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Abstract 
 

A five-stage pipelined CPU based on the MIPs ISA is 
mapped to a self-timed implementation scheme known as 
Phased Logic (PL).  The mapping is performed 
automatically from a netlist of D-Flip-Flops and 4-input 
Lookup Tables (LUT4s) to a netlist of PL blocks.  Each 
PL block is composed of control logic wrapped around a 
collection of DFFs and LUT4s to form a multi-
input/output PL gate.  PL offers a speedup technique 
known as early evaluation that can be used to boost 
performance at the cost of additional logic within each 
block.  In addition to early evaluation, this 
implementation uses bypass paths in the ALU for shift 
and logical instructions and buffering stages for 
increased dataflow to further improve performance.  
Additional speedup is gained by reordering instructions 
to provide more opportunity for early evaluation.  
Simulation results show an average speedup of 41% 
compared to the clocked netlist over a suite of five 
benchmark programs. 
 
1.  Introduction 
 

Design challenges related to global clocking are 
identified throughout the ITRS-2001 Roadmap on 
Design.  It is clear that the engineering effort dedicated 
solely to clock distribution and clock management issues 
[1] keeps growing as feature sizes shrink, with no 
indication of how to halt this trend if traditional clocked 
methodologies continue to be used. 

This paper discusses a self-timed design methodology 
known as Phased Logic (PL) that eliminates the need for 
a global clock and allows automated mapping from a 
clocked netlist representation to a self-timed netlist.  Our 
previous work on Phased Logic has concerned fine-grain 
mappings in which gates in the clocked netlist were 
mapped on a one-to-one basis to PL gates in the self-
timed netlist.  A natural implementation technology for 
these fine-grain PL systems would be a new SRAM-
based FPGA customized for PL.   

By contrast, this paper demonstrates a coarse-grain 
mapping scheme suitable for ASIC designs in which 
blocks of logic in the clocked netlist are encapsulated into 
PL partitions.  The logic blocks can be any collection of 
D-Flip-Flops (DFFs) plus combinational logic or 

monolithic combinational compute functions such as 
memories, multipliers, etc.  Because the mapping works 
from the netlist level, design reuse is preserved at the 
RTL level.  Design reuse of hard macros at the physical 
level such as SRAMs is easier since the PL control 
scheme involves placing wrapper logic around the 
compute function with no modifications to the compute 
function internals being required. 

The paper is organized as follows.  Section 2 discusses 
the PL methodology and the elements of a coarse-grained 
PL approach.  Section 3 compares our approach to other 
asynchronous methodologies.  Section 4 discusses the 
mapping of the clocked netlist for a 5-stage pipelined 
CPU to PL.  Simulation results are presented for several 
benchmark programs using the PL implementation and 
include a discussion of the architectural features that 
provide speedup within PL.  Section 5 contains 
acknowledgements, and Section 6 presents a summary of 
the work. 
 
2.  Phased Logic 
 

Micropipelining [2] is a self-timed methodology that 
uses bundled data signaling and Muller C-elements [3] 
for controlling data movement between pipeline stages.  
Level-Encoded Dual-Rail (LEDR) signaling was 
introduced in [4] as a method for providing delay 
insensitive signaling for micropipelines.  The term phase 
is used in [4] to distinguish successive computation cycles 
in the LEDR micropipeline, with the data undergoing 
successive even and odd phase changes.  The systems 
demonstrated in [2][4] were all linear pipelined datapaths, 
with some limited fork/join capability also demonstrated, 
but with no indication of how general digital systems 
could be mapped to these structures.  This problem was 
solved in [5] via a methodology termed Phased Logic 
(PL), which uses marked graph theory [6] as the basis for 
an automated method for mapping a clocked netlist 
composed of D-Flip-Flops, combinational gates, and 
clocked by a single global clock to a self-timed netlist of 
PL gates.  This mapping algorithm performed a one-to-
one mapping of gates in the clocked netlist to PL gates.  
Logically, a PL gate is simply a Sutherland micropipeline 
block with the state of the Muller C-element known as the 
gate phase, which can be either even or odd.  The 
computation performed by the gate is the Boolean 



function of the original gate in the clocked netlist.  A PL 
gate is said to fire (the Muller C-element changes state) 
when the phase of all data inputs match the gate phase.  
This firing causes both the gate phase and output phase to 
toggle.  The phase of the output can either always match 
the gate phase or always be the opposite of the gate 
phase.  A PL gate can also have multiple outputs with 
both variations of output phase.  Figure 1 illustrates a PL 
gate firing with an output whose phase is always opposite 
the gate phase. 

 
 
 
 
 
 
 

Figure 1.  PL gate firing 
 

The algorithm for mapping a clocked netlist to a PL 
netlist was developed in [5] and is summarized below: 

 
a. All DFFs are mapped one-to-one to barrier gates 

in the PL netlist.  The output phase of a barrier gate 
always matches the gate phase.  This means that after 
reset, all barrier gates will have tokens (active data) on 
their outputs.  All combinational gates are mapped one-
to-one to through gates in the PL netlist.  The output 
phase of a through gate is always opposite the gate phase. 

b. Single rail signals called feedbacks are added 
where necessary to ensure liveness and safety of the 
resulting marked graph.  Liveness means that every signal 
is part of a loop that has at least one gate ready to fire.  
Safety means that a gate cannot fire again until all 
destination gates have consumed the output data.  To 
ensure safety, all signals must be part of a loop that 
contains at most one active token.  Feedbacks cannot be 
added between two barrier gates because this would result 
in a loop with two active tokens, violating the safety 
constraint.  If necessary, buffer-function through gates 
(called splitter gates in [5]) are inserted between barrier 
gates to provide a source and termination for feedback.  
From a terminology viewpoint, the term feedback was 
first used in [5] and is equivalent to an acknowledge 
signal in a micropipeline.  The term feedback will used in 
this paper to be consistent with the work originally 
presented in [5]. 

