
An Overview of Placement and Routing Algorithms

for PCB, VLSI, and MCM Designs

with a Proposal for a New MCM Routing Algorithm

A Technical Report submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Engineering

By

Charles N. Frisbee

May 1996
Department of Computer Systems Engineering

University of Arkansas

Table of Contents

ABSTRACT ... 4

1.0 Introduction. .. 5

2.0 Placement and Placement Algorithms 5

2.1 Iterative Algorithms. 7

2.2 Simulated annealing. 8

2.2.1 Improvements to simulated annealing. 9

2.2.2 A detailed look into simulated annealing. ... 10

2.3 Genetic Algorithms. 13

2.4 Miscellaneous placement algorithms. 14

2.5 Application issues in using placement algorithms. .. 15

3.0 Routing and Routing Algorithms. 19

3.1 Global routing 20

3.2 Detailed routing 21

3.3 Routing Algorithms and Routing Approaches 21

3.4 Miscellaneous routing algorithms. 22

3.5 Applications issues in using routing algorithms. ... 23

4.0 Simultaneous placement and routing. 26

5.0 Proposition of a new MCM routing strategy. 26

5.1 Overview of the MCM package design. 27

5.2 Definition of the MCM routing problem. 28

5.3 Overall routing strategy. 30

5.3.1 Constraint routing. 30

5.3.2 Compaction operation. 33

5.3.2.1 The annealing process. 34

5.3.2.2 The cooling schedule. 37

5.3.2.3 The convergence criterion. 38

5.4 Further work or improvements. 39

6.0 Conclusion. ... 39

4

ABSTRACT

 Placement and routing algorithms are an important means for

achieving fast, high quality layouts of high density circuit

chips. Packaging of Multi-Chip Modules (MCM) places further

demands on these placement and routing algorithms than on VLSI or

PCB layouts. However, many of the existing techniques and

algorithms for VLSI and PCB placement and routing are well-suited

for use in MCMs and can be combined together or modified to help

solve the MCM layout problem. This paper presents a broad

overview of the different kinds and categories of placement and

routing algorithms for PCB, VLSI, and MCM designs in use today.

Many specific algorithms are also presented. This paper also

addresses the application issues of using different placement and

routing algorithms. This is done by comparing and contrasting

these algorithms in order to confront the issues of advantages,

disadvantages, and trade-offs of different algorithms.

 Finally, this paper proposes a strategy for solving the MCM

routing problem using existing layout techniques and presents

some important considerations needed to turn this strategy into a

working algorithm. This paper's primary intent is to show the

paradigm of combining existing research of layout algorithms with

5

new ideas in order to develop new algorithms for higher demanding

circuit packages.

1.0 Introduction.

 As new algorithms are sought to satisfy the layout demands

of high density circuit packages, research into existing layout

techniques is necessary. Layout of integrated circuits is the

process of designing the physical representation of the circuit

scheme and its connectivity between circuit modules. The two

phases of the layout process are called placement and routing.

Study into the many different and varied placement and routing

algorithms and approaches provides assistance in designing new

algorithms, improving old algorithms, avoiding endeavors leading

to unavailing results, and adapting existing algorithms to meet

current demands.

 The purpose of this paper is to contribute a single

assembled resource of information on the different kinds of

placement and routing algorithms for PCB, VLSI, and MCM

algorithms. Also, this paper proposes a strategy for ultimately

achieving a new, higher functional MCM routing algorithm.

Strategies and ideas from existing routing and placement methods

are gathered together and discussed to suggest another solution

to the MCM routing problem.

2.0 Placement and Placement Algorithms

6

 Placement is the process of physically arranging electronic

functions (library cell circuits, integrated circuit (I.C.)

chips, module components, etc.), on a planar surface (silicon

substrate, printed circuit board (PCB), multichip module (MCM))

in a desired manner. Placement is one of two phases in the

layout process with the second phase being the routing of the

placed components. Thus, placement is a process ranging from the

macrolevel (i.e. I.C. chips) to the microlevel (i.e. multichip

modules).

 A placement algorithm can be defined as a procedure for

physically arranging all electronic functions on a planar surface

such that minimum wiring and minimum area result. Therefore, the

algorithm tries to satisfy a desired optimization. Other

optimization criteria include minimizing delay, minimizing

parasitic capacitance and inductance couplings [0] (in the case

of a PCB), and meeting thermal considerations such as the

designer's heat dissipation requirements. It should be noted

that no one placement algorithm achieves a complete optimization,

and the choice of a placement algorithm depends on the designer's

objectives and goals. Typically, algorithms are combined or

adapted to interact with one another to gain further improvement.

 The choice of a placement algorithm can also affect the level of

circuit testing quality [0].

 There are basically two main classes of placement

algorithms: iterative and constructive. Iterative placement

algorithms operate by creating a very crude placement and

7

improving it in a step-by-step fashion [0]. Constructive

placement algorithms, in complete contrast to iterative placement

algorithms, try to place modules one at a time in a position that

is usually not far from the final solution [0]. The significant

part of a constructive algorithm spends time calculating the

position of each module and is, thus, computationally intensive.

 Most algorithms available today adapt known methods to achieve

the designer's goals, or they are optimized to increase

efficiency of characteristics such as computation time or better

placement. Other kinds of algorithms exist, and these will be

introduced.

 Placement algorithms can also be described as being rigor or

heuristic [0]. Rigor consists of step-by-step computations until

a solution or optimal solution is found. However, these

computations can be too costly when time is a limitation.

Therefore, heuristic algorithms are implemented. Heuristic

algorithms have evolved from inductive reasoning based on past

experience instead of mathematical rigor. The heuristic process

is designed to capitalize on the statistical properties of "real"

circuits.

2.1 Iterative Algorithms.

 Many iterative-based algorithms exist for placement and

typically use a simulation of a natural process to perform the

optimization. Criteria (i.e. design goals) also play an

important role. The force-directed method is a common iterative

approach [0]. The algorithm treats each module as a point mass,

8

and the interconnecting nets as springs, of weighted force

constant. A few modules are assumed fixed and the rest are

allowed to move around until they assume a minimum "energy"

configuration. The term "energy" is defined as a function of

intermodule spacing and connectivity. The process of "relaxing"

the system repeats itself until the module movements become

negligible. Another method similar to the preceding is called

the attractive and repulsive force method (AR method) [0].

 The "scatter-and-gather" method is an example of combining

several algorithms and techniques together to accomplish floor

planning of IC chips [0]. The "scatter" phase uses the force-

directed method and also unconstrained cluster growth (UCG) and

constrained cluster growth (CCG). CCG considers size and aspect

ratio of the package as fixed, and the center of the package

always coincides with the center of mass of the cluster. The

"gather" phase tries to solve a geometric problem called minimal

box embedding (MBE) which consists of two solution techniques:

GBS (growing box scheme) and RBS (reducing box scheme). Speedup

techniques called incremental transform/sorting and quadrant

folding are also used.

2.2 Simulated annealing.

 Simulated annealing (SA) algorithms fall under the category

of iterative placement algorithms [0]. Simulated annealing tries

to minimize the overall "energy" of the system by mathematical

methods that closely resemble the way systems in nature relax.

The "energy" is a measure of the total wire length congestion,

9

which can be computed with the use of a net-crossing histogram,

and is represented with an objective function [0]. The package

surface is divided into natural boundaries, and a histogram is

used to represent the number of nets crossing each boundary.

Both horizontal and vertical net-crossing histograms are

constructed. The information in each histogram is combined into

an objective function by first introducing a threshold level for

each histogram - an amount of wire that will nearly exhaust the

available wire capacity. Next, we sum for all histogram elements

that exceed the threshold the square of the excess over the

threshold. Finally, we obtain the objective function by adding

this quantity to the lower bound wire length provided by the peak

of the histograms.

