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Abstract—A new method for the detection of ransomware
in an infected host is described and evaluated. The method
utilizes data streams from on-board sensors to fingerprint the
initiation of a ransomware infection. These sensor streams, which
are common in modern computing systems, are used as a side
channel for understanding the state of the system. It is shown that
ransomware detection can be achieved in a rapid manner and
that the use of slight, yet distinguishable changes in the physical
state of a system as derived from a machine learning predictive
model is an effective technique. A feature vector, consisting of
various sensor outputs, is coupled with a detection criteria to
predict the binary state of ransomware present versus normal
operation. An advantage of this approach is that previously
unknown or zero-day version s of ransomware are vulnerable to
this detection method since no apriori knowledge of the malware
characteristics are required. Experiments are carried out with a
variety of different system loads and with different encryption
methods used during a ransomware attack. Two test systems were
utilized with one having a relatively low amount of available
sensor data and the other having a relatively high amount of
available sensor data. The average time for attack detection
in the “sensor-rich” system was 7.79 seconds with an average
Matthews correlation coefficient of 0.8905 for binary system state
predictions regardless of encryption method and system load. The
model flagged all attacks tested.

Index Terms—Ransomware Detection, Physical Sensor, Side
Channel, Machine Learning

I. INTRODUCTION

The global costs associated with ransomware are projected
to exceed $20 billion dollars in 2021. Based on these projec-
tions ransomware will cost 57 times more in 2021 than it did in
2015 [1]. In the fall of 2020, during the COVID-19 pandemic,
the Cybersecurity Infrastructure Security Agency (CISA), the
Federal Bureau of Investigation (FBI) and U.S. Department
of Health and Human Services issued a bulletin warning the
health care industry of credible information they had obtained
which indicated there would be increased ransomware attacks
to hospitals and health care providers [2] [3]. Just prior to this
bulletin the Duesseldorf University Hospital in Germany was
forced to turn away a patient in need of urgent care due to a
ransomware attack that had taken down 30 of their servers. The
patient had to be re-routed to the nearest hospital over 30km
away which resulting in her death [4]. This incident attracted
world wide attention as it may have been the first instance of
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a cyber attack being directly responsible for a death [5]. The
costs of ransomware are more often than not much higher due
to operational downtime rather than the actual ransom that
is being demanded. The costs of an attack associated with
downtime is nearly six times higher now than it was in 2018
[6]. The proximate threat posed by ransomware, then, comes
from downtime rather than data loss or data security. Even
if the systems can be restored from backups the downtime
for restoration can be economically disastrous or even life
threatening when critical services are unavailable [7]. Colonial
Pipeline, a company that transports more than 100 million
gallons of gasoline daily, was the victim of a ransomware
attack in May 2021 which forced a temporary shutdown of
all operations. This attack is an example of how downtime
in critical infrastructure is the consequence of a ransomware
attack. Longer periods of downtime in critical infrastructure
causes larger financial and operational losses in industries
which are reliant upon the critical infrastructure. Critical
infrastructure owned and operated by private sector companies
are more likely to yield ransom payments as the company’s
projected losses due to downtown will more often than not
far exceed the ransom being demanded. Unfortunately, over
85% of all critical infrastructure is owned and operated by
the private sector. Brian Harrell, the former assistant secretary
for infrastructure protection at the Department of Homeland
Security, stated in an interview that he anticipates more attacks
like the Colonial Pipeline attack to happen in the future. He
further emphasized the need for rapid detection and recovery
in critical infrastructure attacks when he stated ”Attacks will
happen, but how quick can you recover and restore critical
services?” [8]. It has been suggested that ransomware may not
always be about collecting money but instead a deliberate at-
tack on a target’s infrastructure and capabilities that can spread
quickly. Ransomware attacks launched purely for destruction
are effective due to how quickly they can take down entire
networks of assets without the need to worry about being
evasive [9]. Combating attackers who weaponize ransomware
requires detecting potential attacks quickly without resource
intensive and time consuming analysis. In support of this, we
use the physical state of a system, as it is measured through
existing physical sensors, to generate prediction models that
quickly flag physical system states consistent with a ran-



somware attack. Ideally this method would be effective along-
side conventional methods of ransomware detection which are
highly accurate but slower to complete analysis.