c. Feedbacks that originate from a barrier gate have 
an initial token on them since all outputs from barrier 
gates have tokens.  This implies that feedbacks from 
barrier gates must terminate on a through gate. 

d. A feedback that originates from a through gate 
and terminates on a through gate must have an initial 

token since the output of the destination through gate will 
not have an initial token.  

e. A feedback that originates from a through gate 
and terminates on a barrier gate must not have an initial 
token since the output of the destination barrier gate will 
have an initial token.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Translation and firing of a 2-bit counter 
 
A signal that is part of a loop that is both live and safe 

is said to be covered.  All signals in the circuit must be 
covered to satisfy liveness and safety.  Signals that are 
part of naturally occurring loops that satisfy liveness and 
safety critera are already covered and do not require 
feedbacks.  It is possible for a single feedback signal to 
create a loop that covers multiple signals.  

Figure 2 illustrates the translation of a clocked 2-bit 
counter to a PL netlist and a sample firing of the circuit.  
The signal between gate G4 and G1 in the PL netlist is a 
feedback added to ensure safety. 
 
2.1 A Coarse-grain Phased Logic block 

 
In [9], a PL gate that used a 4-input Lookup Table 

(LUT4) with four LEDR-encoded inputs was presented as 
the basic cell for a proposed FPGA intended for self-
timed implementations.  Delay-insensitive signaling can 
be very useful in a programmable logic implementation 
because of the uncertainty of wire delays through multiple 
programmable switch elements.  However, in ASIC 
implementations a bundled-data approach can be used 
because of the ability to match the wire delay of the 
control wire with its associated data bundle. 

Figure 3 shows a coarse grain PL block that is a 
variation of Sutherland’s micropipeline structure [2].  
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Each signal in a data-bundle is single rail, and each data 
bundle has a corresponding single-rail phase signal.  A 
change on the phase input signal indicates a new data 
bundle is available.  The mapping from a clocked system 
to a coarse-grained PL system occurs at the module level, 
rather than the gate level.  The compute function can 
receive multiple data bundles, and the delay block 
associated with each phase control wire is the longest 
delay through the compute block for the associated data 
bundle.  The number of feedbacks terminating on this 
block is variable depending upon the circuit structure.  
The firing of the C-element [3] indicates that all inputs 
have arrived, which causes the GC signal to be asserted, 
latching new output data.  The GC signal is negated when 
the block phase and ophs_ip signals match.  The ophs_ip 
signal is used as the phase output for barrier-blocks and 
the ophs signal is used for through-blocks.  These same 
signals also function as the feedback output signals.  At 
reset, all block phases are reset to a ‘0’ value which 
corresponds to a block phase of even.  The preset and clr 
inputs on the data output latches are only used for barrier-
blocks and are used to set initial data values 
corresponding to the initial DFF values in the original 
clocked netlist. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Coarse-grain PL block 
 
2.2 Early Evaluation 

 
The block design in Figure 3 can be extended to allow 

firing upon the arrival of only a subset of inputs.  This 
was first demonstrated on a limited basis in [4] via a two-
input AND gate design with LEDR inputs and termed 
eager evaluation.  Safety considerations and a general 
application of this technique were not discussed.  This 
technique was generalized for PL systems in [8] and is 
referred to as early evaluation.  This technique can be 
used to increase the performance of a PL system [7].  As 
an example, early evaluation can be done within a binary 
full adder, because the sum output can be determined 

without waiting for arrival of a carry-in value if the two 
data operands produce either a kill or generate value.  
Figure 4 shows the block design of Figure 3 modified to 
include early evaluation capability.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Coarse-grain PL block with early evaluation 

 
The PL wrapper control design now has two internal 

phases, a trigger phase and a master phase.  The compute 
section is likewise augmented with a logic section that 
will be used to produce the EEselect signal, which is used 
to select between the trigger and master phases.  An early 
fire occurs when the trigger C-element fires and EEselect 
is a ‘1’ value.  This causes a firing of the outputs based 
upon the trigger phase value.  A delay kill signal is 
generated that short circuits the input delays to the master 
phase as the output has already been updated and these 
delays are no longer needed.  The delay on the output of 
the trigger phase C-element is the longest delay of the 
data bundles through the EEval function.  If desired, 
individual delay blocks could be used on each input to the 
trigger phase C-element as is done for the master phase 
C-element.  Note that the feedback output signals are 
based upon the master phase C-element.  This is 
important, as feedback cannot be provided until all inputs 
have been consumed which occurs when the master phase 
C-element fires.  The dly block on the output of the 
master phase C-element should be tuned such that the 
feedback signals are updated at the same time or after the 
output phase signals are updated.  Equally important is 
the fact that all feedback inputs terminate on the trigger 
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phase.  This prevents a second early firing from occurring 
until all feedback inputs have arrived.  A normal firing 
occurs if EEselect=0 when the trigger phase fires; the 
output phase will not be updated until all inputs have 
arrived and the master phase has fired. 

