
A Coarse-Grain Phased Logic CPU

 Robert B. Reese Mitchell A. Thornton Cherrice Traver
 Mississippi State University Southern Methodist University Union College
 reese@ece.msstate.edu mitch@engr.smu.edu traverc@union.edu

Abstract

A five-stage pipelined CPU based on the MIPs ISA is
mapped to a self-timed implementation scheme known as
Phased Logic (PL). The mapping is performed
automatically from a netlist of D-Flip-Flops and 4-input
Lookup Tables (LUT4s) to a netlist of PL blocks. Each
PL block is composed of control logic wrapped around a
collection of DFFs and LUT4s to form a multi-
input/output PL gate. PL offers a speedup technique
known as early evaluation that can be used to boost
performance at the cost of additional logic within each
block. In addition to early evaluation, this
implementation uses bypass paths in the ALU for shift
and logical instructions and buffering stages for
increased dataflow to further improve performance.
Additional speedup is gained by reordering instructions
to provide more opportunity for early evaluation.
Simulation results show an average speedup of 41%
compared to the clocked netlist over a suite of five
benchmark programs.

1. Introduction

Design challenges related to global clocking are
identified throughout the ITRS-2001 Roadmap on
Design. It is clear that the engineering effort dedicated
solely to clock distribution and clock management issues
[1] keeps growing as feature sizes shrink, with no
indication of how to halt this trend if traditional clocked
methodologies continue to be used.

This paper discusses a self-timed design methodology
known as Phased Logic (PL) that eliminates the need for
a global clock and allows automated mapping from a
clocked netlist representation to a self-timed netlist. Our
previous work on Phased Logic has concerned fine-grain
mappings in which gates in the clocked netlist were
mapped on a one-to-one basis to PL gates in the self-
timed netlist. A natural implementation technology for
these fine-grain PL systems would be a new SRAM-
based FPGA customized for PL.

By contrast, this paper demonstrates a coarse-grain
mapping scheme suitable for ASIC designs in which
blocks of logic in the clocked netlist are encapsulated into
PL partitions. The logic blocks can be any collection of
D-Flip-Flops (DFFs) plus combinational logic or

monolithic combinational compute functions such as
memories, multipliers, etc. Because the mapping works
from the netlist level, design reuse is preserved at the
RTL level. Design reuse of hard macros at the physical
level such as SRAMs is easier since the PL control
scheme involves placing wrapper logic around the
compute function with no modifications to the compute
function internals being required.

The paper is organized as follows. Section 2 discusses
the PL methodology and the elements of a coarse-grained
PL approach. Section 3 compares our approach to other
asynchronous methodologies. Section 4 discusses the
mapping of the clocked netlist for a 5-stage pipelined
CPU to PL. Simulation results are presented for several
benchmark programs using the PL implementation and
include a discussion of the architectural features that
provide speedup within PL. Section 5 contains
acknowledgements, and Section 6 presents a summary of
the work.

2. Phased Logic

Micropipelining [2] is a self-timed methodology that
uses bundled data signaling and Muller C-elements [3]
for controlling data movement between pipeline stages.
Level-Encoded Dual-Rail (LEDR) signaling was
introduced in [4] as a method for providing delay
insensitive signaling for micropipelines. The term phase
is used in [4] to distinguish successive computation cycles
in the LEDR micropipeline, with the data undergoing
successive even and odd phase changes. The systems
demonstrated in [2][4] were all linear pipelined datapaths,
with some limited fork/join capability also demonstrated,
but with no indication of how general digital systems
could be mapped to these structures. This problem was
solved in [5] via a methodology termed Phased Logic
(PL), which uses marked graph theory [6] as the basis for
an automated method for mapping a clocked netlist
composed of D-Flip-Flops, combinational gates, and
clocked by a single global clock to a self-timed netlist of
PL gates. This mapping algorithm performed a one-to-
one mapping of gates in the clocked netlist to PL gates.
Logically, a PL gate is simply a Sutherland micropipeline
block with the state of the Muller C-element known as the
gate phase, which can be either even or odd. The
computation performed by the gate is the Boolean

function of the original gate in the clocked netlist. A PL
gate is said to fire (the Muller C-element changes state)
when the phase of all data inputs match the gate phase.
This firing causes both the gate phase and output phase to
toggle. The phase of the output can either always match
the gate phase or always be the opposite of the gate
phase. A PL gate can also have multiple outputs with
both variations of output phase. Figure 1 illustrates a PL
gate firing with an output whose phase is always opposite
the gate phase.

Figure 1. PL gate firing

The algorithm for mapping a clocked netlist to a PL
netlist was developed in [5] and is summarized below:

a. All DFFs are mapped one-to-one to barrier gates

in the PL netlist. The output phase of a barrier gate
always matches the gate phase. This means that after
reset, all barrier gates will have tokens (active data) on
their outputs. All combinational gates are mapped one-
to-one to through gates in the PL netlist. The output
phase of a through gate is always opposite the gate phase.

b. Single rail signals called feedbacks are added
where necessary to ensure liveness and safety of the
resulting marked graph. Liveness means that every signal
is part of a loop that has at least one gate ready to fire.
Safety means that a gate cannot fire again until all
destination gates have consumed the output data. To
ensure safety, all signals must be part of a loop that
contains at most one active token. Feedbacks cannot be
added between two barrier gates because this would result
in a loop with two active tokens, violating the safety
constraint. If necessary, buffer-function through gates
(called splitter gates in [5]) are inserted between barrier
gates to provide a source and termination for feedback.
From a terminology viewpoint, the term feedback was
first used in [5] and is equivalent to an acknowledge
signal in a micropipeline. The term feedback will used in
this paper to be consistent with the work originally
presented in [5].

c. Feedbacks that originate from a barrier gate have
an initial token on them since all outputs from barrier
gates have tokens. This implies that feedbacks from
barrier gates must terminate on a through gate.

d. A feedback that originates from a through gate
and terminates on a through gate must have an initial

token since the output of the destination through gate will
not have an initial token.

e. A feedback that originates from a through gate
and terminates on a barrier gate must not have an initial
token since the output of the destination barrier gate will
have an initial token.

Figure 2. Translation and firing of a 2-bit counter

A signal that is part of a loop that is both live and safe

is said to be covered. All signals in the circuit must be
covered to satisfy liveness and safety. Signals that are
part of naturally occurring loops that satisfy liveness and
safety critera are already covered and do not require
feedbacks. It is possible for a single feedback signal to
create a loop that covers multiple signals.