 The SA algorithm starts with a random layout of modules and

then performs random module interchange (usually pairwise). The

change in "energy" is computed, and if the new configuration has

a lower energy than the previous one, it is used as the basis for

further interchange. However, there is still a probability of

acceptance of the new configuration if it is higher in "energy"

than the previous one. This acceptance is termed an "uphill

climb", and it is used to allow the algorithm the possibility to

leave an area of a local minima and search other areas of the

solution space. Many placement algorithms use simulated

annealing as a basis for either improving the SA algorithm or

adapting it to their needs.

2.2.1 Improvements to simulated annealing.

10

 One attempt at improving the SA algorithm involves

exploiting the probabilistic nature of the algorithm to reduce

computation time by doing cost calculations approximately instead

of exactly [0]. Another attempt at improvement is the reduction

of the search space of the placement problem and preventing the

overlap between modules [0]. The placement by this algorithm is

comparable to conventional SA algorithms, but the improvement is

manifested in the form of reduced computation time. Other

improvements to SA include a cell clustering technique to improve

computation time.

 The SA algorithm has also been implemented with parallel

processors with capability of integrated error control [0]. An

example of the parallel processor approach is an algorithm called

heuristic spanning [0]. It's used to replace the "high-

temperature" portion of simulated annealing. The "low-

temperature" portion is sped up by the section annealing

technique. Each processor is assigned a separate section to

optimize and communicates its move with the other processors.

Parallel processors can also achieve a hierarchial simulated

annealing (HSA) method. This method divides a given problem into

sub-problems applying the SA method at each stage. This feature

makes it possible to automatically choose suitable parameters in

the cost functions at each stage of computation [0].

2.2.2 A detailed look into simulated annealing.

 The simulated annealing technique has become a foundation

for further improvement into the placement and layout problem.

11

Examples stated earlier have shown that improvement is in the

form of faster computation time and better placement

optimization. Typically, these two criteria are in direct

conflict with each other. That is, as one condition is improved

the other is worsened. This section describes the SA algorithm

in further detail and also describes an improvement called

simulated sintering (SS) [0].

 Simulated annealing, in the general case, exhibits two main

weaknesses in trying to achieve fast computation time and good

placement optimization. First, the computation time is slowed

down by starting with an initial random placement. Second, the

lack of an optimal cooling schedule for the problem prohibits the

algorithm from producing a desired tradeoff between cost (in

time) and optimization. Simulated sintering is used to solve

these two problems and consists of two parts, starting with a

"good" initial placement to improve computation speed and the

inclusion of an optimal cooling schedule to control termination

criteria. The "good" initial improvement is usually obtained by

a fast heuristic algorithm. The choice of the algorithm depends

on the problem at hand, but the time taken by the heuristic

algorithm should be less than the time taken by the general SA

algorithm to achieve the same result or no improvement will take

place.

 The cooling schedule controls the probability of accepting

an uphill move in the SA technique and gives direction to the

search through the solution space. Two types of cooling

12

schedules can be used, goal-directed and extended goal-directed.

Goal-directed scheduling uses the cost of a minimal solution to a

problem to determine uphill acceptance. Extended goal-directed

scheduling is a variation on goal-directed scheduling which

allows temperature to increase or decrease. Changing the

temperature during the optimization process controls the speed

and direction of the search (determined by the acceptance of an

uphill climb). This is what the cooling schedule is designed

for. A high acceptance rate (increasing the temperature) for an

uphill climb is desirable during the initial stages of the

optimization process, and a low acceptance rate (decreasing the

temperature) is desirable during the final stages.

 The success of simulated sintering hinges on the use of a

good cooling schedule and the identification of an appropriate

initial temperature. If the initial temperature is too high,

then the SS algorithm deteriorates to simulated annealing and no

improvement is achieved. If the initial temperature is too low,

it results in a non-minimal solution. Thus, what is required is

the ability to relate configuration costs (time and optimization

quality) to temperature values and come up with a convergence

criteria (determination of best solution). One possible solution

is to base it on experience, but this attempt restricts itself to

certain problem types and doesn't try to find a global solution

process. Three convergence criteria used in simulated annealing

can be controlled by simulated sintering. These criteria are

listed as follows:

13

 1. Converge when the number of accepted configurations,
 expressed as a percentage of the total number of
 configurations generated at a particular temperature,
 falls below a predetermined value.

 2. Converge when the cost of current best configuration
 remains unchanged for a number of consecutive
 temperature values.

 3. The ability to accept uphill moves is no longer required
 when all configurations accepted at a given temperature
 value have similar cost. Consequently, the SA algorithm
 can terminate or converge whenever the similar cost
 condition is detected.

 Simulated sintering has been shown to be a good improvement

to the SA method. It allows placement optimization to be based

on chosen convergence criteria, but most importantly steers the

search direction for a solution. This allows a tradeoff between

desired cost and desired optimization.

2.3 Genetic Algorithms.

 Genetic algorithms are an iterative approach to placement.

These types of algorithms attempt to achieve better and better

optimization based on the biological evolution process. The

algorithm starts with an initial placement and uses genetic

operators to do the optimization. Three common operators are

used by genetic algorithms: crossover, mutation, and inversion.

 Crossover, the main genetic operator, is used to combine two

current configurations to produce a new configuration. Mutation,

a background operator, is used to produce spontaneous random

changes in various configurations. Inversion involves taking a

random segment in a solution representation and flipping it. The

rates of these genetic operators can be changed, automatically

14

improving efficiency. Each of these types of genetic operators

may be used in various ways to explore the solution space in a

more efficient manner [0,0,0,0,0].

2.4 Miscellaneous placement algorithms.

 The following algorithms are various other methods for

placement that have been studied and will be briefly described.

Techniques and procedures used in placement are also listed and

explained.

 1. An algorithm that applies bin-packing to the building
 block placement problem based on classification of
 blocks [0].
 2. A placement method using fuzzy set theory based on a
 combination of fuzzy similarity relation, and a modified
 c-means clustering algorithm [0].
 3. An algorithm that optimizes placement by using
 "statistical cooling" [0].
 4. An algorithm based on the divide-and-conquer paradigm
 that divides sets of logic modules into small clusters,
 generates an optimal placement for each cluster, and
 then combines each smaller solution to the original
 placement problem [0].
 5. An algorithm that assumes placement has been done, but
 pin assignments can still be set to minimize wire
 connections [0,0].
 6. An algorithm for the placement of macrocells in VLSI
 based on the blackboard model that is suitable for
 parallel processor implementation [0].
 7. An O(n)-time algorithm on the constrained multistage
 (CSMG) model. The algorithm uses the line sweep
 method [0].
 8. An algorithm based on simulated surface tension that
 assigns cohesion and adhesion forces to the cells and
 their surroundings [0].
 9. An algorithm based on the self-organization process
 proposed by T. Kohonen which is a learning algorithm for
 neural networks that adjusts the weights of links
 connecting nodes and inputs so that nodes connected
 closely topologically are sensitive to inputs having
 similar properties. This algorithm is well suited for
 parallel implementation [0].
 10. An algorithm based on the neural somatotopical
 mapping [0].
 11. An algorithm to determine whether a placement of N
 rectangles can be represented by a slicing tree and then

15

 determines the minimum height. This is used in the top-
 down approach to placement which consists of
 floorplanning and global wiring [0].
 12. An algorithm for placing rectangular blocks in the
 Euclidean plane based on the Lennard-Jones 6-12
 potential equation and minimizing the sum of the squares
 of the Euclidean distances of the block
 interconnections [0].
 13. An algorithm that formulates the problem as a
 relaxed integer linear max-flow problem which is an NP
 -complete problem. This algorithm is used in multilayer
 printed circuit board (MPCB) layout. The solution can
 be obtained by solving a linear programming problem
 [0].
 14. The bipartitioning method by Kernighan and Lin (KLM) and
 an algorithm using neural networks to improve the
 behavior. The KLM method generates a balanced 2-way
 partition of the blocks such that the wiring across the
 partition is minimum [0].
 15. A parallel algorithm for tiling with polyominoes. The
 tiling problem is to pack polyominoes in a finite
 checkerboard [0].
 16. An iterative algorithm based on eigenvector
 decomposition which gradually reduces the search
 space [0].
 17. An algorithm using adaptive and look-ahead procedures
 with constraints on routability, area, and timing
 [0,0,0].
 18. An algorithm that repeatedly solves sparse linear
 equations using successive over relaxation (SOR) to
 solve the linear equations. Also, a BGS (block Gauss-
 Seidel) iteration scheme is used to achieve global
 optimum results [0].
 19. A placement algorithm based on analysis of the manual
 design process. The algorithm functions by using
 knowledge gained from manual design experience [0].