 
 
 
 
 
 
 
 

Figure 5: Early evaluation gate normal fire 
 
 
 
 
 
 
 

Figure 6: Early evaluation gate early fire 
 

A key question is whether safety and liveness are 
preserved in a PL system with early evaluation gates.  
Figures 5 and 6 show a simplified two-node model for an 
early evaluation gate.  The two nodes, M and T, 
correspond to the master and trigger C-elements in the 
early evaluation block in Figure 4.  The Fi and Fo signals 
are the feedback input and feedback output, respectively.  
Figure 5 shows a normal fire, where the trigger compute 
function evaluates to false meaning that the output does 
not fire until all trigger and master inputs arrive.  For a 
normal fire the master node generates the output token, 
thus, the output is shown connected to the M node.  
Figure 6 shows an early fire in which the trigger compute 
function evaluates to true causing a token to appear on 
the output after only the trigger inputs arrive.  For an 
early fire the trigger node generates the output token so 
the output is shown connected to the T-node.  

For safety, signals must be covered for both firing 
cases shown in figures 5 and 6.  The current mapping 
algorithm forces all non-feedback inputs that are 
connected to an early evaluation gate to be part of a loop 
that contains the feedback output of that gate.  In addition 
to covering the input signals, this also covers the internal 
signal ‘A’ since the feedback output originates from the 
M-node.  Also, the current mapping algorithm covers the 
output signal via a loop containing the feedback input 
signal.  This means that the current mapping algorithm 
produces PL netlists in which early evaluation blocks are 
always both a source and destination of feedback.  For 

some topologies, these rules add more feedbacks than the 
minimum required in exchange for reducing the 
complexity of feedback generation. 

The initial token marking rules in the beginning of 
Section 2 ensure liveness by causing each loop to have at 
least one gate being ready to fire.  These rules do not 
require altering in the presence of early evaluation gates, 
and early evaluation gates can function as either barrier or 
through gates.  For coarse-grain netlists, an early 
evaluation block is always treated as a through block, for 
reasons that become clear in Section 4.1. 
 
2.3 Loop delay averaging 

 
The cycle time of a PL system is bounded by the 

longest register-to-register delay in the original clocked 
netlist, although the average cycle time can be less than 
this value because of the averaging of loop cycle times of 
different lengths [5].  The circuit in Figure 7 shows a two-
stage, unbalanced pipeline.  The DF block in each circuit 
represents a barrier gate (a D-flip-flop in the original 
clocked netlist), and the G block a combinational block.  
The dot shown on particular signals represent the initial 
tokens (active data) for the PL netlist; the dashed nets are 
feedback signals added in the PL system for liveness and 
safety.   

 
 
 
 

Figure 7: An unbalanced PL pipeline 
 
If each combinational gate has a delay of 10 units, and 

the DFF delay plus setup time is also 10 units, then the 
longest path in the clocked system would be 40, or 4 gate 
delays.  To simplify this particular explanation, we 
assume that a PL gate has the same delay as its 
corresponding gate in the clocked netlist.  Simple 
analysis, verified by simulation, shows that each gate in 
the PL system fires in a repeating pattern of 40 time units, 
20 time units, for an average token delay of 30 time units.  
Note that if the original clocked system had balanced 
pipeline stages, then the longest path would have been 30 
time units.  This automatic averaging of loop paths gives 
more freedom in the placement of logic between DFFs.  
Even if logic is balanced between pipeline stages in the 
clocked system, early evaluation firings can create 
unbalanced loop delay times, and delay averaging of 
these different loop times will still occur. 

It should be noted that the system in Figure 7 has more 
than the minimum number of feedbacks and that feedback 
placement can also affect system performance.  In 
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general, keeping feedbacks short in terms of the number 
of gates between source and destination of the feedback 
will improve system performance if the path is part of the 
critical loops that determine the system’s throughput.  
However, feedback can skip over multiple gates and not 
affect system performance if the path is part of a non-
critical loop. 
 
2.4 Token Buffering 
 

The flow of data within a PL system can be inhibited if 
there are not enough gates within a path to take advantage 
of the available parallelism.  This is a well-known 
property of self-timed rings and is referred to as the slack-
matching problem in [13].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Token buffering to improve performance 
 
Circuit A in Figure 8 is a minor modification of the 

two-stage unbalanced pipeline of Figure 7.  Simulation 
results show that Circuit A fires in a repeating pattern of 
40, 40 time units which is lower performance than Figure 
7.  However, adding a buffer as shown in Circuit B 
changes the fire pattern to 40, 20 for an average of 30 
time units, the same as Figure 7.  We call this buffer a 
token buffer, and it adds no functionality to the circuit, 
but does increase performance. 

 
3.  Comparisons to other work 
 

Phased Logic is unique in that it offers an automated 
mapping from a clocked system to a self-timed system 
from the netlist level.  This allows a designer to produce 
the netlist using familiar design tools and HDLs with the 
restriction that the clocked netlist has only one global 
clock.  Most asynchronous and self-timed design 
methodologies [10] use custom synthesis tools and HDLs 

for design specification and this requires a substantial 
time investment on the part of the designer to learn the 
new methodology.   

A self-timed design methodology known as Null 
Convention Logic (NCL) [11] allows the use of standard 
HDLs but places restrictions on how the RTL is written 
and what gates the RTL is synthesized to.  The NCL 
synthesis methodology requires that the RTL be written in 
a restrictive manner that separates the combinational logic 
and storage elements, because the NCL synthesis 
methodology uses a different synthesis path for registers 
versus combinational logic.  This prevents the use of third 
party RTL without a significant effort to rewrite the RTL 
in the NCL style.  Designers must also specify the data 
completion structures and request/acknowledge logic 
needed at each register, which is an added burden on the 
designer.  The RTL is synthesized to a restricted subset of 
functions that is then mapped to a set of predefined 
macros that can be implemented in NCL.  Dual-rail 
signaling is an inherent feature of the NCL computation 
style.  This makes NCL wiring-delay insensitive at a 2X 
wiring cost.  Bundled data signaling has not been 
demonstrated within NCL as an option that would 
exchange the wiring overhead of dual rail signaling for 
delay-matched signaling paths.  

