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Abstract-- A self-timed programmable architecture used for 
the implementation of Phased Logic (PL) systems is described. 
PL systems are automatically translated from clocked designs 
and result in self-timed circuits that are insensitive to delays 
between gates. The target implementation is a self-timed FPGA 
architecture composed of PL gates. A PL gate design based on a 
4-input lookup table is presented. Power and performance 
estimates of two designs are given and are compared to their 
clocked counterparts. 
 

Index Terms--self-timed, asynchronous, programmable  

I. INTRODUCTION 

HROUGHOUT the ITRS-99 Roadmap on Design, continual 
references are made to clock and timing related 

challenges facing designers through and beyond 2005.  Many 
of the problems stem from simply taking the current design 
methodology for computing systems (a global clock between 
components, with higher rate clocks within components) and 
projecting this usage within the System-on-a-Chip circa 2005 
and beyond. Asynchronous and self-timed systems have been 
proposed in the past to avoid global clock timing and to 
achieve improved performance, noise immunity, and low 
power [1]. These systems typically require special design 
methods and result in circuits with area overhead to 
implement asynchronous signaling such as dual-rail or 
bundled data and handshaking. In this paper an architecture 
for a programmable logic implementation of Phased Logic 
(PL) systems is described [2] [3] [4]. This approach takes 
advantage of the well-established synchronous design 
methodology and commercial synthesis tools. Level Encoded 
two-phase Dual-Rail (LEDR) encoding of signals [5] [6] and 
phased logic gates are used in the implementation. The 
resulting  self-timed PL systems are insensitive to delays 
between PL gates. The area overhead of the phased logic 
gates using a lookup table (LUT) implementation of the logic 
function is comparable to the overhead in synchronous FPGA 
and CPLD logic cells and we show some potential advantages 
in performance and power. In section II we will put this work 
in context of others who have researched similar topics. This 
will be followed by an overview of the PL design method and 
a specification of the PL gate behavior. Section IV will 
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describe the PL gate design based on a 4-input LUT, Section 
V will describe an enhanced version of this gate that takes 
advantage of data-dependent early evaluation, and Section VI 
will present some power and performance results from 
designs composed from these gates. A summary and 
description of further work is given in Section VII. 

II. BACKGROUND 

A self-timed FPGA based upon 3-input LUTs (LUT3) and 
using LEDR encoding was presented by How in [7]. The 
author uses the cell in the context of Sutherland’s 
micropipelines [14] and self-timed iterative rings [15] and 
provides support specifically for those architectures. Another 
FPGA architecture for asynchronous logic was proposed in 
[16].  Two types of function blocks were provided; a 
LUT3+Dlatch block and a block that could implement an 
arbiter, enabled arbiter, or synchronizer.  This FPGA 
architecture was aimed at accommodating a range of 
asynchronous design styles, and allowed for mixed 
synchronous and asynchronous designs. By contrast, our 
proposed function block is aimed at only supporting the PL 
design style, and would implement PL designs more 
efficiently than [16] or [7]. 

The asynchronous design methodology known as Null 
Convention Logic (NCL) also offers automated synthesis of 
asynchronous designs using commercial synthesis tools [[8]. 
NCL uses a NULL/DATA/NULL encoding instead of LEDR 
and their designs are targeted at standard cell 
implementations [17] [18] rather than FPGAs. 

In comparing physical implementation characteristics, 
NCL has some delay sensitivity between NCL gates whereas 
PL systems are insensitive to delays between PL gates.  

III. PHASED LOGIC  DESIGN 

A. PL Design Methodology 

Phased Logic designs are specified in VHDL RTL and 
synthesized by Synopsys Design Compiler to a netlist of D 
flip-flops (DFF) and 4-input logic gates.  This netlist is then 
translated to a netlist of PL gates. 

B. LEDR Encoding and Netlist Translation 

A Phased Logic netlist can be thought of as a marked 
graph with data tokens flowing throughout the graph.   Each 
data token, encoded using LEDR, has a phase that is either 
even or odd. A PL gate also has an internal even or odd phase 
(state). A PL gate fires and changes phase whenever all of the 
phases of the inputs matches the internal gate phase.    
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Figure 1a illustrates the encoding of the dual rail signals 
used between PL gates.  Notice that the “value signal” (top), 
is the logical value and two signals together define the phase. 
A sample gate firing is shown in 1b. The controlled firing of 
PL gates is what gives a phased logic system its delay 
insensitivity to wiring delays between PL gates.  
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Figure 1.  LEDR Encoding and PL Gate Firing 
The mapping of a clocked netlist (DFFs+ combinational 

logic) to a phased logic netlist consists of the following 
operations: 
q All gates are replaced by PL gate equivalents. A PL 

gate equivalent is the original combinational logic 
function plus the control logic necessary for gate 
firing.  A DFF in the original netlist can be absorbed 
into the combinational gate that provides the DFF’s 
input signal. 

q Feedback signals are synthesized for the PL netlist to 
ensure safety and liveness of the resulting netlist.  
Feedback signals carry no value information, just 
phase information and are single wires.  The details of 
feedback generation are described in [2] [3] [4]. Muller 
C-elements [9] [10]are used to concentrate feedbacks 
at a particular gate when needed. 