2.5 Application issues in using placement algorithms.

 One of the first considerations in choosing a placement

algorithm is that of looking at its strengths and weaknesses to

solve the particular problem in a desired fashion. No one

algorithm can satisfy all design, implementation, and solution

constraints. Thus, comparison and contrast measurements of

different algorithms are an important and valuable resource for

16

the designer to have. The following section performs a compare

and contrast of the major types of placement algorithms which

includes discussion of trade-off and performance issues.

 All circuit placement problems are optimization problems of

some kind and size, and thus all placement algorithms attempt to

achieve a desired degree of optimization ranging from global to

some lesser, acceptable degree. The major trade-off is between

increasing computation time for an optimum solution and

reasonable time for a less optimum (but perhaps acceptable)

solution.

 Constructive placement algorithms provide the ability to

obtain highly optimal solutions at the cost of high computation

time. Some speed improvement can be gained through faster

hardware, such as parallel processors, and modest programming

techniques. Obviously, these kinds of algorithms should only be

used when a design demands an extremely strict placement of

modules.

 Iterative placement algorithms are generally of greater

interest than constructive algorithms. An iterative-type

algorithm should be used when time is a factor and a less than

optimal solution is acceptable. The strategies used in an

iterative algorithm employ techniques or a combination of

techniques from other iterative algorithms in order to improve

certain constraints. Since most of the specific iterative

placement algorithms presented in literature only claim to gain

improvements over a select few (or single) placement algorithms,

17

the choice of a specific algorithm warrants separate research

into what improvements are offered by the algorithm and what

criteria is satisfies. Simulated annealing algorithms will be

used in this report as a "gauge standard" for comparison and

contrast of placement algorithms.

 The basic advantages of simulated annealing and the

advantages over other placement algorithms are:[0]

 1. Ability to jump out of local minima by accepting uphill
 climbs and potentially falling into a more promising
 downhill path.
 2. Highly suitable to problems having an increasing
 order of magnitude on the number of modules to be
 placed.
 3. Ability to optimize a desired set of parameters through
 the use of a cost function.
 4. Greater control of moving through the search space by
 use of a SA cooling schedule.
 5. Only an initial random placement needed to obtain a
 solution.
 6. Alleviates the need for complex mathematical
 calculations to place a module during the solution
 process.
 7. May be applied to existing placement solutions for even
 further improvement.

The disadvantages of simulated annealing are:

 1. Undeterministic solution. The probabilistic nature of
 choosing moves causes the solution to change during
 every execution.
 2. Optimal cost functions may be very sophisticated,
 especially for large scale problems.
 3. Smaller scale placement problems may be less efficiently
 solved (i.e. require more time) with SA than with other
 iterative algorithms.
 4. SA algorithms still require large amounts of computation
 time for problems of high order.
 5. A good cooling schedule is needed to obtain a good
 solution.

 Another favorable optimization technique for module

placement is the genetic algorithm (GA). These algorithms, like

18

SA, are very useful in large-scale combinatorial placement

problems. Genetic algorithms are normally very comparable to

simulated annealing in both solution quality and speed of

execution. Moreover, each algorithm has its general strengths

and weaknesses with specific algorithms exhibiting better results

over the other kind. The advantages of genetic algorithms over

simulated annealing are as follows [0,0,0]:

 1. Concurrent search mechanism. GA works with a
 population of solutions and searches a large number of
 configurations from this population as opposed to SA
 which works with only one configuration at a time.
 2. GA can learn from past trials of searching through
 the solution space. SA does not have this ability.
 3. GAs allow the good features of candidate
 solutions to remain in helping to form better solutions.
 4. GA can process inferior configurations without
 compromising the best ones.

The disadvantages are:

 1. GA may require more memory space.
 2. GA must have a good starting "genetic code"
 representation of initial layout or poor results may
 occur.
 3. The crossover operator, the main operator in GA, must
 be able to avoid conflicts in combining 2 different
 configurations.
 4. GA are unable to perform hill-climbing that might result
 in escaping local minima.

 Despite the above listed advantages and disadvantages of GA

and SA algorithms, knowing which algorithm is best to use for any

one problem is difficult. Furthermore, each kind of algorithm

has many variations that exploit certain strengths. GA may use

any combination of the three different genetic operators

(crossover, mutation, and inversion) to aid in efficient search.

19

 SA algorithms may use partitioning or optimization of the

cooling schedule.

 Finally, even after a designer has found a very optimal

placement algorithm for their problem, the final decision will be

based on one or more limiting factors. These factors may include

the following:

 1. Module shapes.
 2. Hardware available (i.e. memory space).
 3. Electromagnetic (EM) factors.
 4. Thermal considerations.
 5. Modification concerns.
 6. Testability requirements.
 7. Obstacles.

Typically, these factors may necessitate the need for a less

optimal algorithm in order to satisfy some limitations. In

conclusion, wisely applying a placement algorithm ultimately

relies upon obtaining a solution that meets design criteria, but

consideration for the "right" placement algorithm can result in a

solution in less time and with lower manufacturing costs.

3.0 Routing and Routing Algorithms.

 Routing is the process of finding a path between a set of

points around a set of blocks on a two-dimensional plane without

any path crossing another path on the same layer. Multilayer

routing uses vias which are used to connect the same net on

different layers. The routing problem usually consists of many

constraints and optimization criteria, all of which depend on the

designer's goal. These constraints and optimization criteria may

include such factors as minimizing total wire length, minimizing

20

the number of routing layers, and minimizing the longest wire

interconnection [0]. Other factors exist, but they are all

devised to achieve a lower cost. The purpose of a routing

algorithm is to achieve the criteria or constraints chosen by the

designer. The routing problem is generally broken down into two

subproblems, global and detailed routing, and thus each may use a

different algorithm [0].

 Routing is usually done on at least two levels of

metallization. Each level is composed of a number of routing

channels capable of supporting a limited number of wire nets.

This limit is known as the channel capacity. A routing channel

is defined as the rectangular area set aside for routing nets (or

wires) between different functional blocks on the layout surface

[0]. Fixed pins are located on two parallel sides of the

rectangular area while the other two sides have transient pins,

pins that do not have a fixed location initially [0]. The

"switch-box" channel is the same as the routing channel but has

fixed pins on all four sides. Figure 1 shows an example of each

kind of channel routing area. In special cases, however, routing

paths may enter into the module placement area.

21

3.1 Global routing.

 Global routing is concerned with choosing which set of

routing channels a net will occupy [0]. In other words, what

side of the rectangular area of the routing channel the net will

enter and leave by. This step also decides on the order in which

channels should be routed [0]. Global routing is also concerned

with the placement of the routing channels on the layout surface

(which is normally determined by or limited by the placement of

the circuit modules).

3.2 Detailed routing.

 Detailed routing is concerned with exactly where on each

face of the rectangle (i.e. which fixed pin) the net will cross

and how the net is routed across to the other side of the channel

[0]. Thus, detailed routing follows the global routing

procedure. The essential distinction is that detailed routing

operates on each channel in isolation from the rest of the

system, which makes it simpler and cheaper to process [0].

Figure 1

22

3.3 Routing Algorithms and Routing Approaches.

 Numerous algorithms and techniques exist for the routing

problem. The most general algorithms are those called maze-

routers and line routers [0]. Each of these techniques route one

net at a time which means that unrouted nets may become blocked

by the already routed nets. This requires manual intervention to

complete the routing process. The next class of routing

techniques are channel and switch-box routers [0] (used in the

detailed routing phase). These routers consider interaction

between the nets before routing, but they are only able to route

one row or column at a time. Thus, like the previously discussed

routers, manual intervention may be required if routing is not

done correctly.