Many self-timed CPUs have been designed in the past 
including the MIPs integer subset [13], the ARM 
processor [14], and the 8051 [15].  The distinguishing 
features of our design are the automated mapping from 
the clocked netlist to a self-timed netlist and the use of 
early evaluation to achieve speedup over the clocked 
design.  Previous self-timed CPUs such as the Amulet3 
have used bypass paths to speed execution.  The Amulet3 
execution unit had an iterative multiplier and barrel 
shifter in series with the ALU; these two components 
were bypassed when instructions did not require them.  
Bypass operations are essentially a degenerative case of 
early evaluation in which all phase inputs are part of the 
trigger phase and the early evaluation function has a 
smaller delay than the normal compute function.  The 
bypass operation is used when all signals arrive at the 
same time, but different delays are desired depending 
upon the block operation for that particular compute cycle 
(i.e., within an ALU, shift versus addition).  As such, the 
PL block in Figure 4 supports bypass operations and our 
design makes use of bypass in much the same way as the 
Amulet3.  However, our design also uses early 
evaluation, which proves to be crucial to a significant 
portion of our obtained speedup.  
 
4.  A Phased Logic CPU 
 

Our primary goal for this work was to demonstrate a 
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PL methodology compatible with an ASIC 
implementation for a non-trivial design example.  A CPU 
was chosen, as it is a well-understood example that has 
been used as a test case for other self-timed 
methodologies.  A secondary goal was to demonstrate 
that the PL methodology could take advantage of design 
re-use at the RTL level.  As such, we searched the WWW 
for freely available processors specified in RTL.  Our 
search produced a VHDL specification of a 32-bit, MIPs 
CPU (integer subset) implemented as a 5-stage pipeline 
[12].  We found the processor to be functional as both 
RTL and when synthesized to a netlist of LUT4s and 
DFFs.  The CPU was implemented with standard fetch, 
decode, execute, memory and writeback stages.  Because 
the design was intended for an FPGA, the register file 
RTL used positive edge-triggered devices instead of 
latches.  For this design, the register file was altered to 
use level sensitive latches where the read was done first 
during the high phase of the clock and a write was done 
last, during the low phase of the clock.  This is actually 
opposite of most register files, which are write-through, 
but this preserved the semantics of the read/write 
operations used in the original model that assumed edge-
triggered devices.  The ALU did not implement a 
multiplication operation.  Forwarding paths were used to 
solve data hazards in the pipeline without having to use 
stalls.  The MIPS branch delay slot plus the use of a 
forwarding path for the branch computation meant that no 
stalls were needed for branch or jump instructions.  The 
same memory interface was used by both fetch and 
memory stages, so a stall was generated whenever the 
memory interface was required by the memory stage.  
The original RTL had a tri-state data bus interface to 
memory.  This was changed to use dedicated input/output 
data busses as we have not yet investigated tri-state 
interfaces for busses in PL.  The RTL operators for 
addition/subtraction in the ALU, for branch computation, 
and for the PC+4 increment were replaced with Synopsys 
DesignWare components that were optimized for LUT4s.  
This was done to produce more efficient netlist 
implementations for these operations; a carry-lookahead 
structure was used for all addition operations. 
 
4.1 Mapping to a PL netlist 

 
The methodology we used for previous fine grain 

designs had to be substantially altered to accommodate 
the new goal of using coarse-grained compute functions 
with multiple inputs/outputs and that could contain a 
mixture of DFFs + combinational logic.  The term 
partition will be used to refer to a block of logic that is 
encapsulated by PL control logic.  Initially it was 
envisioned that partitions could be automatically created 
from a flattened netlist.  However, it quickly became 
apparent that automated partitioning involves complex 

issues that will have to be addressed in future efforts.  
Instead, our coarse-grain methodology requires the 
designer to partition the logic at the VHDL level such that 
an EDIF netlist is synthesized with two levels of 
hierarchy – the instances at the top level and a lower gate 
level.  Each instance can contain any number of DFFs 
plus combinational logic in the form of LUT4s.  A LUT4 
is used as the basic element for combinational logic 
because it offers a method of comparison with our fine 
grain mapping efforts.  In a physical implementation, the 
LUT4 netlists would be mapped to a standard cell library.  
In our tool flow (Figure 9), we use Synopsys as the logic 
synthesis tool that produces the hierarchical DFF+LUT4 
EDIF netlist from a VHDL description that has one level 
of hierarchy, with the leaf instances in the VHDL 
description containing RTL.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9: Clocked to PL netlist translation 

 
The process that converts the EDIF netlist to a self-

timed netlist involves two stages: partitioning and 
mapping.  The partitioning tool examines each of the top-
level instances to see if they contain only combinational 
logic, or a mixture of DFFs and combinational logic.  If 
the latter, then the partitioner splits this instance into two 
partitions; one that contains only combinational logic, and 
one that will contain the DFFs plus a limited amount of 
optional combinational logic.  A partition with DFFs will 
become a barrier-block in the PL netlist; a partition with 
only combinational logic will become a through-block.   

