "An
Asychronous 2-D Discrete Cosine Transform Chip", In Fourth Int. Symp.
on Advanced Research in Asychronous Circuits and Systems (Async’98)
, San Diego, California, March, 1998.