Figure 2. Translation and First Fire of 2-bit Counter 

Figure 2 illustrates the translation of a 2-bit counter to a PL 
netlist and a sample firing of the circuit. Buffers replace the 
DFFs in this case, although most of the time they can be 
absorbed into neighboring gates. The “wedge” placed on the 
outputs of gates G1 and G2 indicate that he net is connected 
to the inverted phase outputs of the gate to ensure that a gate 
is ready to fire in the loops formed by gates G1-G2, G1-G4 
and G3-G4. The feedback net from gate G4 to G1 is added to 
make the netlist safe. Figure 2a shows the circuit after reset 
and Figure 2b shows the state of the circuit after it fires once. 

C. PL Gate Behavior 

Each PL gate must compute a logical function and enforce 
the firing rule. The logical function is the function translated 
from the synchronous netlist, such as the XOR and NOT in 
Figure 2. The firing rule specifies that the PL gate wait until 
its inputs (including the feedback inputs) are the same phase 
as the gate before it fires. When the gate fires, the internal 
phase changes, the value signal of the output becomes the 
logical output, and the output phase becomes the opposite of 
the gate phase. 

IV. PHASED LOGIC GATE DESIGN 

In [3] a SRAM-based PL gate is described. This gate uses 
decoders and an SRAM to implement the detection of LEDR 
inputs and gate firing (control) as well as the computation of 
the logical function. This means that the SRAM array is read 
anytime the input phases match, even if the data values have 
not changed.  This has a negative impact on power 
consumption in a phased logic system since the logical 
function must be switched every time the gate fires. 

A new gate design, illustrated in Figure 3, has been 
developed with separate control and compute logic. This 
separation is important as it eliminates computation 
transitions for cases when the gate fires, but the input values 
remain constant. 

In this gate design, the input completion is detected using a 
Muller-C element (C-gate) and the gate phase is held at its 
output. The LUT4 computes the logical function in parallel 
with the input completion.  When a new set of inputs are 
detected, the C-gate toggles and causes the output latches to 
be updated. The delay block is necessary to ensure that the 
internal timing constraints are met. 

A. PL Gate Delay Constraints 

The delay constraints that must be met for proper operation 
of the gate are derived from the timing requirements of the 
latches and the PL gate firing rules. A D-latch must have a 
minimum pulse width on the enable input, and the D input 
must be stable one setup time before the trailing edge of the 
pulse. In addition, the firing rule requires that the PL gate t 
and v outputs change only once per gate fire, which puts a 
further restriction on the D inputs: that they arrive before the 
latch is enabled.  

When these constraints are applied to the PL gate design, 
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Figure 3. LUT4-based PL Gate 

 
we find that the delay of the completion logic (Dcomplete) and 
delay element (Ddelay) must be greater than the delay of the 
LUT4 gate (DLUT4). This ensures that the new_v value is 
defined before the latches are enabled. In addition, the delay 
of G2 (DG2) must be larger than the delay of G1 (DG1) so that 
only the final value of new_t is latched, enforcing the 
requirement of a single transition per PL gate fire.  Since the 
pulse width of the enable signal is defined by the enable to Q 
delay of the latch (DEN-Q) and the delays of G3 and G4, the 
sum of these delays must be greater than the minimum pulse 
width of the latch (Tpulse-min). These one-sided delay 
constraints are not difficult to satisfy in the implementation.  

   Dcomplete + Ddelay > DLUT4  (1) 
   DG2  > DG1 (2) 

   DEN-Q + DG2  + DG2  > Tpulse-min  (3) 

   The worst case delay through this gate is given by the 
sum of the completion logic delay, the delay block, Dg2 and 
the latch delay.   

   DPL-GATE  =  Dcomplete + Ddelay + DEN-Q                     (4) 

Note that the PL gate delay can be approximated by the sum 
of the LUT4 and the latch delay. 

