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Abstract—In our work, we investigate alternative forms of
automatic modulation classification with deep learning and statis-
tical methods. With a growing number of devices communicating
through wireless transmission mediums, automatic modulation
classification plays a critical role in reading an observed signal.
We compare our proposed method with the current state of the
art and show that traditional convolutional neural networks can
outperform residual neural networks for the task of modulation
classification. Using an approach inspired by research from the
speaker verification community, we show that the modulation
method used to transmit a signal can be classified into one of 24
candidate modulation types with greater than 98% accuracy for
signals with high signal to noise ratios.

I. INTRODUCTION

Recognizing the type of signal modulation used to transmit
a signal is an important, open research topic in modern com-
munication systems. Real-time classification of modulation
types can be applied to “spectrum interference monitoring,
radio fault detection, dynamic spectrum access, opportunistic
mesh networking, and numerous regulatory and defense ap-
plications” [1]. Once a modulated signal has been obtained,
the signal must be demodulated in order to understand the
transmitted message. Demodulation is the first stage after a
signal has been received by a software-defined radio. Systems
where the demodulation stage has to be done quickly require
that the modulation type is known, and improved modulation
classification can increase the throughput of these systems if
the modulation type can be identified with a higher degree
of accuracy. Therefore, automatic modulation classification
(AMC) is currently an important research topic in the fields
of machine learning and communication systems, specifically
for software-defined radios.

Corgan et al. [2] illustrates that deep convolutional neural
networks are able to achieve high classification performance
particularly at low signal to noise ratios (SNRs) on a dataset
comprising 11 different types of modulation. In [1], Oshea
et al. expanded the dataset to include 24 different modula-
tion types and achieved high classification performance us-
ing convolutional neural networks—specifically using residual
connections within the network (ResNet). With respect to the
expanded dataset, the ResNet seen in Table I attained approxi-
mately 95% classification accuracy at high SNR values. While
[1] found that ResNets outperformed traditional CNNs for this
task (see Table II), [3] demonstrates the use of spectrograms

and IQ constellation plots as input features to a traditional
CNN performs in nearly an equivalent manner as compared
to the results obtained by the baseline CNN network in [1].
Further, [4]–[6] also utilized IQ constellations as an input
feature into their machine learning models on a smaller scale
of 4 or 8 modulation types. Other features have been used
in AMC – [7], [8] utilized statistical features and support
vector machines while [9], [10] used fusion methods in CNN
classifiers.

TABLE I
RESNET ARCHITECTURE IN [1]

Layer Output Dimensions
Input 2 x 1024

Residual Stack 32 x 512
Residual Stack 32 x 256
Residual Stack 32 x 128
Residual Stack 32 x 64
Residual Stack 32 x 32
Residual Stack 32 x 16

FC/SeLU 128
FC/SeLU 128

FC/Softmax 24

TABLE II
CNN ARCHITECTURE IN [1]

Layer Output Dimensions
Input 2 x 1024

Conv 1D 64 x 1024
Max Pool 64 x 512
Conv 1D 64 x 512
Max Pool 64 x 256
Conv 1D 64 x 256
Max Pool 64 x 128
Conv 1D 64 x 128
Max Pool 64 x 64
Conv 1D 64 x 64
Max Pool 64 x 32
Conv 1D 64 x 32
Max Pool 64 x 16
Conv 1D 64 x 16
Max Pool 64 x 8
FC/SeLU 128
FC/SeLU 128

FC/Softmax 24

All these previous works focus on enhancing classification
performance, but they do not directly explore the required



time to classify a signal or network throughput. Tridgell, in
his dissertation [11], builds upon these works by investigating
these architectures when deployed on resource-limited Field
Programmable Gate Arrays (FGPAs). His work stresses the
importance of reducing the number of parameters for modula-
tion classifiers because they are typically deployed in resource-
constrained embedded systems.

In this work, we explore alternative methods to classify
modulation types on radio signals by utilizing the in-phase
(I) and quadrature (Q) components of signals using deep
learning. No additional feature extraction is applied. Through
an approach inspired by X-Vectors [12], we show that the
modulation method used to transmit a signal can be classified
with a high degree of accuracy while maintaining a compact
neural network architecture.