Figure 10 shows how an instance with DFF and 
combinational logic is restructured into two partitions that 
form a through-block and a barrier-block in the PL netlist.  
This example shows several important aspects of this 
partitioning process: 

a.  Inputs to the instance that go directly to a DFF 
must first pass through the combinational partition.  This 
is required so that a barrier-block output does not drive a 
barrier-block input in the PL netlist.  This would require 
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feedback between two barrier-blocks, which violates the 
feedback generation rules discussed in Section 2.  The 
barrier-block partition can only receive inputs from the 
through-block partition. 

b. Similarly, if a DFF output goes directly to a DFF 
input, it must be rerouted via the through-block partition.  

c. Combinational logic is allowed within the 
barrier-block partition as long as the barrier-block 
partition still only receives inputs from the through-block 
partition, and the combinational paths terminate on DFFs.  
The current version of the partitioner only pushes one 
level of logic into the barrier-block.  This was found to be 
beneficial as this last level of logic before the DFFs 
usually serves as the conditional load for a register.  Note 
that all latches are in the PL wrapper logic placed around 
the compute blocks.  

The mapping tool reads the EDIF netlist produced by 
the partitioner and treats each instance as either a barrier-
block or through-block as indicated by the partitioner.  A 
separate control netlist is generated in which each 
instance in the datapath netlist has a corresponding 
control instance created for it.  If a datapath instance 
receives an input from another datapath instance, this is 
considered a data bundle and a control wire is created for 
it. 

After the control netlist is generated, the mapping tool 
adds feedback nets to ensure liveness and safety of the 
control network.  Figure 4 shows the boundaries of the 
VHDL models of the compute function and the PL 
control wrapper.  Finally, a VHDL netlist of the PL 
system that contains both compute block instances and PL 

control instances is created for simulation purposes. 
 
4.2 Control for the PL CPU 
 

Figure 11 shows the blocks present in the PL CPU 
netlist.  Each net connection indicates both a data bundle 
and its associated phase wire.  We make no claims as to 
the optimality of this partitioning; this particular 
partitioning was arrived at only after many design 
iterations through the PL mapping process and 
subsequent CPU simulations.  Important aspects of this 
partitioning are: 

 
4.2.1 Barrier-blocks.  The blocks marked as ‘BB’ are 
barrier-block partitions produced by the partitioner.  The 
ifetch, idecode, execute and memstages were all specified 
as one instance going into the partitioner but were split 
into two partitions because they contained both 
combinational logic and DFFs. 
 
4.2.2 Token Buffers.  The blocks marked as token 
buffers have empty compute functions; they only contain 
the PL wrapper logic.  These were added when it became 
apparent that feedback paths were limiting performance 
in some loops.  Time spent waiting for a feedback signal 
to arrive is dead time; if a gate is waiting on feedback 
then it cannot fire its output and send feedback to its fanin 
components and begin the next computation.  Adding a 
buffer on the output allows the buffer to consume the 
output, freeing the gate to fire and begin the next 
computation when new inputs arrive.  Of course, a token 

Instance with DFFs and 
Combinational Logic

G2

G1

G3

Lata
b

c
d
e
f

g
G5

G4

Lat

Lat

Lat

Lat

Lat

x

z

y

Stage 2,  Barrier Blocks

Stage 2,  
Compute 
Block

Stage 2,  
Output 
latches

Stage 1,  
Compute Block

G7

G6

Lat
DF3

Lat
DF1

Lat
DF2

Lat
DF4

w

Stage 1,  
Output 
latches

Stage 1,  Through Blocks

Partitioner restructuring into 
Through Block and Barrier Block

G6

G5G2

G1 G4

G3

G7

DF1 DF2

DF4

DF3

a

b
c
d

e
f
g

x

y

z
w

Figure 10: Restructuring of instance with DFFs/combinational gates into Through, Barrier blocks

Instance with DFFs and 
Combinational Logic

G2

G1

G3

Lata
b

c
d
e
f

g
G5

G4

Lat

Lat

Lat

Lat

Lat

x

z

y

Stage 2,  Barrier Blocks

Stage 2,  
Compute 
Block

Stage 2,  
Output 
latches

Stage 1,  
Compute Block

G7

G6

Lat
DF3

Lat
DF1

Lat
DF2

Lat
DF4

w

Stage 1,  
Output 
latches

Stage 1,  Through Blocks

Partitioner restructuring into 
Through Block and Barrier Block

G6

G5G2

G1 G4

G3

G7

DF1 DF2

DF4

DF3

a

b
c
d

e
f
g

x

y

z
w

Figure 10: Restructuring of instance with DFFs/combinational gates into Through, Barrier blocks



buffer adds forward latency to the path, so the extra 
latency must be offset by the time gained from not 
waiting on feedback.  These buffers are placed in the 
netlist by the partitioner; an external data file read by the 
partitioner specifies buffer locations.  This frees the 
designer from having to pollute the input VHDL netlist 
with buffers. 
 
4.2.3 Early evaluation gates.  Early evaluation was used 
in three places as seen from Figure 11.  The exefwd block 
in the ALU forwarding path to the idecode and branchpc 
gates fires early if the ALU result does not have to be 
forwarded to these blocks.  This early fire decision is 
based upon values from the ifetch and idecode barrier-
blocks whose values are immediately available.  As an 
example, in the code stream below, there is no ALU 
forwarding needed from the first add instruction to the 
second add instruction, so the exefwd gate fires early.  
This causes the idecode gate to fire faster because it does 
not have to wait for the ALU result to become ready.  
 
 Add    r5, r6,  r9 
 Add    r4, r8, r10 
 
As a counterexample, the code stream below does require 
ALU forwarding from the first add to the second add 
instruction due to register value r5 being the destination 
in the first addition and an operand source in the second 
addition. 
 
 Add    r5, r6, r9 
 Add    r4, r5, r10 

 
The branchpc gate is responsible for computing the 

next PC address for all branch and jump instructions.  The 
branchpc gate fires early if a new PC value does not have 
to be computed.  This early fire decision is based only 
upon the data value from the predecode gate which is 
available a short delay after the ifetch barrier-block fires.  
Note that the branchpc gate has as one of its inputs the 
output of another early evaluation gate, the exefwd block. 