Figure 2 illustrates the translation of a clocked 2-bit
counter to a PL netlist and a sample firing of the circuit.
The signal between gate G4 and G1 in the PL netlist is a
feedback added to ensure safety.

2.1 A Coarse-grain Phased Logic block

In [9], a PL gate that used a 4-input Lookup Table

(LUT4) with four LEDR-encoded inputs was presented as
the basic cell for a proposed FPGA intended for self-
timed implementations. Delay-insensitive signaling can
be very useful in a programmable logic implementation
because of the uncertainty of wire delays through multiple
programmable switch elements. However, in ASIC
implementations a bundled-data approach can be used
because of the ability to match the wire delay of the
control wire with its associated data bundle.

Figure 3 shows a coarse grain PL block that is a
variation of Sutherland’s micropipeline structure [2].

PL GatePL Gate
ODD

EVEN

EVEN
phase:
EVEN EVEN

EVEN
phase:
ODD

a. Ready to fire b. After gate fires

EVEN
PL GatePL Gate

ODD
EVEN

EVEN
phase:
EVEN EVEN

EVEN
phase:
ODD

a. Ready to fire b. After gate fires

EVEN

E

feedback (odd)
G4 G3

G2 G1

E

E

E

odd 1

even 0

even 0

odd 0

E

feedback (even)
G4 G3

G2 G1

E

O

O

even 1

even 0

even 0

even 0

D Q

D Q

a. Clocked 2-bit Counter

b. Translated PL Counter (reset state) c. PL Counter after G2,G4 fire

Each signal in a data-bundle is single rail, and each data
bundle has a corresponding single-rail phase signal. A
change on the phase input signal indicates a new data
bundle is available. The mapping from a clocked system
to a coarse-grained PL system occurs at the module level,
rather than the gate level. The compute function can
receive multiple data bundles, and the delay block
associated with each phase control wire is the longest
delay through the compute block for the associated data
bundle. The number of feedbacks terminating on this
block is variable depending upon the circuit structure.
The firing of the C-element [3] indicates that all inputs
have arrived, which causes the GC signal to be asserted,
latching new output data. The GC signal is negated when
the block phase and ophs_ip signals match. The ophs_ip
signal is used as the phase output for barrier-blocks and
the ophs signal is used for through-blocks. These same
signals also function as the feedback output signals. At
reset, all block phases are reset to a ‘0’ value which
corresponds to a block phase of even. The preset and clr
inputs on the data output latches are only used for barrier-
blocks and are used to set initial data values
corresponding to the initial DFF values in the original
clocked netlist.

Figure 3: Coarse-grain PL block

2.2 Early Evaluation

The block design in Figure 3 can be extended to allow

firing upon the arrival of only a subset of inputs. This
was first demonstrated on a limited basis in [4] via a two-
input AND gate design with LEDR inputs and termed
eager evaluation. Safety considerations and a general
application of this technique were not discussed. This
technique was generalized for PL systems in [8] and is
referred to as early evaluation. This technique can be
used to increase the performance of a PL system [7]. As
an example, early evaluation can be done within a binary
full adder, because the sum output can be determined

without waiting for arrival of a carry-in value if the two
data operands produce either a kill or generate value.
Figure 4 shows the block design of Figure 3 modified to
include early evaluation capability.

Figure 4: Coarse-grain PL block with early evaluation

The PL wrapper control design now has two internal

phases, a trigger phase and a master phase. The compute
section is likewise augmented with a logic section that
will be used to produce the EEselect signal, which is used
to select between the trigger and master phases. An early
fire occurs when the trigger C-element fires and EEselect
is a ‘1’ value. This causes a firing of the outputs based
upon the trigger phase value. A delay kill signal is
generated that short circuits the input delays to the master
phase as the output has already been updated and these
delays are no longer needed. The delay on the output of
the trigger phase C-element is the longest delay of the
data bundles through the EEval function. If desired,
individual delay blocks could be used on each input to the
trigger phase C-element as is done for the master phase
C-element. Note that the feedback output signals are
based upon the master phase C-element. This is
important, as feedback cannot be provided until all inputs
have been consumed which occurs when the master phase
C-element fires. The dly block on the output of the
master phase C-element should be tuned such that the
feedback signals are updated at the same time or after the
output phase signals are updated. Equally important is
the fact that all feedback inputs terminate on the trigger

Phs_N

C

D Q
G

Data_bndl_1
? Compute

Function

D Q
Q

Clr
G

Reset

Ophase

Dly1

? ?

Feedback_in

Data_outClr

Pre

Reset (if needed)

Preset (if needed)

Block Phase

k

DlyN

Data_bndl_N
?

VHDL Model boundary for Wrapper

GC

Ophs_ip

OphsPhs_N

C

D Q
G

Data_bndl_1
? Compute

Function

D Q
Q

Clr
G

Reset

Ophase

Dly1

? ?

Feedback_in

Data_outClr

Pre

Reset (if needed)

Preset (if needed)

Block Phase

k

DlyN

Data_bndl_N
?

VHDL Model boundary for Wrapper

GC

Ophs_ip

Ophs

Phs_j

Phs_1

Phs_k

Phs_N

Fb_in

D Q

G

Data_bndl_1
?

Data_bndl_N

Compute
Function

D Q
Q

Clr
G

Reset

Ophase

Dly1

?

?

?

Dout

Clr

Pre

Reset (if needed)

Preset (if needed)

EEval function

Data_bndl_j
?

Data_bndl_k
?

C Dly

Master
Phase

Trigger phase

0

1

EE
Select,
when ‘1’,
do early
fire

k

VHDL Model for Compute/EEval function

Boundary of VHDL
Model used for PL
wrapper

Delay kill

dlyDlyN

C

D Q
Q

Clr
G

Reset

Fb_out

Phs_j

Phs_1

Phs_k

Phs_N

Fb_in

D Q

G

Data_bndl_1
?

Data_bndl_N

Compute
Function

D Q
Q

Clr
G

Reset

Ophase

Dly1

?

?

?

Dout

Clr

Pre

Reset (if needed)

Preset (if needed)

EEval function

Data_bndl_j
?

Data_bndl_k
?

C Dly

Master
Phase

Trigger phase

0

1

EE
Select,
when ‘1’,
do early
fire

k

VHDL Model for Compute/EEval function

Boundary of VHDL
Model used for PL
wrapper

Delay kill

dlyDlyN

C

D Q
Q

Clr
G

Reset

Fb_out

phase. This prevents a second early firing from occurring
until all feedback inputs have arrived. A normal firing
occurs if EEselect=0 when the trigger phase fires; the
output phase will not be updated until all inputs have
arrived and the master phase has fired.