II. DATASET

To evaluate different machine learning architectures, we
chose the RadioML 2018.01A dataset that is comprised of
the same 24 different modulation types used in [1]. There are
a total of 2.56 million labeled signals each consisting of 1024
time domain digitized samples of in-phase (I) and quadra-
ture (Q) signal components. The 24 modulation types are
listed as follows: OOK, 4ASK, 8ASK, BPSK, QPSK, 8PSK,
16PSK, 32PSK, 16APSK, 32APSK, 64APSK, 128APSK,
16QAM, 32QAM, 64QAM, 128QAM, 256QAM, AM-SSB-
WC, AM-SSB-SC, AM-DSB-WC, AM-DSB-SC, FM, GMSK,
and OQPSK. Each modulation type includes a total of 106,496
observations ranging from -20dB to +30dB SNR in 2dB steps
for a total of 26 different SNR values.

Also discussed in [1], short radio bursts are likely in many
real-world applications due to high scanning antennas, so a
classifier must be able to determine the modulation type with
relatively few data points. Therefore, we also evaluate the
performance of our method with smaller sets of signal sample
points representing shorter signal lengths in time.

To evaluate the performance of our method and baseline
techniques, we divided the dataset into 1 million different
training observations and 1.5 million testing observations
under a random shuffle split, stratified across modulation type
and SNR. Because of this balance, the expected performance
for a random chance classifier is 1/24 or 4.2%. With varying
SNR levels across the dataset, it is expected that the classifier
performs with a higher degree of accuracy as the SNR value
is increased.

III. PROPOSED METHOD

We use a convolutional neural network architecture inspired
by X-Vectors, first described in [12]. The CNN architecture
uses approximately 30% fewer parameters than the ResNet
as shown in Table III. Our approach makes use of global
mean and variance pooling across convolutional filters. X-
Vectors are one method for pooling a latent space temporally
using statistical aggregations of the location and spread of
the transformed signal. The pooled statistics of the filters are
concatenated together and passed through a dense layer to

produce the X-Vector. Intuitively, these statistics help to char-
acterize how a filter representation evolves over the sequence
including the average filter response and the deviation from the
average—this may provide more information based on global
attributes of the signal that relate to the modulation type.

Additionally, the proposed architecture maintains a fully-
convolutional structure enabling variable size inputs into the
network. Using statistical aggregations allows for this property
to be exploited. When using statistical aggregations, the input
to the first dense layer is dependent upon the number of filters
in the final convolutional layer. The number of filters hyperpa-
rameter is independent of the length in time of the input into
the neural network. Without the statistical aggregations, the
output of the preceding convolutional layers is input into the
first dense layer. The convolutional outputs are dependent on
the length of the signal and are not pooled into a fixed-length.
Inputs into the neural network would need to be reshaped to
a fixed length in time such that there is not a size mismatch
with the final convolutional output and the first dense layer.

Currently, one of the best performing networks is the ResNet
shown in Table I employed by [1]. In [1], it was found that
a ResNet architecture outperformed a traditional CNN when
applied to modulation type classification. Our results indicate
an improvement compared to the ResNet approach in terms
of classification accuracy at higher SNR values by employing
X-Vectors in conjunction with a traditional CNN model.

TABLE III
PROPOSED CNN ARCHITECTURE

Layer Output Dimensions
Input 2 x 1024

Conv 1D (ReLU) 64 x 1024
Conv 1D (ReLU) 64 x 1024
Conv 1D (ReLU) 64 x 1024
Conv 1D (ReLU) 64 x 1024
Conv 1D (ReLU) 64 x 1024
Conv 1D (ReLU) 64 x 1024

Conv 1D 64 x 1024
Average Pooling 1D 64
Variance Pooling 1D 64

Concatenate 128
FC/SeLU 128
FC/SeLU 128

FC/Softmax 24

IV. RESULTS

Using our X-Vector inspired architecture, we were able to
achieve a maximum accuracy of 98% at high SNR values.
We also replicated the ResNet results from [1], achieving
93.7% accuracy at high SNR values on the same validation
dataset. We note that this is slightly less than the reported
95% accuracy reported in [1], likely due to the differences in
training and test separation.

Fig.1 is a plot of classification accuracy versus SNR that
compares our method and a reproduced ResNet architecture
for the same set of data with random chance denoted as the
black dotted line. Both architectures follow a similar trend
in terms of results; however, the X-Vector approach begins to



outpace the ResNet model beginning around a 6dB SNR value.
Due to the large size of the dataset, each additional percent of
classification accuracy means thousands more correctly labeled
modulation types.

Fig. 1. An overview of the proposed CNN accuracy values for each SNR
value in the dataset.