 There are three characteristics common to known routing

approaches [0]. Each of these show the need for further research

and improvement into the routing process. The three common

characteristics are listed and explained as follows:

 1. Brute force - this approach tries to solve the routing
 problem without knowledge of the way human
 designers successfully route. Because of
 this 100% wiring is not met, and more
 intelligence must be programmed into the
 routing algorithm.

 2. User interaction - most algorithmic approaches do not
 allow user interaction before, during, or
 after the routing process. Users should
 be able to modify already routed nets or
 guide the routing search space in a
 desired direction.

 3. Unnecessary constraints - most routing algorithms impose
 unnecessary constraints such as assignment
 of different layers to different

23

 directions. This imposition reduces the
 routing quality. Having the ability to
 relax this constraint or other constraint,
 at times, can improve the quality of
 routing.

3.4 Miscellaneous routing algorithms.

 The following is a list of miscellaneous routing algorithms

or approaches to implementing a certain routing algorithm:

 1. A constructive parallel routing method based on selecting
 local maximum current in a unity resistive network whose
 goal is to obtain the 'field' expressed with a Poisson
 equation [0].
 2. A routing algorithm to take into account relevant timing
 information and crosstalk noise requirements [0].
 3. A new construct called connection graph, G//c, generated
 by a geometric algorithm has been proposed to design a
 class of time and space efficient minimum spanning tree
 algorithms. These tree algorithms can be used in maze-
 running and line-search algorithms [0].
 4. The use of hardware accelerators such as a reduced array
 architecture (RAA) [0] and a ARCO architecture [0] to
 speed up already existing routing algorithms.
 5. A parallel algorithm to solve the top-bottom routing
 problem, which is an important subproblem of routing
 wires around a rectangle in two layers. The routing
 problem is no harder than the prefix minima problem for
 inputs drawn from the range of integers [1..s] and input
 of size n [0].
 6. A routing algorithm based on an iterative routing process
 in which an initial layout is gradually improved. The
 initial layout is obtained by constructing a minimum
 distance Steiner tree for each net. This algorithm is
 quite general and could be applied to both printed
 circuit boards and integrated circuit chip wiring [0].
 7. A parallel routing algorithm for multi-layer channel
 routing problems on the HVH model which minimize wiring
 areas in VLSI circuits and PCBs [0].
 8. A routing method called Floating Track Method which
 ensures a 100 percent connection ratio. A line-search
 algorithm automatically provides a connection path, and
 the problem of unconnected pin pairs is solved by adding
 extra wiring tracks. Prevention rules and correction
 procedures are provided for the wiring shorts and
 disconnections caused by the track addition. A fast
 algorithm is developed for determining the location of
 additional tracks [0].
 9. A routing procedure which recursively cuts the area of
 the chip into smaller and smaller regions until the

24

 routing problem within a region can be handled by the
 Dantzig-Wolfe decomposition method. After this, the
 adjacent regions are pasted together to obtain the
 routing of the whole chip [0].
 10. A routing algorithm that considers topological
 relationship among nets. The algorithm consists of two
 routing phases: topological routing and geometrical
 routing. The aims are to minimize net intersections,
 number of vias used, and space required for routing
 completion [0].
 11. A line search algorithm with a look-ahead strategy. A
 special flagging and backtracking strategy guarantees
 that a solution is found if one exists [0].
 12. A zone expansion algorithm for routing on a gridless
 plane. The algorithm finds a solution for the problem of
 finding a path to connect a set of points on a plane
 which contains a maze of obstacles [0].
 13. An MCM performance-driven routing algorithm based on a
 new second-order propagation delay model for RLC
 interconnection trees [0].

3.5 Applications issues in using routing algorithms.

 The choice of a routing algorithm demands the same basic

considerations as that of placement algorithms such as the

design, implementation, and constraint criteria. Section 3.0 has

already discussed some of the issues of choosing a routing

algorithm (i.e. global routing algorithms or detailed routing

algorithms). Also, since most routing algorithms are generally

written for a specific kind of packaging (i.e. PCB, VLSI, or

MCM), this will obviously narrow the number of choices for the

designer. This next section presents various routing

requirements, performs a compare and contrast of major types of

routing algorithms in terms of their strengths and weaknesses,

and considers the choice of a specific routing algorithm.

 Three of the most sought after characteristics of any

routing algorithm are quick performance, minimizing total wire

25

length, and minimizing the number of routing layers. However,

many other characteristics are normally desired, all of which are

usually only partially satisfied by any one routing algorithm.

Furthermore, it must be stated that certain routing requirements

can conflict with others, and, thus, design trade-offs are

necessary. The following shows a number of routing requirements

for MCMs [0], but also pertain to PCB and VLSI routing:

 1. Minimize delay, given a priority weight and maximum/
 fixed delay assignment.
 2. Equalize delay for signal groups, with specified
 tolerance.
 3. Produce minimum bends.
 4. Handle stacked and unstacked vias and to control the
 number of vias.
 5. Assign layers constrained with maximum number of vias
 allowed to a net.
 6. Regulate lengths and delays to meet timing and noise
 margins.
 7. Be easily extensible as technologies change.
 8. Constrain routes to specified layers (e.g., designated
 power, ground, or signal layers.
 9. Pick the right kind of via based on layer change and
 technology used.
 10. Specify route ordering.
 11. Accept preferred directions on specific layers or nets.

Other possible routing requirements (with references to

algorithms incorporating them) include crosstalk considerations

(includes mixing of analog and digital nets) [0,0], handling

routing around arbitrary obstacles [0,0], handling wiring density

[0,0], minimizing the longest interconnection [0], arbitrary

angle routing [0], minimizing clock skew [0], and variable width

traces [0].

 Almost all routing algorithms can be categorized as being

based on single-layer routing (SLR) or xy plane-pair routing

26

(XYR), and each one is used in certain ways to exploit its

strengths. SLR assigns an entire net to a layer and attempts to

route as many other whole nets on one layer as possible. XYR

assigns a net to different layers by splitting the net into one

or more layers. SLR is normally used for time critical nets,

power, and ground nets. XYR is used to reduce the number of

layers required to complete all routing. SLR reduces the number

of staircase vias but greatly increases the number of layers.

However, XYR reduces the number of layers, but increases the

number of staircase vias.

 In conclusion, the final choice of a routing algorithm may

depend on one or more limitation factors. These factors are as

follows:

 1. Timing considerations.
 2. EM factors (i.e. crosstalk and skin effect).
 3. Hardware available (i.e. memory space).
 4. Obstacles.
 5. Testability requirements.
 6. Modification concerns.
 7. Wiring technology.

4.0 Simultaneous placement and routing.

 Sometimes placement and routing are done simultaneously.

This is known as the hierarchial layout method [0,0]. Several

schemes can be employed to achieve a hierarchial layout method.

Timing information can be used to influence the placement and

wiring processes [0,0,0,0,0,0]. The min-cut technique, used in

partitioning networks, and its variations try to balance the

27

minimization of interconnection length and area [0,0,0]. The

min-cut algorithm recursively subdivides a placement while

minimizing the number of wire crossings at each division line.

One variation of the min-cut technique uses spiral-cuts to

minimize and/or optimize the placement [0]. After the layout has

been optimized, an adaptive correction procedure can be

implemented for further improvement.

5.0 Proposition of a new MCM routing strategy.

 Most new MCM routing algorithms are based on previous

research of what approaches have satisfied the design criteria

and what approaches have failed. The MCM routing problem is more

difficult than VLSI or PCB routing problems because of the higher

packing density in MCM designs. Moreover, MCM designs introduce

more performance issues and more interconnection layers than VLSI

or PCB designs. However, the techniques for solving these can

still be applied to MCMs. Typically, strategies from several

different routing algorithms are pieced together and/or modified

to come up with a new routing algorithm. The following sections

illustrate how existing ideas and approaches can be used to

achieve a new MCM routing strategy, and how this might be

transformed into a new algorithm for solving the MCM routing

problem.