Figure 5: Early evaluation gate normal fire

Figure 6: Early evaluation gate early fire

A key question is whether safety and liveness are
preserved in a PL system with early evaluation gates.
Figures 5 and 6 show a simplified two-node model for an
early evaluation gate. The two nodes, M and T,
correspond to the master and trigger C-elements in the
early evaluation block in Figure 4. The Fi and Fo signals
are the feedback input and feedback output, respectively.
Figure 5 shows a normal fire, where the trigger compute
function evaluates to false meaning that the output does
not fire until all trigger and master inputs arrive. For a
normal fire the master node generates the output token,
thus, the output is shown connected to the M node.
Figure 6 shows an early fire in which the trigger compute
function evaluates to true causing a token to appear on
the output after only the trigger inputs arrive. For an
early fire the trigger node generates the output token so
the output is shown connected to the T-node.

For safety, signals must be covered for both firing
cases shown in figures 5 and 6. The current mapping
algorithm forces all non-feedback inputs that are
connected to an early evaluation gate to be part of a loop
that contains the feedback output of that gate. In addition
to covering the input signals, this also covers the internal
signal ‘A’ since the feedback output originates from the
M-node. Also, the current mapping algorithm covers the
output signal via a loop containing the feedback input
signal. This means that the current mapping algorithm
produces PL netlists in which early evaluation blocks are
always both a source and destination of feedback. For

some topologies, these rules add more feedbacks than the
minimum required in exchange for reducing the
complexity of feedback generation.

The initial token marking rules in the beginning of
Section 2 ensure liveness by causing each loop to have at
least one gate being ready to fire. These rules do not
require altering in the presence of early evaluation gates,
and early evaluation gates can function as either barrier or
through gates. For coarse-grain netlists, an early
evaluation block is always treated as a through block, for
reasons that become clear in Section 4.1.

2.3 Loop delay averaging

The cycle time of a PL system is bounded by the

longest register-to-register delay in the original clocked
netlist, although the average cycle time can be less than
this value because of the averaging of loop cycle times of
different lengths [5]. The circuit in Figure 7 shows a two-
stage, unbalanced pipeline. The DF block in each circuit
represents a barrier gate (a D-flip-flop in the original
clocked netlist), and the G block a combinational block.
The dot shown on particular signals represent the initial
tokens (active data) for the PL netlist; the dashed nets are
feedback signals added in the PL system for liveness and
safety.

Figure 7: An unbalanced PL pipeline

If each combinational gate has a delay of 10 units, and

the DFF delay plus setup time is also 10 units, then the
longest path in the clocked system would be 40, or 4 gate
delays. To simplify this particular explanation, we
assume that a PL gate has the same delay as its
corresponding gate in the clocked netlist. Simple
analysis, verified by simulation, shows that each gate in
the PL system fires in a repeating pattern of 40 time units,
20 time units, for an average token delay of 30 time units.
Note that if the original clocked system had balanced
pipeline stages, then the longest path would have been 30
time units. This automatic averaging of loop paths gives
more freedom in the placement of logic between DFFs.
Even if logic is balanced between pipeline stages in the
clocked system, early evaluation firings can create
unbalanced loop delay times, and delay averaging of
these different loop times will still occur.

It should be noted that the system in Figure 7 has more
than the minimum number of feedbacks and that feedback
placement can also affect system performance. In

M

T
A

(a) Token
Arrival

M

T
A

(b) Trigger
Fires

Fo

M

T
A

(c) Master
Fires

Fi Fi Fi

Fo Fo

MM

TT
A

(a) Token
Arrival

MM

TT
A

(b) Trigger
Fires

Fo

MM

TT
A

(c) Master
Fires

Fi Fi Fi

Fo Fo

M

T
A

(a) Token Arrival

M

T
A

(b) Trigger Fires
Fi Fi

Fo Fo

MM

TT
A

(a) Token Arrival

MM

TT
A

(b) Trigger Fires
Fi Fi

Fo Fo

DF G G G DF GDF G G G DF G

general, keeping feedbacks short in terms of the number
of gates between source and destination of the feedback
will improve system performance if the path is part of the
critical loops that determine the system’s throughput.
However, feedback can skip over multiple gates and not
affect system performance if the path is part of a non-
critical loop.

2.4 Token Buffering

The flow of data within a PL system can be inhibited if
there are not enough gates within a path to take advantage
of the available parallelism. This is a well-known
property of self-timed rings and is referred to as the slack-
matching problem in [13].

Figure 8: Token buffering to improve performance

Circuit A in Figure 8 is a minor modification of the

two-stage unbalanced pipeline of Figure 7. Simulation
results show that Circuit A fires in a repeating pattern of
40, 40 time units which is lower performance than Figure
7. However, adding a buffer as shown in Circuit B
changes the fire pattern to 40, 20 for an average of 30
time units, the same as Figure 7. We call this buffer a
token buffer, and it adds no functionality to the circuit,
but does increase performance.

3. Comparisons to other work

Phased Logic is unique in that it offers an automated
mapping from a clocked system to a self-timed system
from the netlist level. This allows a designer to produce
the netlist using familiar design tools and HDLs with the
restriction that the clocked netlist has only one global
clock. Most asynchronous and self-timed design
methodologies [10] use custom synthesis tools and HDLs

for design specification and this requires a substantial
time investment on the part of the designer to learn the
new methodology.

A self-timed design methodology known as Null
Convention Logic (NCL) [11] allows the use of standard
HDLs but places restrictions on how the RTL is written
and what gates the RTL is synthesized to. The NCL
synthesis methodology requires that the RTL be written in
a restrictive manner that separates the combinational logic
and storage elements, because the NCL synthesis
methodology uses a different synthesis path for registers
versus combinational logic. This prevents the use of third
party RTL without a significant effort to rewrite the RTL
in the NCL style. Designers must also specify the data
completion structures and request/acknowledge logic
needed at each register, which is an added burden on the
designer. The RTL is synthesized to a restricted subset of
functions that is then mapped to a set of predefined
macros that can be implemented in NCL. Dual-rail
signaling is an inherent feature of the NCL computation
style. This makes NCL wiring-delay insensitive at a 2X
wiring cost. Bundled data signaling has not been
demonstrated within NCL as an option that would
exchange the wiring overhead of dual rail signaling for
delay-matched signaling paths.