The ifetch block contains the incrementer required for 
computing PC+4 if the instruction is not a branch.  This 
value can be produced faster if the branchpc block fires 
early supplying its control input to the ifetch block 
sooner.  The mem_datain block fires early if the 
instruction is not a load word (lw) instruction.  This frees 
the branchpc, idecode, and memstage blocks from having 
to wait on the external memory interface to fire.  This 
early fire decision is based upon a pipeline register value 
from the execute barrier-block. 

In general, the early evaluation stages allow blocks to 
fire in parallel where they would otherwise fire 
sequentially.  For example, when the exefwd block fires 
early, the idecode and branchpc blocks can compute in 
parallel with the execute stage instead of having to wait 
for the execute stage value to be ready. 
 

4.2.4 Bypass paths.  The ALU was split into three 
partitions.  Two partitions were combinational-only 
blocks; the shft_log block contained the logic for the shift 
and bit-wise logical instructions, the addsub block 
contained the add/subtract logic.  The third partition 
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contained the mux for the outputs of the first two blocks 
as well as all of the registers contained in the execute 
stage.  The addsub block was bypassed if either a logical 
or shift instruction was being executed.  The shft_log 
block was bypassed if a logical or add/subtract instruction 
was executed.  The bypass delay in the shft_log block is 
long enough to produce the result of a logical instruction.  
 
4.2.5.  Feedback nets.  For figure clarity, feedback nets 
are not shown in Figure 11.  Most fanouts in the CPU 
have associated feedback nets.  Even though feedbacks 
can skip back over multiple through-blocks as discussed 
in Section 2, the length of a feedback net was kept to one 
block level to ensure that feedback signals had the earliest 
possible arrival time.  Control signals that are safe 
because they are already part of a loop that involves their 
destination barrier-block did not require feedbacks.  As 
an example, all barrier-blocks had control signals that 
looped back to their corresponding through-block 
partition so these signals are safe and do not need 
feedback.  Another example of a loop that results in safe 
signals is the loop formed by the ifetch barrier-block to 
the predecode through-block to the ifetch through-block 
back to the ifetch barrier-block. 
 
4.2.5 Memory Interface.  A PL wrapper was placed 
around a VHDL model for an external memory with one 
control line used for all data inputs and one control line 
for data outputs.  The memory model had separate 
datain/dataout busses.  Memory was treated as a through-
block for the mapping process.  The only external control 
signals present in the original MIPS VHDL model that 
were not directly connected to the memory model were 
rdy and init.  The rdy signal was an external stall line for 
the processor, while the init signal functioned as a 
synchronous reset.  The inbuff block shown in Figure 11 
acted as a token buffer between the external control line 
and the destination blocks for these signals. 
 
4.3 PL netlist statitistics 
 
Table 1 gives the netlist statistics for the PL design.  The 
max_dly column gives the maximum delay of the 
compute function in LUT4 delays.  This does not include 
the output delay of the latch element in the PL control 
wrapper or the input delay of the C-element.  Note that 
the token buffers have empty compute functions so their 
compute function delay is zero; the latency of these 
elements will be determined by the PL wrapper logic.  
The EE_dly column gives the delay of the early 
evaluation or bypass function if applicable.  The max_dly 
and EE_dly values of the exefwd, memdatain blocks are 
equal because these elements were inserted in the netlist 

solely to provide an early phase input to their destination 
blocks; their normal compute function is simply a buffer 
function.  The output column for the compute function is 
important as it indicates the loading on the G signal that is 
used to gate the output latches for that block.  Besides the 
global reset signal, these signals will be the most heavily 
loaded control signals in the system.  The control columns 
give the number of phase and feedback inputs to each 
block.  For early evaluation blocks, the number of phase 
inputs required for the trigger phase is indicated in 
parenthesis.  The memstg, idecode and ifetch blocks do 
not require feedback inputs because their outputs are 
already safe due to an existing loop involving their 
destination barrier-block. 
 

Table 1: Netlist Statistics for the PL CPU. 

 
4.4 PL CPU Performance 
 

The performance of the PL CPU was measured via 
simulation of the VHDL netlist produced by the mapper 
program.  Delays were normalized to LUT4 delays.  Five 

Compute Function PL Control  
max 
dly 

EE 
dly 

LUT4 ips ops ips FBs 

memstg_bg 1  72 146 71 1 5 
exe_bg 1  42 85 41 1 6 
ifetch_bg 1  97 196 96 1 5 
idecode_bg 1  160 308 159 1 6 
memstg 3  186 178 144 5 0 
shft_log 9 5 171 140 33 1(1) 1 
add_sub 14 3 166 149 50 1(1) 1 
exestg2 2  126 125 83 4 1 
ifetch 11  244 175 194 7 0 
memdatain 1 1 1 33 32 2(1) 3 
regfile 7  2489 72 64 2 2 
addrmux 1  33 69 34 3 1 
idecode 10  652 442 306 9 0 
branchpc 12 1 360 287 33 8(1) 1 
inbuff 0  0 2 2 1 4 
exefwd 6 6 17 48 32 3(2) 2 
predecode 5  49 32 19 1 2 
tbuff_a 0  0 38 38 1 1 
tbuff_b 0  0 38 38 1 1 
tbuff_c 0  0 38 38 1 1 
tbuff_d 0  0 35 35 1 1 
tbuff_e 0  0 1 1 1 1 
tbuff_f 0  0 34 34 1 1 
tbuff_g 0  0 8 8 1 1 
tbuff_h 0  0 11 11 1 1 
tbuff_i 0  0 6 6 1 1 
tbuff_j 0  0 64 64 1 1 
tbuff_k 0  0 10 10 1 1 
tbuff_l 0  0 64 64 1 1 



benchmark programs were used for performance 
measurement: 
• fibonnaci  (fib), a value of 7 was used 
• bubblesort, a matrix size of 20 was used 
• crc, calculate a CRC table with 256 entries 
• sieve – find prime numbers, stopping point set to 40 
• matrix transpose -  a 20x30 matrix was used. 
 