V. AN EARLY-EVALUATION PL GATE 

Because there is no global clock, the performance of any 
self-timed system is a function of the average case of data-
dependent delays in the system. A feature that improves the 
performance of PL systems by speeding up computation for 
some cases is called early evaluation (EE).   Early evaluation 
is a speedup mechanism by which a PL gate is allowed to fire 
when only a subset of its inputs has arrived.  Figure 4   
illustrates how two PL4gates (termed a master and a trigger) 
can be combined to form one early evaluation PL4gate.  The 
master contains the normal evaluation function while the 
trigger contains the early evaluation function.   When the 
early evaluation function is true, then the master gate is fired 
and the current value of the master LUT4 is used.  Obviously 

the trigger gate should be based upon early arriving signals, 
and the trigger function should depend upon a subset of the 
master function signals such that the late arriving signals are 
don’t cares.   

An example of an early evaluation function is Carry 
generation within a ripple carry adder. The master LUT 
would have the normal carry equation, while the trigger LUT 
would have the function F = AB + A’B’, which causes the 
carry to be generated early for either generate (AB) or kill 
(A’B’).  Note that the Cin value for these cases is a don’t care, 
so the master gate can be fired early. 

Figure 4. Early Evaluation Gate from Two PL4gates 

A. Early Evaluate Gate Operation 

The trigger gate shown in Figure 4 is the same gate as 
shown as in Figure 3.  The master gate is augmented with 
additional gating to support early evaluation.  Configuration 
bits in the master gate allow the gate pair to function as two 
independent PL gates, or as one Early Evaluation (EE) gate. 
Two signals link the master gate and trigger gate during early 
evaluation operation - the output of the trigger gate LUT4 
(enable) and the phase of the trigger gate (pt).  An early 
firing occurs if the trigger gate fires before the master gate 
and if the enable from the trigger gate is a ’1’.  The circuitry 
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Figure 5. Master gate for Early Evaluation 

in the master gate labeled as phase select (see Figure 5) in the 
master gate detects an early fire (enable = ’1’ and master 
phase not equal to trigger phase) and uses the trigger phase 
for the output phase.   

Early Evaluation (EE) gates cause a slight modification of 
the feedback generation rules presented in [2].  Because it is 
not known which gate will fire first (master or trigger), both 
the master feedback signal and the trigger feedback signal 
must go to all master sources (these two signals can be 
combined via a 2-input C element to form one feedback 
signal for the master/trigger pair).   Also, feedback signals 
from a master destination must terminate on both the master 
and trigger gate instead of being allowed to terminate on a 
source feeding the master/trigger pair. This is needed in order 
to provide a single point of control for a preventing a possible 
deadlock situation. The deadlock arises if a destination gate 
for the master’s output value consumes an early ’fire’ output 
value and provides the feedback signal before all of the tardy 
inputs have arrived at the master.  This causes the feedback 
signal to be out of phase with the tardy inputs, preventing the 
master gate from ever firing again.  The master gate in Figure 
4 has additional gating on the feedback input that causes the 
master gate to ignore the feedback input until all inputs have 
arrived only in the case of an early firing (trigger phase not 
equal to master phase).  

B. EE-PL Gate Delay Constraints 

The equations presented in section IV can be used for 
master gate operation as long as the extra delay due to the 
phase select circuitry (Figure 5) is lumped into the input 
completion detection delay (Dcomplete ) of equation (1).   In 
order to determine the minimum value of Ddelay we need to 
consider the shortest path through the selection logic of 
Figure 5.  After a completed EE gate firing, both master 
phase and trigger phase will be equal, selecting the master 
phase as the phase value for the next output value.  It is easy 
to see that this is the shortest path of the selection logic and is 
exercised for a non-early firing of the master/trigger pair.  An 
early firing (trigger fires first) will exercise a longer delay 

path in the select circuit, causing the master output latches to 
be enabled well after the master LUT value is ready.  