5.1 Overview of the MCM package design.

 The MCM packaging technology is described as follows:[0]

the top layer called the chip layer consists of the placement of

all chips. Below the chip layer, there is a stack of pin

28

redistribution layers, whose purpose is to redistribute the pins

under the chips, uniformly on the last pin redistribution layer.

Below the last redistribution layer, there is a stack of signal

distribution layers. These layers are used to complete the

routing of the nets that connect the redistributed pins of the

chips. The signal distribution layers are usually paired

together into an x-y plane-pair. The x-plane has wiring channels

only in the x direction, and the y-plane has wiring channels only

in the y direction.

5.2 Definition of the MCM routing problem.

 The goal for the proposed algorithm is to complete the

routing of the signal distribution layers given the set of pins

on the last redistribution layer and achieve a desired total

routing cost. Figure 2 shows an example of a final

redistribution layer. The user assigns routing costs (via costs)

Figure 2 - Last pin
 redistribution layer

29

to each net whose purpose is to allow the algorithm to work

towards a total minimum routing cost and obtain a desired circuit

performance. Two kinds of via types exist, stacked vias and

staircase vias [0]. A stacked via is referred to as the via when

a net changes a layer at the same point it started with. A

staircase via is referred to as the via introduced when a net

changes layers at a new position. Figure 3 shows the difference

between a stacked via and staircase via.

The following equation summarizes the cost of MCM routing for the

proposed algorithm: [0] Cost = w
k
 x number of layers + w

strv
 x

number of staircase vias + w
stkv
 x number of stacked vias, where

w
k
, w

strv
, and, w

stkv
 are constants that control the relative

importance of each item. As can be seen from the equation, the

lower the number of layers and vias the lower the cost. The use

of one via type or the other has a direct impact on the number of

layers required for routing. That is, limiting the number of

staircase vias, the number of layers required for routing all

Figure 3 Stacked vias vs.
 Staircase vias

30

nets is greatly increased, and thus the number of stacked vias

will also increase. However, in high-speed applications (>

10GHz) staircase vias may introduce a critical delay effect on

the z-direction bends [0], and thus another limitation is

introduced. Therefore, due to the large number of nets assigned

different costs and the above mentioned conflicting effects

between via types and layers, some means of optimizing the total

cost is desired. This is the whole motivation behind proposing

the new MCM routing strategy.

 The proposed strategy restricts itself to two-terminal nets

only. Also, for discussion purposes, completed nets may only

consist of straight and single bend (90 degrees) connections.

5.3 Overall routing strategy.

 The procedure of the proposed strategy consists of two major

elements referred to as constraint routing and compaction.

Constraint routing, the first phase, creates a finished but

unminimized routing. The compaction phase, based on simulated

annealing, completes the process by taking the results of the

first phase and optimizing them according to the given routing

costs of each net. Each of the two elements use ideas similar to

previous research, although somewhat modified or changed and are

brought together in a new way to solve the MCM routing problem.

5.3.1 Constraint routing.

 The constraint routing phase performs the task of single-

layer routing. Single-layer routing involves routing as many

entire nets on a single plane as possible. When no more nets can

31

be placed on the plane another layer must be used. Therefore,

some means of maximizing the number of nets placed on a layer is

desired in order to keep the layer cost down. The constraint

routing strategy accomplishes this goal very practically.

 The first step in constraint routing is to create a

constraint table matrix based on the data structure in [0]. The

matrix represents all the constraining relationships between

every pair of nets. The matrix size is n x n, where n is the

number of nets to be routed. Figure 4 shows the matrix

representing the constraints in Figure 2, and Figure 5 gives the

pseudocode for filling the matrix. Each number across the top

and down the side of the matrix corresponds to a numbered net. A

'1' inside the matrix means that it is possible to route net i (i

is a row #) if net j (j is a column #) is routed. A '0' means

that it is not possible to route net i if net j is routed.

 The second step will determine the number of constraints for

each net. Each column is summed, and the total is used to

identify which nets have the least number of constraints. The

sum of each column is used in the last step to determine where

each net is routed. Figure 4 shows how this step is performed.

32

Figure 2 - Constraint Matrix

33

The final step will perform the actual routing of all the nets.

The algorithm finds the next net with the least number of

constraints (largest column sum) and tries to route that net. A

net can be routed if it does not interfere (i.e. crossover) with

an already routed net or pin. An array holds the list of nets

for i = 1 to NUMBER_OF_PINS

{ for j = i to NUMBER_OF_PINS

 { if (x
i1
 < x

j1
 AND x

i2
 > x

j1
 AND

 x
i1
 < x

j2
 AND x

i2
 > x

j2
 AND

 y
i1
 > y

j1
 AND y

i1
 < y

j2
)

 { Matrix[i][j] = 0 }

 else
 Matrix[i][j] = 1
 }
}
Figure 5 - Pseudocode for Constructing
 Constraint Matrix

34

already routed and the layer they reside on. The constraint

matrix is referred to when checking whether a net can be routed.

When no more nets can be routed on a layer, a new layer is

introduced. This process insures that the maximum number of nets

are routed per layer using the single-layer routing technique.

Wire placements will be described one of two ways depending on

whether it's a straight or bent connection. Straight connections

consist of two coordinates, the locations of the two pins. Bent

connections consist of a third coordinate identifying where the

wire bend is located. Once all nets are routed, the compaction

phase takes control and optimizes the routing layout. Figure 6

shows the routing layout after the constraint routing phase.

5.3.2 Compaction operation.

 The compaction phase performs optimization of the completed

routing layout using layer costs and the weights assigned to each

net. The assigned weights correspond to the desired maximum via

count for each routed net. Many nets have high priority weights

assigned to them that conflict with the priority weights of other

nets, and thus some compromise will have to be made. Weights are

used to supply cost-calculation numbers during the compaction

phase. It also allows certain nets (i.e. time critical) to have

higher circuit performance.

 The compaction phase operates by using the simulated

annealing (SA) technique to accomplish the optimization and

compromise on the conflicting priority weights. Simulated

annealing has been successfully employed for chip placement but

35

can also be used in routing since routing can also be thought of

as a problem of placement optimization (i.e. placement of nets

and vias within layers). The simulated annealing technique has

also been used as a framework for controlling rip-up and

rerouting transformations [0]. The compaction phase employs a

very similar tactic and applies it to the MCM routing problem.

Figure 6 - Completed routing after
 constraint routing phase

36

5.3.2.1 The annealing process.

 In order to proceed with the annealing process, we must

establish a set of allowable moves that will permit us to change

from one legal configuration to another. These moves follow the

conventional operation of component interchange. For the defined

MCM routing problem the annealing process can be thought of as a

rip-up and reroute procedure. One or more nets are removed (rip-

up) allowing another net or nets to be routed, and then the

ripped-up nets are rerouted, resulting in a new routing

configuration. The following interchanges can be performed:

 1. Rip-up 1 net that allows another net to be rerouted on
 that layer and then reroute the first net on the same
 layer following a different path. Figure 7 shows an
 example.

 2. Rip-up 1 net that allows another net to be rerouted on
 that layer and then reroute the first net on the
 previous layer of the second net.

 3. Rip-up 1 net segment that allows 2 other nets to be
 rerouted on that layer and then reroute the first net
 segment on previous layer of rerouted nets. Figure 8
 shows an example.

37

Figure 7

38

Figure 8

39

For each of the three specified interchanges, respectively,

the following changes in cost can occur:

 1. Decrease cost - The total number of vias decreases by 2
 and the second net's priority weight is decreased more.

 2. Increase cost - The total number of layers and vias
 remains the same but the second net's priority weight is
 raised. This increase cost, however, may open a way to
 further improvements.

 Decrease cost - The total number of layers and vias
 remains the same but the second net's priority weight
 meets or falls under its maximum limit while the first
 net still meets or falls under its maximum limit.