Many self-timed CPUs have been designed in the past
including the MIPs integer subset [13], the ARM
processor [14], and the 8051 [15]. The distinguishing
features of our design are the automated mapping from
the clocked netlist to a self-timed netlist and the use of
early evaluation to achieve speedup over the clocked
design. Previous self-timed CPUs such as the Amulet3
have used bypass paths to speed execution. The Amulet3
execution unit had an iterative multiplier and barrel
shifter in series with the ALU; these two components
were bypassed when instructions did not require them.
Bypass operations are essentially a degenerative case of
early evaluation in which all phase inputs are part of the
trigger phase and the early evaluation function has a
smaller delay than the normal compute function. The
bypass operation is used when all signals arrive at the
same time, but different delays are desired depending
upon the block operation for that particular compute cycle
(i.e., within an ALU, shift versus addition). As such, the
PL block in Figure 4 supports bypass operations and our
design makes use of bypass in much the same way as the
Amulet3. However, our design also uses early
evaluation, which proves to be crucial to a significant
portion of our obtained speedup.

4. A Phased Logic CPU

Our primary goal for this work was to demonstrate a

D1 G G G DF G

D2

D1 G G G DF G

D1 buff

Circuit A, no buffering

Circuit B
token buffer added

D1 G G G DF G

D2

D1 G G G DF G

D1 buff

Circuit A, no buffering

Circuit B
token buffer added

PL methodology compatible with an ASIC
implementation for a non-trivial design example. A CPU
was chosen, as it is a well-understood example that has
been used as a test case for other self-timed
methodologies. A secondary goal was to demonstrate
that the PL methodology could take advantage of design
re-use at the RTL level. As such, we searched the WWW
for freely available processors specified in RTL. Our
search produced a VHDL specification of a 32-bit, MIPs
CPU (integer subset) implemented as a 5-stage pipeline
[12]. We found the processor to be functional as both
RTL and when synthesized to a netlist of LUT4s and
DFFs. The CPU was implemented with standard fetch,
decode, execute, memory and writeback stages. Because
the design was intended for an FPGA, the register file
RTL used positive edge-triggered devices instead of
latches. For this design, the register file was altered to
use level sensitive latches where the read was done first
during the high phase of the clock and a write was done
last, during the low phase of the clock. This is actually
opposite of most register files, which are write-through,
but this preserved the semantics of the read/write
operations used in the original model that assumed edge-
triggered devices. The ALU did not implement a
multiplication operation. Forwarding paths were used to
solve data hazards in the pipeline without having to use
stalls. The MIPS branch delay slot plus the use of a
forwarding path for the branch computation meant that no
stalls were needed for branch or jump instructions. The
same memory interface was used by both fetch and
memory stages, so a stall was generated whenever the
memory interface was required by the memory stage.
The original RTL had a tri-state data bus interface to
memory. This was changed to use dedicated input/output
data busses as we have not yet investigated tri-state
interfaces for busses in PL. The RTL operators for
addition/subtraction in the ALU, for branch computation,
and for the PC+4 increment were replaced with Synopsys
DesignWare components that were optimized for LUT4s.
This was done to produce more efficient netlist
implementations for these operations; a carry-lookahead
structure was used for all addition operations.

4.1 Mapping to a PL netlist

The methodology we used for previous fine grain

designs had to be substantially altered to accommodate
the new goal of using coarse-grained compute functions
with multiple inputs/outputs and that could contain a
mixture of DFFs + combinational logic. The term
partition will be used to refer to a block of logic that is
encapsulated by PL control logic. Initially it was
envisioned that partitions could be automatically created
from a flattened netlist. However, it quickly became
apparent that automated partitioning involves complex

issues that will have to be addressed in future efforts.
Instead, our coarse-grain methodology requires the
designer to partition the logic at the VHDL level such that
an EDIF netlist is synthesized with two levels of
hierarchy – the instances at the top level and a lower gate
level. Each instance can contain any number of DFFs
plus combinational logic in the form of LUT4s. A LUT4
is used as the basic element for combinational logic
because it offers a method of comparison with our fine
grain mapping efforts. In a physical implementation, the
LUT4 netlists would be mapped to a standard cell library.
In our tool flow (Figure 9), we use Synopsys as the logic
synthesis tool that produces the hierarchical DFF+LUT4
EDIF netlist from a VHDL description that has one level
of hierarchy, with the leaf instances in the VHDL
description containing RTL.

Figure 9: Clocked to PL netlist translation

The process that converts the EDIF netlist to a self-

timed netlist involves two stages: partitioning and
mapping. The partitioning tool examines each of the top-
level instances to see if they contain only combinational
logic, or a mixture of DFFs and combinational logic. If
the latter, then the partitioner splits this instance into two
partitions; one that contains only combinational logic, and
one that will contain the DFFs plus a limited amount of
optional combinational logic. A partition with DFFs will
become a barrier-block in the PL netlist; a partition with
only combinational logic will become a through-block.

Figure 10 shows how an instance with DFF and
combinational logic is restructured into two partitions that
form a through-block and a barrier-block in the PL netlist.
This example shows several important aspects of this
partitioning process:

a. Inputs to the instance that go directly to a DFF
must first pass through the combinational partition. This
is required so that a barrier-block output does not drive a
barrier-block input in the PL netlist. This would require

Mapper –
generates
control network,
feedback signals

Hier. VHDL
(one
level,leaf
modules
contain RTL)

Synopsys
RTL
Synthesis

Hier. EDIF
(one level,leaf
modules
contain DFFs,
LUT4s)

Partitioner –
restructure
DFF+Comb
logic partitions

Restructured
Hier. EDIF

Token
Buffer
locations

Delay
Blocks,
EEgate
definitons

VHDL
netlist of PL
system for
simulation

VHDL netlist
of
restructured
VHDL for
simulation

Mapper –
generates
control network,
feedback signals

Hier. VHDL
(one
level,leaf
modules
contain RTL)

Synopsys
RTL
Synthesis

Hier. EDIF
(one level,leaf
modules
contain DFFs,
LUT4s)

Partitioner –
restructure
DFF+Comb
logic partitions

Restructured
Hier. EDIF

Token
Buffer
locations

Delay
Blocks,
EEgate
definitons

VHDL
netlist of PL
system for
simulation

VHDL netlist
of
restructured
VHDL for
simulation

feedback between two barrier-blocks, which violates the
feedback generation rules discussed in Section 2. The
barrier-block partition can only receive inputs from the
through-block partition.

b. Similarly, if a DFF output goes directly to a DFF
input, it must be rerouted via the through-block partition.

c. Combinational logic is allowed within the
barrier-block partition as long as the barrier-block
partition still only receives inputs from the through-block
partition, and the combinational paths terminate on DFFs.
The current version of the partitioner only pushes one
level of logic into the barrier-block. This was found to be
beneficial as this last level of logic before the DFFs
usually serves as the conditional load for a register. Note
that all latches are in the PL wrapper logic placed around
the compute blocks.