VI. POWER AND PERFORMANCE COMPARISONS 

In this section we present two PL design examples and 
compare them to their clocked counterparts.   We do not have 
enough design experience with PL circuits yet to draw any 
sweeping conclusions, and present these for information 
purposes only.  For clocked versus PL delay comparisons, we 
assigned a LUT4 a normalized delay of 1.0, a PL gate (Figure 
4) a delay of 1.4 (40% output latch delay penalty), and an 
early firing of a master/trigger pair as 1.6 (recall that an early 
firing exercises a longer delay path in the master gate phase 
selection logic).  For power comparisons, the VHDL 
simulations are instrumented to track compute and control 
signal transitions.  A compute transition is counted as any 
change of value on a LUT4 input (simultaneous or near 
simultaneous arrivals were only counted once).  For the 
clocked netlist, an active clock edge arrival at a D-Flip-Flop 
is a control transition. For the PL netlist, the firing of a PL 
gate is a control transition.   From Altera Apex [11] and 
Xilinx Virtex [12] FPGA power estimation spreadsheets for 
0.18µ technologies, a LUT4 is estimated to switch 
approximately 1.05 pF, and a D-Flip-Flop 0.14 pF. HSPICE 
simulations based on a 0.25µ technology of the pl4gate 
control indicate that it switches approximately 0.2 pF per 
firing (this value would be expected to shrink somewhat for a 
0.18µ process but we will use this somewhat inflated value so 
as to help factor in the output token phase or  ’t’ bit wiring 
capacitance). Four-input Muller C-elements were found to 
switch 0.75 pF per output change. 

The first example design is a 32-bit accumulator with a 
synchronous clear.  A carry look-ahead adder is used for the 
clocked netlist and a ripple carry adder with early evaluation 
is used for the PL netlist.  Figure 6 shows the second design, 
a shift/add 16x16 iterative multiplier using a single adder.  
Again, the clocked design used a CLA while the PL design 
used a ripple adder with early evaluation.  The PL design had 
an extra speedup path in that a kill line was used to early fire 
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every carry bit in case the multiplier bit was ’0’. This did not 
cost any extra LUT4s since there was a free input available on 
the LUT4 for the carry function.  A multiplication required 
17 clocks, one clock for input of multiplier and multiplicand 
operands, and 16 clocks for computation. A four bit counter 
was used in the FSM for counting purposes. Handshaking 
lines irdy and ordy were used for I/O purposes. 

Figure 6. 16 x 16 Iterative Multiplier 
Table 1 gives the delay, capacitance and energy per sample 

measured from the VHDL gate level simulations.  The delay 
values are normalized to LUT4 delays.  The energy value is 
simply a figure of merit for work obtained by multiplying the 
capacitance column times the delay column, and dividing by 
a constant scale factor. 

Table 1: Performance values for Design Examples 

Design dly(LUT4s) cap(fF) Energy %diff 

Clk (acc) 12 205 24.7   
PL (acc) 8.2 193.1 15.8 -36.0% 
Clk (mult) 187 3415 6385   
PL (mult) 151 3557 5357 -16.1% 

 
The accumulator design is designated as ’acc’ and the 

iterative multiplier as ’mult’.    In both cases, the PL designs 
are more energy efficient than the clocked designs. The PL 
iterative multiplier actually switched slightly more 
capacitance than the clocked design, but was more energy 
efficient due to higher performance. 

In looking at the performance figures of Table 1, the ripple 
early evaluation capability allows the PL designs to overcome 
the 40% gate delay penalty and to outperform the clocked 
LUT4 netlists.  We are aware that both Xilinx and Altera 
include fast carry generation logic within their cells, while 
our clocked netlists had the carry logic as a dedicated LUT4.  
Obviously, the carry logic along with the early evaluation for 
the carry could be integrated into the pl4gate design.   The 
exact effect upon the performance and capacitance values in 
Table 1 is an area of future study. 

Table 2 shows the transition counts from which the 
capacitance values of Table 1 were generated.  The reduction 
in compute transitions in the PL designs is due the different 
adder structures (CLA versus ripple) and also from the 
filtering of transient computations. 

 
Table 2: Transition Counts for Design Examples 

Design Compute %diff Control Cgate 
Clk (acc) 110133   38115 0 
PL (acc) 81031 -26.4% 112135 80454 
Clk (mult) 1806621   791863 0 
PL (mult) 1155446 -36.0% 3735097 1750466 

 
While PL designs can reduce compute transitions, PL 

dramatically increases control transitions since there is now 
control in every cell, and every cell changes phase during a 
compute cycle.  Because of this control overhead, it is critical 
that the ratio of compute capacitance to control capacitance 
be large. In our LUT4 based pl4gate design, this ratio is 5 to 
1, and we believe that this might be near the lowest ratio in 
order for a PL system to be power competitive with clocked 
control. 

VII. SUMMARY AND FUTURE WORK 

We have presented LUT4-based cell designs for a self-
timed design methodology called Phased Logic.  The cell 
design supports data dependent computation by pairing two 
normal gates into a master/trigger combination that allows 
firing of the pair based upon arrival of a subset of the inputs.  
We presented two sample designs that made use of this early 
evaluation capability.  Comparison of the two designs to their 
clocked counterparts showed that the designs were 
competitive in both performance and power.  The impact of 
early evaluation on more complex designs is an area of future 
study. 
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