 3. Increase cost - The total number of stacked vias is
 increased by 2 x # of layers moved down if the two
 rerouted nets are placed on a lower layer. Total
 number of staircase vias is increased by 1.

 Decrease cost - The total number of stacked vias is
 decreased by 2 x # of layers moved up if the two
 rerouted nets are placed on a higher layer. A removal
 of a layer may also occur. Total number of staircase
 vias is increased by 1, but unless weight is high for
 staircase vias, there should still be a decreased cost.

40

The interchanges causing increased cost are allowable since it

may allow the solution to escape a local minimum. The next

question is how do we decide which interchanges should be

performed when and in what order? Also, how do we control the

progress of compaction? These questions are addressed by the

cooling schedule.

5.3.2.2 The cooling schedule.

 The cooling schedule is a very important task in the

annealing process since it controls the improvement of the

solution, the speed of obtaining a good solution, and when

annealing should be terminated. The success of trying to improve

the routing layout and perhaps the speed of obtaining an optimal

solution depends on the order we implement the possible routing

configuration changes stated previously. Due to the multitude of

different MCM routing problems, it will be difficult to determine

the order and frequency to implement the described configuration

changes. Interchange possibilities can be done repetively in a

specified order or certain interchanges can be phased in or out

as time progresses. For example, we can initially make it highly

probable that complete nets be rerouted and make it less probable

that net segments be rerouted. As the annealing progresses, we

can make it less probable that complete nets be rerouted and more

likely that net segments be rerouted. These efforts are what are

required in finding and implementing an optimum cooling schedule.

 In addition to determining the order of the interchange

rules, we must also determine which nets are to be used for

41

interchange. These determinations can be based on desired

criteria as annealing progresses. The list of cost changes

stated above can be referred to when deciding on this element of

the cooling schedule. The following shows some suggested

strategies that will lead to a routing improvement:

 1. Choose nets that are on the lowest layers. Since the
 lower layers contain the fewest nets, this strategy
 makes it more likely that a layer will be deleted, as
 nets are rerouted on higher layers.

 2. Choose nets to be rerouted that have no constraints with
 the ripped-up net, thus allowing an improvement. This
 information is stored in the constraint matrix. An
 additional constraint check will have to be made for
 ripped-up net segments.

 3. Choose net segments from highest layers that when
 ripped-up will allow the most number of other nets
 to be rerouted on those higher layers, thus lowering the
 MCM routing cost.

In order for the algorithm to progress toward an optimum routing

layout, the cooling schedule should allow the annealing process

to continually improve the solution using these strategies and

also allow for increased cost moves so that local minima may be

escaped.

5.3.2.3 The convergence criterion.

 To achieve some desired degree of routing optimization

through simulated annealing, some type of convergence criterion

must be defined. The convergence criterion should be defined

such that it will result in a routing configuration that

satisfies or at least compromises on the priority weights of all

nets. Therefore, the convergence criterion is another important

42

item since it determines when a final solution will be obtained

and the quality of that solution.

 An approach for obtaining a convergence criterion for this

particular MCM routing problem should deal with the tradeoffs

between layers and vias as discussed earlier. The following

shows two suggested approaches:

 1. Use the MCM cost function for routing. When the total
 cost has reached the desired level, the annealing
 algorithm should terminate.

 2. When a certain percentage of priority weights for all
 nets have been satisfied, the annealing algorithm should
 terminate.

5.4 Further work or improvements.

 The proposed strategy to solve the MCM routing problem is

open for further improvements and additions. First, the

constraint routing phase can be complemented with an additional

routing technique that might create a better initial routing

configuration before compaction takes place. Also, relaxing the

restriction on straight and single bend connections to allow

multiple bends may contribute to further improvement. Second,

additional interchanges may be used. These interchanges include

ripping up and rerouting smaller net segments.

 This routing strategy is a good candidate for being

implemented with parallel processors. Several simulated

annealing based algorithms have employed parallel processing as a

means to achieve speed improvements. For this problem, each

processor could be assigned a different set of layers to improve

43

the routing layout of and allow each processor to communicate

moves with the other processors.

6.0 Conclusion.

 A proposed strategy for solving the MCM routing problem has

been presented. The strategy is very applicable in situations

where the routing cost or quality needs to be precisely

controlled. The strategy also guarantees a complete routing

solution. Finally, it also shows how previous layout approaches

may be used and manipulated to solve a particular objective of

the MCM routing problem.

44

 Alon, Amir, and Ascher, Uri, "Model and Solution Strategy for
 Placement of Rectangular Blocks in the Euclidean Plane,"
 IEEE Transactions on Computer-Aided Design of Integrated
 Circuits and Systems, v. 7, n. 3, March 1988, pp. 378-386.

 Andrews, D. L, Glover, M. D., and Conrad, J. M., "Advanced
 Electronic Packaging: With Emphasis on Multi-Chip Modules."

 Anonymous, "Timing-influenced Layout Design," IBM Technical
 Disclosure Bulletin, v. 28, n. 11, April 1986, pp. 4981-4988.

 Aude, J. S., Lopes Filho, E. P., Martins, M. F., and Pinto,
 S. B., "ARCO: A cost-effective and flexible hardware maze
 router," 19th EUROMICRO Symposium on Microprocessing and
 Microprogramming, Barcelona, Spain, 1993.

 Berkcan, E., and Kinnen, E., "Optimal placement and network
 partitioning algorithm," Conference Proceedings - 28th
 Midwest Symposium on Circuits and Systems, Louisville, KY,
 August 19-20 1985.

 Berkman, Omer, Jaja, Joseph, Krishnamurthy, Sridhar,
 Thurimella, Ramakrishna, and Vishkin, Uzi, "Top-bottom
 routing around a rectangle is as easy as computing prefix
 minima," SIAM Journal on Computing, v. 23, n. 3, June 1994,
 pp. 449-465.

 Brown, A. D., "Automated Placement and routing," Computer
 Aided Design, v. 20, n. 1, Jan-Feb 1988, pp. 39-44.

 Brown, A. D., and Zwolinski, M., "Lee router modified for
 global routing," Computer Aided Design, v. 22, n. 5, June
 1990, pp. 296-300.

 Brown, Andrew, "VLSI: Circuits and Systems in Silicon,"
 McGraw-Hill Book Company, London, England, 1991.

 Burstein, Michael, and Youssef, Mary N., "Timing influenced
 layout design," Proceedings 1985 - 22nd ACM/IEEE Design
 Automation Conference, Las Vegas, NV, June 23-26 1985.

 Chan, Heming, Mazumder, P., and Shahookar, K., "Macro-cell
 and module placement by genetic adaptive search with bitmap-
 represented chromosome," Integration, the VLSI Journal, v.
 12, n. 1, November 1991, pp. 49-77.

 Chandrasekharam, R., "Genetic algorithm for node partitioning
 problem and applications in VLSI design," IEEE Proceedings,
 Part E, Computers and Digital Techniques, v. 140, September
 1993, pp. 255-260.

45

 Chao, Ting-Hai, Hsu, Yu-Chin, Ho, Jan-Ming, Boese, Kenneth
 D., and Kahng, Andrew B., "Zero skew clock routing with
 minimum wirelength," IEEE Transactions on Circuits and
 Systems II: Analog and Digital Signal Processing, v. 39, n.
 11, November, 1992, pp. 799-814.

 Chen, Chun-hong, and Liu, Mei-lun. "Application of bin-
 packing to building block placement," 1987 IEEE International
 Symposium on Circuits and Systems, Philadelphia, PA, May 7
 1987.

 Cheng, Gui-Xin, Tanaka, Mamoru, and Yamada, Minoru, "A
 parallel routing technique based on local current
 comparison," 1991 IEEE International Symposium on Circuits
 and Systems, Singapore, Singapore, June 11-14, 1991.

 Cho, H. G., and Kyung, C. M., "O(n)-time standard cell
 placement algorithm using constrained multi-stage graph
 model," Espoo, Finland, June 7-9 1988.