The mapping tool reads the EDIF netlist produced by
the partitioner and treats each instance as either a barrier-
block or through-block as indicated by the partitioner. A
separate control netlist is generated in which each
instance in the datapath netlist has a corresponding
control instance created for it. If a datapath instance
receives an input from another datapath instance, this is
considered a data bundle and a control wire is created for
it.

After the control netlist is generated, the mapping tool
adds feedback nets to ensure liveness and safety of the
control network. Figure 4 shows the boundaries of the
VHDL models of the compute function and the PL
control wrapper. Finally, a VHDL netlist of the PL
system that contains both compute block instances and PL

control instances is created for simulation purposes.

4.2 Control for the PL CPU

Figure 11 shows the blocks present in the PL CPU
netlist. Each net connection indicates both a data bundle
and its associated phase wire. We make no claims as to
the optimality of this partitioning; this particular
partitioning was arrived at only after many design
iterations through the PL mapping process and
subsequent CPU simulations. Important aspects of this
partitioning are:

4.2.1 Barrier-blocks. The blocks marked as ‘BB’ are
barrier-block partitions produced by the partitioner. The
ifetch, idecode, execute and memstages were all specified
as one instance going into the partitioner but were split
into two partitions because they contained both
combinational logic and DFFs.

4.2.2 Token Buffers. The blocks marked as token
buffers have empty compute functions; they only contain
the PL wrapper logic. These were added when it became
apparent that feedback paths were limiting performance
in some loops. Time spent waiting for a feedback signal
to arrive is dead time; if a gate is waiting on feedback
then it cannot fire its output and send feedback to its fanin
components and begin the next computation. Adding a
buffer on the output allows the buffer to consume the
output, freeing the gate to fire and begin the next
computation when new inputs arrive. Of course, a token

Instance with DFFs and
Combinational Logic

G2

G1

G3

Lata
b

c
d
e
f

g
G5

G4

Lat

Lat

Lat

Lat

Lat

x

z

y

Stage 2, Barrier Blocks

Stage 2,
Compute
Block

Stage 2,
Output
latches

Stage 1,
Compute Block

G7

G6

Lat
DF3

Lat
DF1

Lat
DF2

Lat
DF4

w

Stage 1,
Output
latches

Stage 1, Through Blocks

Partitioner restructuring into
Through Block and Barrier Block

G6

G5G2

G1 G4

G3

G7

DF1 DF2

DF4

DF3

a

b
c
d

e
f
g

x

y

z
w

Figure 10: Restructuring of instance with DFFs/combinational gates into Through, Barrier blocks

Instance with DFFs and
Combinational Logic

G2

G1

G3

Lata
b

c
d
e
f

g
G5

G4

Lat

Lat

Lat

Lat

Lat

x

z

y

Stage 2, Barrier Blocks

Stage 2,
Compute
Block

Stage 2,
Output
latches

Stage 1,
Compute Block

G7

G6

Lat
DF3

Lat
DF1

Lat
DF2

Lat
DF4

w

Stage 1,
Output
latches

Stage 1, Through Blocks

Partitioner restructuring into
Through Block and Barrier Block

G6

G5G2

G1 G4

G3

G7

DF1 DF2

DF4

DF3

a

b
c
d

e
f
g

x

y

z
w

Figure 10: Restructuring of instance with DFFs/combinational gates into Through, Barrier blocks

buffer adds forward latency to the path, so the extra
latency must be offset by the time gained from not
waiting on feedback. These buffers are placed in the
netlist by the partitioner; an external data file read by the
partitioner specifies buffer locations. This frees the
designer from having to pollute the input VHDL netlist
with buffers.

4.2.3 Early evaluation gates. Early evaluation was used
in three places as seen from Figure 11. The exefwd block
in the ALU forwarding path to the idecode and branchpc
gates fires early if the ALU result does not have to be
forwarded to these blocks. This early fire decision is
based upon values from the ifetch and idecode barrier-
blocks whose values are immediately available. As an
example, in the code stream below, there is no ALU
forwarding needed from the first add instruction to the
second add instruction, so the exefwd gate fires early.
This causes the idecode gate to fire faster because it does
not have to wait for the ALU result to become ready.

 Add r5, r6, r9
 Add r4, r8, r10

As a counterexample, the code stream below does require
ALU forwarding from the first add to the second add
instruction due to register value r5 being the destination
in the first addition and an operand source in the second
addition.

 Add r5, r6, r9
 Add r4, r5, r10

The branchpc gate is responsible for computing the

next PC address for all branch and jump instructions. The
branchpc gate fires early if a new PC value does not have
to be computed. This early fire decision is based only
upon the data value from the predecode gate which is
available a short delay after the ifetch barrier-block fires.
Note that the branchpc gate has as one of its inputs the
output of another early evaluation gate, the exefwd block.

The ifetch block contains the incrementer required for
computing PC+4 if the instruction is not a branch. This
value can be produced faster if the branchpc block fires
early supplying its control input to the ifetch block
sooner. The mem_datain block fires early if the
instruction is not a load word (lw) instruction. This frees
the branchpc, idecode, and memstage blocks from having
to wait on the external memory interface to fire. This
early fire decision is based upon a pipeline register value
from the execute barrier-block.

In general, the early evaluation stages allow blocks to
fire in parallel where they would otherwise fire
sequentially. For example, when the exefwd block fires
early, the idecode and branchpc blocks can compute in
parallel with the execute stage instead of having to wait
for the execute stage value to be ready.