A. Physical Sensors

Most modern computer systems are comprised of sensors
and associated processes that monitor the state of internal hard-
ware components. These sensors continuously supply informa-
tion that is communicated with other devices and subsystems
for the intended purpose of ensuring that the system stays
within specific operating specifications. If sensor data reveals
that a system component is approaching a boundary of an oper-
ational specification, safety mechanisms are typically engaged
to correct the internal environment so that system malfunctions
can be prevented. Additionally, there are sensors that provide
input to other subsystems such as internal power management
units (PMU) to conserve power usage. Typically, computer
system components are designed to be compact in size through
the use of transistors with feature sizing in the nanometer
scale. As a direct result, whenever computations become more
complex, more stress is placed on a computer’s hardware
components. This increased stress occurs because a larger
number of transistors are simultaneously switching in a circuit
that correspondingly causes an increase in dynamic power
consumption and results in more heat dissipation during heavy
computational activity. Thus, monitoring the side channels of
a system with embedded sensors that measure parameters such
as temperature, power consumption, and battery voltage levels
can give insight into the type of processing that is underway
on a computer at a given time. Therefore, sensor data streams
serve as side channels through which periodic observations
can indicate when resource-intensive tasks, such as extensive
file system I/O and encryption, are occurring. Because the
silent phase of ransomware utilizes significant amounts of file
system activity in combination with encryption, characteristic
patterns present within a computer’s sensor data may result in
trends that are indicative of a ransomware attack.

A significant advantage of this approach, as compared to
other side channel methods, is that the sensors and a means
for querying them are natively provided. Thus there are fewer
concerns in deploying and accessing sensors for the purpose
of side channel exploitation. Furthermore, the trend has been
that an increasingly diverse number of sensors are provided
as integral components in modern computing devices. For
example, a typical smart phone has many embedded sensors
that could be used to support security applications including
power monitors, accelerometers, ambient light sensors, anten-
nas (including GPS receivers), fingerprint scanners, barom-
eters, cameras, touchpad pressure sensors, and others. Even
rack-mounted industrial servers contain a significant num-
ber of sensors that measure subsystem power consumption,
temperature, and other environmental factors. All of these
deployed sensors in modern computing devices provide a rich
set of data sources that may be used to provide internal side-
channel information for the environment in which a computing
device is operating. Sensors have been used in other security-
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related applications in the past. As an example, in [10], sensors
present in mobile computing devices have been used to provide
a user demographic classification capability for mobile devices
with embedded touchscreens [11].

B. Contributions

Current ransomware detection techniques generally fall into
three different categories. Detection by signature, which de-
tects various ransomware attacks by identifying specific parts
of their code. This method is very effective and fast for
detection of older attacks but does not offer protection against
new or even modified attacks. Additionally, this method re-
quires constant updates in order to detect new strains of
ransomware. The second method is detection by abnormal
traffic, which examines and analyzes traffic data, such as
volume and timestamps, in order to find abnormalities. This
method does not require prior knowledge of an attack, such
as a signature, but the side effect is a high false positive rate.
The high false positive rate can lead to losses due to downtime
as accounts must be blocked when ransomware is believed to
be detected. The third method is detection by data behavior,
which monitors file execution in order to identify abnormal
and potentially malicious behavior. This method does not
require signatures and does not need to block accounts when
malicious activity is believed to be detected. However, the
potentially malicious file execution must be carried out for a
long enough period of time that analysis can be carried out
and malicious activity can be confirmed. Although reliable
in ransomware detection this method often leads to some
percentage of the system being encrypted by the attacker
during analysis [12].

Instead of monitoring file system attributes, the victim host
system behavior is monitored by taking advantage of the in-
creasingly large number of onboard sensors. In this sense, this
new method uses a physical side channel approach where the
victim’s files are not directly monitored, rather the behavior of
the victim machine is monitored and onboard sensor provided
data is used as side channel information that can indicate when
an encryption operation is occurring. This monitoring can be
accomplished through a background process that is loaded
at boot time and thus continuously monitors the system for
suspicious behavior. Once this suspicious behavior is detected,
the user can be alerted and the suspicious processes can be
suspended. The central difference between this approach and
other previous approaches is that this approach uses secondary
effects to detect the presence of malware rather than a direct
effect, such as measuring increases in file entropy [13].

It is proposed that this new sensor-based detection method-
ology be used to complement more traditional signature-based
approaches that are intended to prevent attack vector penetra-
tion. In contrast to prevention of attack vector penetration, the
technique described here is designed to detect the presence
of ransomware when penetration has been achieved. The side
channel-based or sensor-based approach has an advantage
in comparison to antivirus or IDS systems in that zero-day
versions of ransomware can be detected since previously



captured malware signatures are not required. Furthermore,
it is not necessary to monitor individual files and calculate
entropy or other metrics that must be continually re-computed
and compared with one another as is the case in the solution
provided in [13].

An experimental prototype system based on sensor moni-
toring has been implemented and tested through the use of
a variety of scenarios where simulated ransomware begins
silently encrypting victim files. To evaluate this method, sev-
eral different encryption methods were used from the Python
Cryptography Toolkit that have been reported to be commonly
used by adversaries during the development of ransomware
[14].