 Cho, Jun Dong, Liao, Kuo-Feng, Raje, Salil, and Sarrafzadeh,
 Majid, "M2R: Multilayer Routing Algorithm for High-
 Performance MCMs," IEEE Transactions on Circuits and Systems
 I: Fundamental Theory and Applications, vol. 41, no. 4,
 April 1994.

 Cohoon, James P, Paris, William D., "Genetic placement," IEEE
 International Conference on Computer-Aided Design, Santa
 Clara, CA, November 11-13, 1986.

 Cohoon, James P., "Distributed genetic algorithms for the
 floorplan design problem," IEEE Transactions on Computer-
 Aided Design of Integrated Circuits and Systems, v. 10, April
 1991, pp. 483-492.

 Feltham, Derek, Khare, Jitendra, and Maly, Wojciech, "Design
 for testability view on placement and routing," European
 Design Automation Conference, Hamburg, Germany, September 7-
 10 1992.

 Fujita, Tomoyuki, and Kuh, Ernest S., "New detailed routing
 algorithm for convex rectilinear space," IEEE International
 Conference on Computer-Aided Design, Santa Clara, CA,
 November 12-15, 1984.

 Funabiki, Nobuo, and Takefuji, Yoshiyasu, "Parallel multi-
 layer channel router on the HVH model," Parallel Computing,
 v. 19, n. 1, January 1993, pp. 63-77.

46

 Gonzalez, Teofilo F., and Kurki-Gowdara, Shashishekhar,
 "Approximation algorithm for the via placement problem,"
 IEEE Transactions on Computer-Aided Design of Integrated
 Circuits and Systems, v. 8, n. 3, March 1989, pp. 219-228.

 Grover, Lov K., "New Simulated Annealing Algorithm for
 Standard Cell Placement," IEEE International Conference on
 Computer-Aided Design, Santa Clara, CA, November 11-13 1986.

 H. Moreno, "OSS physical design cad tools specifications,"
 MCC Technical Report P/I-250-90, 1990.

 Hartoog, Mark R., "Analysis of Placement Procedures for VLSI
 Standard Cell Layout," 23rd ACM/IEEE Design Automation
 Conference - Proceedings 1986, Las Vegas, NV, June 29 - July
 2 1986.

 Ho, Jan Ming, Sarrafzadeh, Majid, Vijayan, Gopalakrishnan,
 and Wong, C.K., "Layer Assignment for Multichip Modules,"
 IEEE Transactions on Computer-Aided Design, vol. 9, no. 12,
 December 1990.

 Hsu, Yu-Chin, and Kubitz, William J., "Automatic placement
 using wavefront compaction," Proceedings - IEEE International
 Conference on Computer Design: VLSI in Computers, Port
 Chester, NY, October 7-10 1985.

 Hu, T. C., and Shing, M. T., "Decomposition algorithm for
 circuit routing," Mathematical Programming Study, n. 24,
 October 1985, pp. 87-103.

 Jeen, Jzan-Ching, Gyurcsik, Ronald S., and Liu, Wen-Tai,
 "Two-layer channel routing algorithm for mixed analog and
 digital signal nets," Proceedings of the IEEE 1988 Custom
 Integrated Circuits Conference, Rochester, NY, May 16-19,
 1988.
 Forrest, Stephanie, "What makes a problem hard for a genetic
 algorithm? Some anomalous results and their explanation,"
 Machine Learning, v. 13, November/December 1993, pp. 285-319.

 Johns, J. F., and Hachtel, G. D., "Zone expansion algorithm
 for gridless routing on a continuous plane," IEEE
 International Symposium on Circuits and Systems, San Jose,
 CA, May 5-7, 1986.

 Joobbani, Rostam, "An Artificial Intelligence Approach to
 VLSI Routing," Kluwer Academic Publishers, Norwell, MA, 1986.

 Khoo, Kei-Yong, and Cong, Jason, "A Fast Multilayer General
 Area Router for MCM Designs," IEEE Transactions on Circuits
 and Systems II: Analog and Digital Signal Processing,
 vol. 39, no. 11, November 1992.

47

 Kim, Sung-Soo, and Kyung, Chong-Min, "Circuit placement in
 arbitrarily-shaped region using self-organization," IEEE
 International Symposium on Circuits and Systems 1989,
 Portland, OR, May 8-11 1989.

 Kitazawa, Hitoshi, and Ueda, Kazuhiro, "Look-ahead line
 search algorithm with high wireability for custom VLSI
 design," International Symposium on Circuits and Systems,
 Kyoto, Japan, June 5-7, 1985.

 Kumar, C. P., Ravi, and Sastry, Sarma, "Parallel placement on
 reduced array architecture," 25th ACM/IEEE Design Automation
 Conference, Anaheim, CA, June 12-15 1988.

 Kumar, H., Kalyan, R., Bayoumi, M., Tyagi, A., and Ling, N.,
 "Parallel implementation of a cut and paste maze routing
 algorithm," 1993 IEEE International Symposium on Circuits and
 Systems, Chicago, IL.

 Kyung, C. M., Lee, P. H., Yang, Y. Y., and Park, I. C.,
 "Efficient Algorithm for Two- and Three-Dimensional IC Floor
 Planning", International Journal of Circuit Theory and
 Applications, v. 16, n. 4, Oct 1988, pp. 425-445.

 Lee, C. Y., "An algorithm for path connections and its
 applications," IRE Transactions on Electronic Computers,
 September 1961, pp. 346-365.

 Leu, M. C., Wong, H., and Ji, Z., "Planning of component
 placement/insertion sequence and feeder setup in PCB assembly
 using genetic algorithm," Journal of Electronic Packaging,
 Transactions of the ASME, v. 115, n. 4, December 1993,
 pp. 424-432.

 Lin, Youn-Long, Hsu, Yu-Chin, and Tsai, Fur-Shing, "Hybrid
 routing," IEEE Transactions on Computer-Aided Design of
 Integrated Circuits and Systems, v. 9, n. 2, February 1990,
 pp. 151-157.

 Mathew, J.M., "Parallel Search Algorithms for Solving
 Constraint Satisfaction Problems," Master's Thesis, Dept. of
 Comp. Sys. Eng., Univ. of Arkansas, Fayetteville, AR,
 Dec. 1993.

 Miriyala, S., Hashmi, J., and Sherwani, N., "Switchbox
 Steiner tree problem in presence of obstacles," 1991 IEEE
 International Conference on Computer-Aided Design, Santa
 Clara, CA, November 11-14, 1991.

 Mirzaian, Andranik, "River routing in VLSI," Journal of
 Computer and System Sciences, v. 34, n. 1, February 1987,

48

 pp. 43-57.

 Moosa, Zahir, Brown, Mike, and Edwards, Douglas,
 "Application of simulated annealing to maze routing,"
 Proceedings of the 1994 European Design Automation
 Conference, Grenoble, France, 1994.

 Odawara, Gotaro, Iijima, Kazuhiko, and Wakabayashi,
 Kazutoshi, "Knowledge-based placement technique," Printed
 Circuit Design, v. 3, n. 1, January 1986, pp. 20-27.

 Patel, A. M., "Wirability Placement Algorithm for
 Hierarchical VLSI Layout," Proceedings - IEEE International
 Conference on Computer Design: VLSI in Computers, Port
 Chester, NY, October 8-11 1984.

 Patel, Ash M., Soong, Norman L., and Korn, Robert K.,
 "Hierarchical VLSI routing - an approximate routing
 procedure," IEEE Transactions on Computer-Aided Design of
 Integrated Circuits and Systems, v. CAD-4, n. 2, 1985,
 pp. 121-126.

 Razaz, M., and Gan, J., "Novel placement method for VLSI
 design," 1987 Proceedings - Fourth International IEEE VLSI
 Multilevel Interconnection Conference, Santa Clara, CA, June
 15-16 1987.