4.2.4 Bypass paths. The ALU was split into three
partitions. Two partitions were combinational-only
blocks; the shft_log block contained the logic for the shift
and bit-wise logical instructions, the addsub block
contained the add/subtract logic. The third partition

External C
ontrol

Addr
mux

idecode
Exe
stg2

pre
decode

Inbuff
shft
log

add
sub

branch
pc

Reg
file

exe
fwd

mem
stg

ifetch

B
B

mem
datain

External Memoryaddress In_data Out_data

B
B

B
B

B
B

? Early Eval Block
? Bypass Block

Token Buffer

External C
ontrol

B
B

Barrier
Block

Figure 11: Control network for PL CPU

a

b
c

d

e

f

g

h

i

j

k

l

External C
ontrol

Addr
mux

idecode
Exe
stg2

pre
decode

Inbuff
shft
log

add
sub

branch
pc

Reg
file

exe
fwd

mem
stg

ifetch

B
B

mem
datain

External Memoryaddress In_data Out_data

B
B

B
B

B
B

? Early Eval Block
? Bypass Block

Token Buffer

External C
ontrol

B
B

Barrier
Block

Figure 11: Control network for PL CPU

a

b
c

d

e

f

g

h

i

j

k

l

contained the mux for the outputs of the first two blocks
as well as all of the registers contained in the execute
stage. The addsub block was bypassed if either a logical
or shift instruction was being executed. The shft_log
block was bypassed if a logical or add/subtract instruction
was executed. The bypass delay in the shft_log block is
long enough to produce the result of a logical instruction.

4.2.5. Feedback nets. For figure clarity, feedback nets
are not shown in Figure 11. Most fanouts in the CPU
have associated feedback nets. Even though feedbacks
can skip back over multiple through-blocks as discussed
in Section 2, the length of a feedback net was kept to one
block level to ensure that feedback signals had the earliest
possible arrival time. Control signals that are safe
because they are already part of a loop that involves their
destination barrier-block did not require feedbacks. As
an example, all barrier-blocks had control signals that
looped back to their corresponding through-block
partition so these signals are safe and do not need
feedback. Another example of a loop that results in safe
signals is the loop formed by the ifetch barrier-block to
the predecode through-block to the ifetch through-block
back to the ifetch barrier-block.

4.2.5 Memory Interface. A PL wrapper was placed
around a VHDL model for an external memory with one
control line used for all data inputs and one control line
for data outputs. The memory model had separate
datain/dataout busses. Memory was treated as a through-
block for the mapping process. The only external control
signals present in the original MIPS VHDL model that
were not directly connected to the memory model were
rdy and init. The rdy signal was an external stall line for
the processor, while the init signal functioned as a
synchronous reset. The inbuff block shown in Figure 11
acted as a token buffer between the external control line
and the destination blocks for these signals.

4.3 PL netlist statitistics

Table 1 gives the netlist statistics for the PL design. The
max_dly column gives the maximum delay of the
compute function in LUT4 delays. This does not include
the output delay of the latch element in the PL control
wrapper or the input delay of the C-element. Note that
the token buffers have empty compute functions so their
compute function delay is zero; the latency of these
elements will be determined by the PL wrapper logic.
The EE_dly column gives the delay of the early
evaluation or bypass function if applicable. The max_dly
and EE_dly values of the exefwd, memdatain blocks are
equal because these elements were inserted in the netlist

solely to provide an early phase input to their destination
blocks; their normal compute function is simply a buffer
function. The output column for the compute function is
important as it indicates the loading on the G signal that is
used to gate the output latches for that block. Besides the
global reset signal, these signals will be the most heavily
loaded control signals in the system. The control columns
give the number of phase and feedback inputs to each
block. For early evaluation blocks, the number of phase
inputs required for the trigger phase is indicated in
parenthesis. The memstg, idecode and ifetch blocks do
not require feedback inputs because their outputs are
already safe due to an existing loop involving their
destination barrier-block.

Table 1: Netlist Statistics for the PL CPU.

4.4 PL CPU Performance

The performance of the PL CPU was measured via
simulation of the VHDL netlist produced by the mapper
program. Delays were normalized to LUT4 delays. Five

Compute Function PL Control
max
dly

EE
dly

LUT4 ips ops ips FBs

memstg_bg 1 72 146 71 1 5
exe_bg 1 42 85 41 1 6
ifetch_bg 1 97 196 96 1 5
idecode_bg 1 160 308 159 1 6
memstg 3 186 178 144 5 0
shft_log 9 5 171 140 33 1(1) 1
add_sub 14 3 166 149 50 1(1) 1
exestg2 2 126 125 83 4 1
ifetch 11 244 175 194 7 0
memdatain 1 1 1 33 32 2(1) 3
regfile 7 2489 72 64 2 2
addrmux 1 33 69 34 3 1
idecode 10 652 442 306 9 0
branchpc 12 1 360 287 33 8(1) 1
inbuff 0 0 2 2 1 4
exefwd 6 6 17 48 32 3(2) 2
predecode 5 49 32 19 1 2
tbuff_a 0 0 38 38 1 1
tbuff_b 0 0 38 38 1 1
tbuff_c 0 0 38 38 1 1
tbuff_d 0 0 35 35 1 1
tbuff_e 0 0 1 1 1 1
tbuff_f 0 0 34 34 1 1
tbuff_g 0 0 8 8 1 1
tbuff_h 0 0 11 11 1 1
tbuff_i 0 0 6 6 1 1
tbuff_j 0 0 64 64 1 1
tbuff_k 0 0 10 10 1 1
tbuff_l 0 0 64 64 1 1

benchmark programs were used for performance
measurement:
• fibonnaci (fib), a value of 7 was used
• bubblesort, a matrix size of 20 was used
• crc, calculate a CRC table with 256 entries
• sieve – find prime numbers, stopping point set to 40
• matrix transpose - a 20x30 matrix was used.

All programs were written in C and compiled with gcc
using the –O option to produce an assembly language file
that was then assembled via a Perl script to an input file
read by the VHDL memory model. Based on previous
transistor level simulations, the output latch delay of the
non-EE PL wrapper control logic and a four input C-
element were each set to 0.6 LUT4 delays (these delay
ratios were used in previous fine-grain mapping efforts
and were chosen from transistor level simulations and
typical FPGA datasheet values). The input delay of the
C-element for a PL wrapper block was calculated
assuming that a four-input C-element tree would to be
used to create C-elements with more than four inputs.
The output latch delays of an early evaluation PL block
were set to 1.0 LUT4 delays to account for the additional
complexity of its control logic. The delay block values in
PL gates were set equal to the maximum delay of the
associated data bundle through the compute function
minus the delay of the C-element. Token buffer delay is
the sum of the C-element delay plus output latch latency.
Obviously, adjusting the C-element delay to account for
the loading of the G output signal would have produced a
more detailed timing delay approximation. In most cases,
this extra delay would simply be subtracted from the
input delay blocks.