As expected, both classifiers perform better as the SNR
value is increased. In signals with a low SNR value, noise
becomes more dominant and the signal is harder to distinguish.
We do note that in software-defined radio applications a high
SNR value is not always a given. With this being said, we
still see a significant improvement to random chance even at
low SNR values. In systems where the modulation type must
be classified quickly, this could become crucially important as
fewer demodulator schemes would need to be applied.

Figures 2 and 3 show the resulting confusion matrices
for the ResNet architecture and the X-Vector architecture for
signals with at least 0dB SNR. We observe a similar structure
where the confusion metrics are largest among classes with
clusters around the QAM modulation types; however, the
X-Vector architecture distinguishes modulation types with a
higher degree of precision. Generally, the X-Vector approach
has higher values along the diagonal indicating that the
predicted label matched the true label which is desired. The
ResNet architecture had difficulty distinguishing the difference
between 16PSK and 32PSK at the specified SNR range. This
is similar to the result found in [1] where short signal lengths
are expected to have more error particularly for higher order
modulation types “due to lack of information and similar
symbol structure using this or any other known prior method.”

TABLE IV
MAXIMUM ACCURACY ACROSS SIGNAL LENGTH

Signal Length X-Vector ResNet
1024 98.0% 93.7%
768 96.3% 94.7%
512 94.1% 95.1%
128 86.5% 85.0%

Fig. 2. Confusion matrix across all modulation types on the synthetic dataset
at or above 0dB SNR using the ResNet architecture.

Fig. 3. Confusion matrix across all modulation types on the synthetic dataset
at or above 0dB SNR with the proposed X-Vector inspired CNN architecture.

Some operational scenarios, including the use of rapidly
scanning antennas on software-defined radios, are at risk of
obtaining short bursts of signals due to limited sampling and
may be subject to a large variance in the duration of obtained
signals. Therefore, we also investigate the performance of the
networks using reduced length signals, as shown in Table IV.
We observe similar results to those reported in [1] where
classification performance significantly degrades for signal
lengths of 128 or fewer.

The X-Vector approach’s performance degraded in an ap-
proximately linear fashion; however, the ResNet approach im-
proved with shorter signal lengths initially. This behavior could
be due to the training and test separation. Both approaches
maintain fair performance, but the X-Vector approach has the



benefit that it handles variable sized inputs organically.

V. DISCUSSION

Utilizing an X-Vector based architecture, we are able to
accomplish state-of-the-art classification performance with a
traditional CNN. While other works have investigated addi-
tional features such as IQ constellations and spectrograms
to boost the performance of CNNs, we have shown that
traditional CNNs are able to outperform ResNets using raw
time-sampled in-phase and quadrature components of a signal
while having a smaller network structure.

Our method is able to handle variable sized signal lengths
inherently. We are able to maintain a fully-convolutional ar-
chitecture that enables variable length inputs into the network.
This is achieved through the use of aggregated statistics pool-
ing to characterize the latent space of the model. This charac-
teristic has made the X-Vectors proposed by [12] particularly
appealing in speech systems where there is high variability
in the duration of speech utterances. Using this same recipe
in the method proposed in this paper, additional complexities
of padding, downsampling, and other input reshaping is not
needed (provided that the signal is long enough for the
convolutional filters). In an environment where signal bursts
are unreliable, a model that handles these imperfections by its
nature is beneficial to avoid required data augmentation.

Statistical aggregations in embedding layers, additionally
prevents the need of fully re-training additional models for
varying length signals. Because the size of the first dense
layer is dependent upon the number of filters in the last
convolutional layer, the same trained dense layers can be used
for signals of varying length in time. If desired, the pre-trained
X-Vector model can be fine-tuned for different signal lengths;
however, the entire model can be used to initialize the weights
of the fine-tuned model. In other approaches discussed, the
dense layers are dependent upon the length in time of the input
into the network, so dense layers would have to be trained from
scratch for signals with different lengths.

VI. CONCLUSION

Through our research, we show that using an X-Vector ap-
proach with a CNN classifier can achieve up to 98% accuracy
at high SNR values that additionally yields a 30% smaller
model than the state-of-the-art ResNet architecture. Our X-
Vector architecture provides improvements in comparison with
the ResNet approach while using a significantly reduced
number of parameters. In addition to achieving improved
accuracy performance, our reduced model size is advantageous
for deployment in resource limited devices.
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