 Rose, Jonathan S., Snelgrove, W. Martin, and Vranesic, Zvonko
 G., "Parallel Standard Cell Placement Algorithms with Quality
 Equivalent to Simulated Annealing," IEEE Transactions on
 Computer-Aided Design of Integrated Circuits and Systems, v.
 7, n. 3, Mar 1988, pp. 387-396.

 Rutenbar, Rob A., "Simulated annealing algorithms: An
 overview," IEEE Circuits and Devices Magazine, v. 5, n. 1,
 January 1989, pp. 19-26.

 Sargent, Jeff S., and Banerjee, Prith, "Parallel row-based
 algorithm for standard cell placement with integrated error
 control," 26th ACM/IEEE Design Automation Conference, Las
 Vegas, NV, June 25-29 1989.

 Sastry, L. V. P., and Zargham, Mehdi R., "Macro-cell
 placement in a multiprocessor environment," Energy and
 Information Technologies in the Southeast, Columbia, SC,
 April 9-12 1989.

 Scheible, Jurgen, and Mlynski, Dieter A., "A high density
 placement algorithm based on simulated surface tension,"
 1991 IEEE International Symposium on Circuits and Systems,
 Singapore, Singapore, June 11-14 1991.

49

 Schiele, W. L., Kruger, T., Just, K. M., and Kirsch, F. H.,
 "A gridless router for industrial design rules," 27th
 ACM/IEEE Design Automation Conference, Orlando, FL, June 24-
 28, 1990.

 Sengupta, Maitreya, Lipa, Steve, Franzon, Paul, and Steer,
 Michael, "Crosstalk driven routing advice," Proceedings of
 the 1994 IEEE 44th Electronic Components & Technology
 Conference, Washington, DC.

 Sengupta, Maitreya, Lipa, Steve, Franzon, Paul, and Steer,
 Michael, "Crosstalk driven routing advice," Proceedings of
 the 1994 IEEE 44th Electronic Components & Technology
 Conference, Washington, DC.

 Shahookar, Khushro, and Mazumder, Pinaki, "A Genetic Approach
 to Standard Cell Placement Using Meta-Genetic Parameter
 Optimization," IEEE Transactions on Computer-Aided Design,
 vol. 9, no. 5, May 1990, pp. 500-512.

 Sone, Tadashi, and Nakabayashi, Kiyoshi, "Floating Track
 Method for Complete Routing," Electronic Communication in
 Japan Part 2, v. 69, n. 8, 1986, pp. 20-29.

 Sreenivasa Rao, D., and Patnaik, L. M., "Neural Network Based
 Approach to Standard Cell Placement," Electronics Letters,
 v. 25, n. 3, Feb 2 1989, pp. 208-209.

 Sriram, M., and Kang, S. M., "Performance driven MCM routing
 using a second order RLC tree delay model," Proceedings of
 the 5th Annual IEEE International Conference on Wafer Scale
 Integration, San Francisco, CA.

 Storer, J. A., Nicas, A. J., and Becker, J., "Uniform Circuit
 Placement," VLSI: Algorithms and Architectures, Proceedings
 of the International Workshop on Parallel Computing and VLSI,
 Amalfi, Italy, May 23-25 1984.

 Sugai, Yasuo, and Hirata, Hironori, "Hierarchical algorithm
 for a partition problem using simulated annealing:
 Application to placement in VLSI layout," International
 Journal of Systems Science, v. 22, n. 12, Dec 1991, pp. 2471-
 -2487.

 Sutanthavibul, Suphachai, and Shragowitz, Eugene, "An
 adaptive timing-driven layout for high speed VLSI," 27th
 ACM/IEEE Design Automation Conference, Orlando, FL, June 24-
 28 1990.

50

 Sutanthavibul, Suphachai, Shragowitz, Eugene, and Lin, Rung-
 Bin, "Adaptive timing-driven placement for high performance
 VLSI's," IEEE Transactions on Computer-Aided Design of
 Integrated Circuits and Systems, v. 12, n. 10, October 1993,
 pp. 1488-1498.

 Sutanthavibul, Suphachai, Youssef, Habib, and Shragowitz,
 Eugene, "Cell-based physical design under timing
 constraints," 1990 IEEE International Symposium on Circuits
 and Systems, New Orleans, LA, May 1-3 1990.

 Takefuji, Yoshiyasu, and Lee, Kuo-Chun, "Parallel algorithm
 for tiling problems," IEEE Transactions on Neural Networks,
 v. 1, n. 1, March 1990, pp. 143-145.

 Tamminen, M, Luk, W. K., Sipala, P., Woo, L. S., and Wong, C.
 K., "Constructing Maximal Slicings from Geometry," Acta
 Informatica, v. 23, n. 3, June 1986, pp. 267-288.

 Terai, Masayuki, Nakajima, Kazuo, Takahashi, Kazuhiro, and
 Sato, Koji, "New approach to over-the-cell channel routing
 with three layers," IEEE Transactions on Computer-Aided
 Design of Integrated Circuits and Systems, v. 13, n. 2,
 February 1994, pp. 187-200.

 Terai, Masayuki, Takahashi, Kazuhiro, and Sato, Koji, "A new
 min-cut placement algorithm for timing assurance layout
 design meeting net length constraint," 27th ACM/IEEE Design
 Automation Conference, Orlando, FL, June 24-28, 1990.

 Tsay, Ren-Song, and Kuh, Ernest, "A unified approach to
 partitioning and placement," IEEE Transactions on Circuits
 and Systems, v. 38, n. 5, May 1991, pp. 521-533.

 Tsay, Ren-Song, and Kuh, Ernest, "Module placement for large
 chips based on sparse linear equations," International
 Journal of Circuit Theory and Applications, v. 16, n. 4,
 October 1988, pp. 411-423.

 Ueda, Kazuhiro, Kitazawa, Hitoshi, and Harada, Ikuo, "CHAMP:
 Chip Floor Plan for Hierarchical VLSI Layout Design," IEEE
 Transactions on Computer-Aided Design of Integrated Circuits
 and Systems, v. CAD-4, n. 1, January 1985, pp. 12-22.

 Wawryn, Krzysztof, "Layout including parasitics for printed
 circuit boards," International Journal of Circuit Theory and
 Applications, v. 16, n. 2, April 1988, pp. 107-128.

 Vai, Man-Kuan, and Shanblatt, Michael A., "Improved Macrocell
 Placement Algorithm using Simulated Annealing," Proceedings

51

 of the IEEE 1987 Custom Integrated Circuits Conference,
 Portland, OR, May 4-7 1987.

 Walsh, P. A., and D. M. Miller, "Goal-directed simulated
 annealing and simulated sintering," MicroElectronics Journal,
 v. 25, n. 5, August 1994, pp. 363-382.

 Wong, H., and Leu, M. C., "Adaptive genetic algorithm for
 optimal printed circuit board assembly planning," CIRP
 Annals, v. 42, n. 1, 1993, pp. 17-20.

 Yao, Xianjin, Yamada, Masaaki, and Liu, C. L., "New approach
 to the pin assignment problem," IEEE Transactions on
 Computer- Aided Design of Integrated Circuits and Systems, v.
 8, n. 9, September 1989, pp. 999-1006.

 Yao, Xianjin, Yamada, Masaki, and Liu, C. L., "New approach
 to the pin assignment problem," 25th ACM/IEEE Design
 Automation Conference, Anaheim, CA, June 12-15 1988.

 Zhang, Chen-Xiong, and Mlynski, Dieter A., "Neural
 somatotopical mapping for VLSI placement optimization,"
 1991 IEEE International Joint Conference on Neural Networks,
 Singapore, Singapore, November 18-21 1991.

 Zheng, Si-Qing, Lim, Joon Shik, and Iyengar, Sitharama,
 "Efficient maze-running and line-search algorithms for VLSI
 layout," Proceedings of the IEEE Southeastcon, Charlotte, NC,
 1993.
 Kirkpatrick, S., Gelatt, Jr., C. D., and Vecchi, M. P.,
 "Optimization by Simulated Annealing," Science, vol. 220, no.
 4598, May 13, 1983, pp. 671-680.