Determining a memory access delay penalty is
problematic. If the performance of the system is limited
by memory, the issue of performance in the CPU core
becomes moot. However, at the same time, the effect of
memory access time should not be ignored. As such, the
benchmarks were run under two conditions; a slow
memory case and a fast memory case. In both cases the
memory access time was not the limiting factor in the
original clocked netlist. The critical path in the clocked
netlist as reported by Synopsys is 24 LUT4 delays and
passes through the execute, branchpc and idecode stages.
The total memory path delay of the CPU from address out
to data in was 13 LUT4 delays, leaving 11 LUT4 delays
available for memory access. The slow memory case
assumed that the memory interface speed was fixed at the
maximum allowable memory latency without limiting
performance in the clocked system, or 11 LUT4 delays.
The fast memory case assumed that the memory
bandwidth could be increased such that it did not limit the

speedup of the PL CPU.
 Even though the register file model was synthesized to

a netlist of latches and combinational logic, this gate level
netlist was not used in the PL simulation for this compute
block. The normal PL control wrapper assumes the
compute function proceeds in parallel with the C-element
evaluation. This does not work for the write operation of
the register file that can only occur after all inputs have
arrived.

Table 2: PL CPU Performance Results

As such, the firing of the C-element was used to trigger

the write operation in an RTL level model of the register
file. Only one delay element was used for this control
wrapper and it was placed after the C-element. This
means that all inputs paid the full delay penalty of the
register file regardless of arrival sequence of the inputs.
The delay used for the register file was the maximum
delay as reported by Synopsys when synthesized to a
latch implementation. This is a conservative estimate for
the register file delay.

Table 2 gives the performance results for the PL CPU.
The columns marked as mem_efire, branch_efire, and
exe_efire show the percentages of early firings for those
blocks out of the total instruction cycles. Intuitively,
more early firings means higher performance, and these
numbers support that hypothesis. The Spdup column
shows speedup over the clocked netlist where the clocked
netlist was simulated using a clock cycle time of 24
LUTs. The speedup value is calculated taking the larger
of the two execution times for a benchmark and dividing
by the smaller value; a negative sign is used to indicate
slowdown. All of the values in Table 2 are positive,
indicating that the PL CPU achieved speedup over the
clocked netlist for every benchmark.

The top half of Table 2 shows results for non-reordered
instruction streams. In examining the assembly language
produced by gcc, it became evident that simple reordering

 Fast Mem Slow Mem

mem
efire

branch
efire

exe
fire

Spd
up

exe
efire

Spd
up

fib 89% 74% 77% 1.43 73% 1.24
bubbl 85% 83% 42% 1.3 42% 1.21
crc 100% 76% 38% 1.4 31% 1.24
sieve 97% 79% 38% 1.27 37% 1.2
mtpse 92% 92% 53% 1.31 50% 1.23
avg 1.34 1.22
fib 89% 74% 77% 1.43 73% 1.24
bubbl 85% 82% 65% 1.37 58% 1.25
crc 100% 76% 76% 1.52 59% 1.28
sieve 97% 75% 64% 1.35 59% 1.22
mtpse 92% 92% 73% 1.38 70% 1.25
avg 1.41 1.25

of instructions in critical loops would increase early
evaluations of the exefwd gate, thereby improving
performance. For example, a typical code segment
produced by gcc is shown below:

 addi r4,r4,1

 slti r2, r2, 8
 bne r2, r0, L10

The exefwd gate will not early fire for the bne
instruction because r2 is a destination in the slti
instruction, and a source in the bne instruction. However,
the instructions can be reordered as shown below:

slti r2, r2, 8
addi r4,r4,1

 bne r2, r0, L10

Functionally, the two code streams are equivalent, but
the second code stream allows the exefwd gate to early
fire for the bne instruction. Instruction reordering was
done manually by examining the critical loops of the
assembly code for the benchmarks. Instruction
reorderings improved performance in all cases, except for
the fib benchmark for which no instruction reorderings
were found. It can be seen that the increased performance
in the lower half of the table is due to the increase in early
firings of the exefwd gate due to instruction reordering.

The slow memory case has a lower speedup than the
fast memory case because the memory path now becomes
the bottleneck in the system. This is a fairly obvious
result in that all aspects of system performance must be
increased if maximum speedup is to be achieved.
Fortunately, there are many techniques available for
increasing memory bandwidth so the fast memory case
can be viewed as an achievable speedup.

Table 3: Individual Instruction Timings

Table 3 shows performance results for streams of

individual instructions. The average cycle time is given

in LUT4 delays and the fire pattern is the repeating
pattern of cycle times for the instruction stream. The ‘no
eefwd’ versions mean that each instruction had, as a
source register, the destination of the previous instruction
so that the exefwd gate did not early fire. Not
surprisingly, the logical and shift instructions are the
fastest. The logical and shift instructions have the same
timings if the exefwd gate fires early because the register
file to idecode path becomes the bottleneck in this case.
The bypass for the logical operations only increases
performance if the exefwd gate does not early fire
because this causes the ALU to become the critical path.
The jump/branch streams were two-instruction streams
where the jump/branch was followed by a nop instruction.

Table 4: Speedup contributions within the PL CPU

Speedup in the PL CPU is achieved via early

evaluation, bypass operation, token buffering, and
instruction reordering. Table 4 shows the speedup
contribution for each of these components for the
bubblesort benchmark. The slowdown for the PL CPU
without any of the performance enhancing features is
expected as the PL wrapper latches add latency to the
critical paths. It is evident that adding early evaluation
provided the largest performance increase.