All programs were written in C and compiled with gcc 
using the –O option to produce an assembly language file 
that was then assembled via a Perl script to an input file 
read by the VHDL memory model.  Based on previous 
transistor level simulations, the output latch delay of the 
non-EE PL wrapper control logic and a four input C-
element were each set to 0.6 LUT4 delays (these delay 
ratios were used in previous fine-grain mapping efforts 
and were chosen from transistor level simulations and 
typical FPGA datasheet values).  The input delay of the 
C-element for a PL wrapper block was calculated 
assuming that a four-input C-element tree would to be 
used to create C-elements with more than four inputs.  
The output latch delays of an early evaluation PL block 
were set to 1.0 LUT4 delays to account for the additional 
complexity of its control logic.  The delay block values in 
PL gates were set equal to the maximum delay of the 
associated data bundle through the compute function 
minus the delay of the C-element.  Token buffer delay is 
the sum of the C-element delay plus output latch latency.  
Obviously, adjusting the C-element delay to account for 
the loading of the G output signal would have produced a 
more detailed timing delay approximation.  In most cases, 
this extra delay would simply be subtracted from the 
input delay blocks. 

Determining a memory access delay penalty is 
problematic.  If the performance of the system is limited 
by memory, the issue of performance in the CPU core 
becomes moot.  However, at the same time, the effect of 
memory access time should not be ignored.  As such, the 
benchmarks were run under two conditions; a slow 
memory case and a fast memory case.  In both cases the 
memory access time was not the limiting factor in the 
original clocked netlist.  The critical path in the clocked 
netlist as reported by Synopsys is 24 LUT4 delays and 
passes through the execute, branchpc and idecode stages.  
The total memory path delay of the CPU from address out 
to data in was 13 LUT4 delays, leaving 11 LUT4 delays 
available for memory access.  The slow memory case 
assumed that the memory interface speed was fixed at the 
maximum allowable memory latency without limiting 
performance in the clocked system, or 11 LUT4 delays.  
The fast memory case assumed that the memory 
bandwidth could be increased such that it did not limit the 

speedup of the PL CPU. 
 Even though the register file model was synthesized to 

a netlist of latches and combinational logic, this gate level 
netlist was not used in the PL simulation for this compute 
block.  The normal PL control wrapper assumes the 
compute function proceeds in parallel with the C-element 
evaluation.  This does not work for the write operation of 
the register file that can only occur after all inputs have 
arrived.  

Table 2: PL CPU Performance Results 

 
As such, the firing of the C-element was used to trigger 

the write operation in an RTL level model of the register 
file.  Only one delay element was used for this control 
wrapper and it was placed after the C-element.  This 
means that all inputs paid the full delay penalty of the 
register file regardless of arrival sequence of the inputs.  
The delay used for the register file was the maximum 
delay as reported by Synopsys when synthesized to a 
latch implementation.  This is a conservative estimate for 
the register file delay.  

Table 2 gives the performance results for the PL CPU.  
The columns marked as mem_efire, branch_efire, and 
exe_efire show the percentages of early firings for those 
blocks out of the total instruction cycles.  Intuitively, 
more early firings means higher performance, and these 
numbers support that hypothesis.  The Spdup column 
shows speedup over the clocked netlist where the clocked 
netlist was simulated using a clock cycle time of 24 
LUTs.  The speedup value is calculated taking the larger 
of the two execution times for a benchmark and dividing 
by the smaller value; a negative sign is used to indicate 
slowdown.  All of the values in Table 2 are positive, 
indicating that the PL CPU achieved speedup over the 
clocked netlist for every benchmark. 

The top half of Table 2 shows results for non-reordered 
instruction streams.  In examining the assembly language 
produced by gcc, it became evident that simple reordering 

   Fast Mem Slow Mem 

 
mem 
efire 

branch 
efire 

exe 
fire 

Spd 
up 

exe 
efire 

Spd 
up 

fib 89% 74% 77% 1.43 73% 1.24 
bubbl 85% 83% 42% 1.3 42% 1.21 
crc 100% 76% 38% 1.4 31% 1.24 
sieve 97% 79% 38% 1.27 37% 1.2 
mtpse 92% 92% 53% 1.31 50% 1.23 
avg    1.34  1.22 
fib 89% 74% 77% 1.43 73% 1.24 
bubbl 85% 82% 65% 1.37 58% 1.25 
crc 100% 76% 76% 1.52 59% 1.28 
sieve 97% 75% 64% 1.35 59% 1.22 
mtpse 92% 92% 73% 1.38 70% 1.25 
avg    1.41  1.25 



of instructions in critical loops would increase early 
evaluations of the exefwd gate, thereby improving 
performance.  For example, a typical code segment 
produced by gcc is shown below: 
 
 addi   r4,r4,1 

 slti   r2, r2, 8 
 bne    r2, r0, L10 
 

The exefwd gate will not early fire for the bne 
instruction because r2 is a destination in the slti 
instruction, and a source in the bne instruction.  However, 
the instructions can be reordered as shown below: 
 

slti   r2, r2, 8 
addi   r4,r4,1 

     bne    r2, r0, L10 
 

Functionally, the two code streams are equivalent, but 
the second code stream allows the exefwd gate to early 
fire for the bne instruction.  Instruction reordering was 
done manually by examining the critical loops of the 
assembly code for the benchmarks.  Instruction 
reorderings improved performance in all cases, except for 
the fib benchmark for which no instruction reorderings 
were found.  It can be seen that the increased performance 
in the lower half of the table is due to the increase in early 
firings of the exefwd gate due to instruction reordering. 