In evaluating these speedup numbers, we offer the
caveat that we are comparing PL performance against one
particular clocked CPU implementation. Unfortunately,
we cannot make the claim that this is the fastest possible
clocked implementation of the MIPS ISA via a LUT4
technology. To make this claim, we would have needed
to totally rewrite the provided MIPS RTL model in order
to test out different approaches for implementing the
MIPS ISA. To our credit, we did try to reduce the critical
path in the clocked design as much as possible via the use
of LUT4-optimized DesignWare components that were
created in our fine-grain mapping efforts. Without the
use of these DesignWare components, the critical path in
the clocked system ballooned to 34 LUT4 delays, and the
PL speedup numbers were even higher than those
presented in Table 2. There is also the question of timing
margins – we assumed no timing margins for either the
clocked or PL implementations. Suggested timing
margins [15][16] for delay matching in micropipelines

Inst. Seq.(fast mem) Avg Cyc Time Fire Pattern
and 13.2 13.2
and (no eefwd) 14.0 14.0
shift 13.2 12.4,14.0
Shift(no eefwd) 17.6 17.6
add 17.0 17.0
add(no eefwd) 22.6 22.6
branch,nop 16.8 20.4, 13.2
jump, nop 16.8 20.4,13.2
load 18.9 10.6,10.6, 22.6
store 17.0 17.0

PL CPU Version Spdup (bubbl)
a. no ALU bypass, no eeval, no
token buffs, no instruction reorder

-1.14

b. ALU bypass only -1.04
c. Version b + early eval 1.24
d. Version c + token buff 1.30
e. Version d + instruction reorder 1.37

range from 10% for regular/tiled layout blocks to 30% for
synthesized standard cell blocks. However, delay path
matching in micropipelines is equivalent to gated
clock/datapath delay matching in high performance
microprocessors [1] [17]. These designs regularly use
margins of less than 10% of the clock period. It is clear
that the speedup numbers in Table 2 depend upon the
amount of engineering effort applied to the delay-
matching problem as well as the technology chosen for
logic implementation. As such, we feel that the important
contribution of this work is not in the absolute speedup
numbers, but rather in the methodology by which they
were obtained.

5. Acknowledgements

The authors would like to thank Lokesh
Shivakumaraiah and Pritam Kokate for assistance in
running benchmarks, the creation of the C-to-object code
path, and for the initial RTL modifications that removed
the tri-state memory bus. Thanks also go to David
Hemmendinger of Union College for suggestions on
improving the clarity of the section on safety in PL
netlists with early evaluation gates. This work was
funded in part by an award from the National Science
Foundation (CCR-0098272).

6. Summary

In this paper we presented a design methodology

known as Phased Logic (PL) that allows a netlist of D-
flip-flops and combinational logic clocked by a single
global clock to be automatically mapped to a self-timed
circuit that uses bundled data signaling between multi-
input/output computation blocks. The computation
blocks support both bypass and early evaluation operation
modes, which can be used to improve system
performance. This methodology was applied to a
publicly available RTL VHDL model of a 5-stage
pipelined MIPs processor. The RTL was synthesized via
a commercial synthesis tool to a netlist of D flip-flops and
4-input lookup tables before being mapped to a self-timed
implementation. Early evaluation was used in the ALU
forwarding path, the branch PC computation path, and the
memory input data path to improve performance. Bypass
was used for shift and logical instructions within the
ALU. Buffering stages were added at key points in the
architecture to remove bottlenecks due to late arriving
feedback signals. Post-compiler instruction reordering
was used to increase the percentage of instruction cycles
that performed early firing on the ALU forwarding path.
Performance results from five benchmark programs
demonstrated an average speedup of 41% when compared

to the original clocked implementation.

7. References
[1] F.E. Anderson, J. S Wells, E. Z. Berta, “The core clock

system on the next generation Itanium1 microprocessor”,
Digest of Technical Papers, ISSCC 2002, San Francisco,
Vol 1., pp. 146-148.

[2] I. Sutherland, “Micropipelines”, Communications of the
ACM, Vol 32, No. 6, June 1989, pp. 720-738.

[3] D.E. Muller and W. S. Bartky, "A Theory of Asynchronous
Circuits", in Proc. Int. Symp. on Theory of Switching, vol.
29, 1959, pp. 204-243.

[4] M.E. Dean, T.E. Williams, and D.L. Dill, “Efficient Self-
Timing with Level-Encoded 2-Phase Dual-Rail (LEDR),”
in Advanced Research in VLSI, 1991, pp. 55-70.

[5] Daniel H. Linder and James C. Harden, “Phased Logic:
Supporting the Synchronous Design Paradigm with Delay-
insensitive Circuitry.” IEEE Transactions on Computers,
Vol. 45, No 9, September 1996, pp. 1031-1044.

[6] F. Commoner, A. W. Hol, S. Even, A. Pneuli, "Marked
Directed Graphs", J. Computer and System Sciences, Vol.
5, 1971, pp. 511-523.

[7] R. B. Reese, M. A. Thornton, and C. Traver, “Arithmetic
Logic Circuits using Self-timed Bit-Level Dataflow and
Early Evaluation”, Proc. ICCCD 2001, Austin, Sept. 2001,
pp. 18-23.

[8] M. A. Thornton, K. Fazel, R.B. Reese, and C. Traver,
“Generalized Early Evaluation in Self-Timed Circuits”,
Proc. Design, Automation and Test In Europe (DATE),
Paris, France, March 2002, pp. 255-259.

[9] C. Traver, R. B. Reese, M. A. Thornton, “Cell Designs for
Self-timed FPGAs”, Proc. ASIC 2001, Sept. 2001,
Washington, D.C., pp. 175-179.

[10] Scott Hauck, “Asynchronous Design Methodologies: An
Overview”, Proceedings of the IEEE, Vol. 83, No. 1,
January, 1995, pp. 69-93.

[11] Michiel Ligthart, Karl Fant, Ross Smith, Alexander
Taubin, Alex Kondratyev, "Asynchronous Design Using
Commercial HDL Synthesis Tools", Proc. Async 2000,
Eilat, Israel, April 2000.

[12] Anders Wallander, “A VHDL Implementation of a MIPS”,
Project Report, Dept. of Computer Science and Electrical
Engineering, Luleå University of Technology,
http://www.ludd.luth.se/~walle/projects/myrisc.

[13] A. J. Martin, A. Lines, R. Manohar, M. Nystrom, P.
Penzes, R. Southworth, U. Cummings, Tak Kwan Lee,
“The Design of an Asynchronous MIPS R3000
Microprocessor”, Proceedings of the 17th Conference on
Advanced Research in VLSI, pp. 164-181.

[14] J. D. Garside, S. B. Furber, and S. B. Chung, “AMULET3
Revealed”, Proc. Async. ’99, Barcelona, April 1999, pp.
51-59.

[15] H. van Gageldonk, K. van Berkel, A. Peeters, D. Baumann,
D. Gloor, G. Stegmann, “An Asynchronous Low-Power
80C51 Microcontroller”, Proc. Async ’98, San Diego,
March 1998, pp. 96-107.

[16] J. Garside, Private Communication, February 2003.
[17] D. Harris, H. Naffziger, “Statisical Clock Skew Modeling

with Data Delay Variations”, IEEE Transactions on VLSI,
Vol 9., No 6., December 2001, pp. 888-898.