The slow memory case has a lower speedup than the 
fast memory case because the memory path now becomes 
the bottleneck in the system.  This is a fairly obvious 
result in that all aspects of system performance must be 
increased if maximum speedup is to be achieved.  
Fortunately, there are many techniques available for 
increasing memory bandwidth so the fast memory case 
can be viewed as an achievable speedup. 
 

Table 3: Individual Instruction Timings 
 

 
Table 3 shows performance results for streams of 

individual instructions.  The average cycle time is given 

in LUT4 delays and the fire pattern is the repeating 
pattern of cycle times for the instruction stream.  The ‘no 
eefwd’ versions mean that each instruction had, as a 
source register, the destination of the previous instruction 
so that the exefwd gate did not early fire.  Not 
surprisingly, the logical and shift instructions are the 
fastest.  The logical and shift instructions have the same 
timings if the exefwd gate fires early because the register 
file to idecode path becomes the bottleneck in this case.  
The bypass for the logical operations only increases 
performance if the exefwd gate does not early fire 
because this causes the ALU to become the critical path.  
The jump/branch streams were two-instruction streams 
where the jump/branch was followed by a nop instruction.   

 
Table 4: Speedup contributions within the PL CPU 

  
Speedup in the PL CPU is achieved via early 

evaluation, bypass operation, token buffering, and 
instruction reordering.  Table 4 shows the speedup 
contribution for each of these components for the 
bubblesort benchmark.  The slowdown for the PL CPU 
without any of the performance enhancing features is 
expected as the PL wrapper latches add latency to the 
critical paths.  It is evident that adding early evaluation 
provided the largest performance increase.   

In evaluating these speedup numbers, we offer the 
caveat that we are comparing PL performance against one 
particular clocked CPU implementation.  Unfortunately, 
we cannot make the claim that this is the fastest possible 
clocked implementation of the MIPS ISA via a LUT4 
technology.  To make this claim, we would have needed 
to totally rewrite the provided MIPS RTL model in order 
to test out different approaches for implementing the 
MIPS ISA.  To our credit, we did try to reduce the critical 
path in the clocked design as much as possible via the use 
of LUT4-optimized DesignWare components that were 
created in our fine-grain mapping efforts.  Without the 
use of these DesignWare components, the critical path in 
the clocked system ballooned to 34 LUT4 delays, and the 
PL speedup numbers were even higher than those 
presented in Table 2.  There is also the question of timing 
margins – we assumed no timing margins for either the 
clocked or PL implementations.  Suggested timing 
margins [15][16] for delay matching in micropipelines 

Inst. Seq.(fast mem) Avg Cyc Time Fire Pattern 
and 13.2 13.2
and (no eefwd) 14.0 14.0
shift 13.2 12.4,14.0 
Shift(no eefwd) 17.6 17.6 
add 17.0 17.0 
add(no eefwd) 22.6 22.6 
branch,nop 16.8 20.4, 13.2 
jump, nop 16.8 20.4,13.2 
load 18.9 10.6,10.6, 22.6 
store 17.0 17.0 

PL CPU Version Spdup (bubbl) 
a. no ALU bypass, no eeval, no 
token buffs, no instruction reorder 

-1.14 

b. ALU bypass only -1.04 
c. Version b  +  early eval  1.24 
d. Version c  + token buff 1.30 
e. Version d + instruction reorder 1.37 



range from 10% for regular/tiled layout blocks to 30% for 
synthesized standard cell blocks.  However, delay path 
matching in micropipelines is equivalent to gated 
clock/datapath delay matching in high performance 
microprocessors [1] [17].  These designs regularly use 
margins of less than 10% of the clock period.  It is clear 
that the speedup numbers in Table 2 depend upon the 
amount of engineering effort applied to the delay-
matching problem as well as the technology chosen for 
logic implementation.  As such, we feel that the important 
contribution of this work is not in the absolute speedup 
numbers, but rather in the methodology by which they 
were obtained. 
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6.  Summary 

 
In this paper we presented a design methodology 

known as Phased Logic (PL) that allows a netlist of D-
flip-flops and combinational logic clocked by a single 
global clock to be automatically mapped to a self-timed 
circuit that uses bundled data signaling between multi-
input/output computation blocks.  The computation 
blocks support both bypass and early evaluation operation 
modes, which can be used to improve system 
performance.  This methodology was applied to a 
publicly available RTL VHDL model of a 5-stage 
pipelined MIPs processor.  The RTL was synthesized via 
a commercial synthesis tool to a netlist of D flip-flops and 
4-input lookup tables before being mapped to a self-timed 
implementation.  Early evaluation was used in the ALU 
forwarding path, the branch PC computation path, and the 
memory input data path to improve performance.  Bypass 
was used for shift and logical instructions within the 
ALU.  Buffering stages were added at key points in the 
architecture to remove bottlenecks due to late arriving 
feedback signals.  Post-compiler instruction reordering 
was used to increase the percentage of instruction cycles 
that performed early firing on the ALU forwarding path.  
Performance results from five benchmark programs 
demonstrated an average speedup of 41% when compared 

to the original clocked implementation.   
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