II. TRAINING PREDICTION MODELS
A. Test Systems

To train and evaluate the methodology, two computer sys-
tems were chosen: (1) an older laptop (Hewlett Packard ENVY
m4-1015dx) with fewer onboard sensors as compared to the
size of a sensor suite found in more modern systems, and (2)
a more modern system (MacBook Air 13-Inch Mid 2013) that
had several times the amount of sensors as compared to the
older system. Access to the sensor output data was achieved
through queries via the native operating systems and did
not require the development of lower-level software. Because
many third-party applications are developed that depend upon
access to onboard sensor data, the means to access the sensors
are generally available in most operating systems.

The Hewlett Packard m4-1015dx is the first system used in
this experiment. When using Open Hardware Monitor the HP
ENVY laptop returns 22 sensor values. The types of sensor
values which are returned include clock, data, load, power,
and temperature. While clock, data, and load are reported
with the physical sensors they are considered ”probes” which
are relaying performance metrics provided by the CPU [15].
Thus the HP ENVY laptop only contains nine sensor values
which are of direct use in creating the prediction models
in this experiment. It is important to note that of the nine
sensors that are used in the evaluation of this system, eight of
them directly measure aspects of the CPU thereby causing the
predictive model to nearly entirely depend on CPU behavior.
Therefore, the HP ENVY laptop can be seen as having a
relatively “sensor-poor” environment for the evaluation of the
sensor-based ransomware detection method.

The MacBook Air 13-inch mid-2013 model is the second
system used in this experiment. When using Hardware Monitor
for Mac the MacBook Air laptop returns 67 sensor values
which are able to be used in this experiment. Unlike the
Hewlett Packard ENVY m4-1015dx, only 17 of the available
67 MacBook sensors directly measure CPU activity. Therefore,
the availability of sensors that measure other system compo-
nents and parameters allow for the development of predictive
models that are more holistic to the system. The MacBook
Air laptop thus provides a more inclusive sensor-suite with
regard to monitoring the entire system and thus enables our
methodology to have access to a richer set of side channel
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data. Therefore, the MacBook Air 13-inch mid-2013 can be
seen as having a relatively “sensor-rich” environment for the
evaluation of the sensor-based ransomware detection method.

B. Simulating Ransomware Attacks

Physical sensor-based attack detection attempts to find a
pattern in the physical state of a system that can identify the
presence of an attack (many times referred to as a fingerprint).
There are numerous variations of ransomware. Thus, training
on the unique operation of a single variant would likely
not be effective for detecting this general class of malware
attacks. Ideally, the training data should be collected using a
process that implements the most common and basic elements
that are present in a variety of different ransomware attacks.
The variation in ransomware attacks are usually due to the
methods of infiltration, encryption, file system searching, file
targeting, and the infiltration of additional attached systems. It
is assumed that any variation in the infiltration method does
not affect the detection process. Thus, the proposed method is
designed to detect ransomware that has recently infiltrated a
system. Additionally, the method an attacker uses for further
propagating their attack to additional systems attached to the
host is not a part of the attack that is considered in the
detection method. For these reasons, the focus of the proposed
method is on the use of sensor data that shows characteristic
patterns with respect to the type of encryption used, the
process of iterating through the directories in a host’s file
system, and the targeting of files for encryption.

In this experiment a script was written that simulates the
active encryption portion of a ransomware attack. The attack
can be performed using many different choices of parameters
based on criteria from all three of the previously noted
areas of potential attack variation. The type of encryption is
chosen from four different variations of AES encryption or a
simple XOR encryption. The XOR encryption was included
to simulate the behavior of more lightweight methods of
encryption. The script accesses a host’s file system based on
the particular directories that it finds and searches through.
To help avoid detection, the script uses intentional, random
delays while file searching is occurring. The simulation script
selects one or more starting points in the file system that are
most likely to contain a host’s personal and sensitive data. The
script recursively traverses the directory and sub-directories
of a starting point checking for files with the targeted file
extensions. Targeted victim files are identified via the use
of a list of file extensions that were historically targeted by
multiple high-profile ransomware attacks. The script creates an
encrypted version of the victim file, deletes the unencrypted
version, and renames the encrypted file with the original
unencrypted target file’s name. Prior to operation the script
is either set to run continuously or to wait a different random
amount of time between 1 and 60 seconds each time after
encrypting a target file.

Randomly selecting parameters in the script creates a sim-
ulation of the active encryption phase of a ransomware attack
variant. Although the methods used to infiltrate and propagate



a ransomware attack vary widely, the methods of actually
finding and encrypting as many of the host’s personal files as
possible is more constricted. Repeated testing with the script
was accomplished and intended to offer attack simulations that
differ enough in their approach such that the collective training
data is a generalization of the active encryption phase of a
variety of different ransomware attacks.

C. Collecting Sensor Data

In implementation of our prototype detection system, sensor
data is the input required to make predictions about the
binary state of a system using machine learning algorithms.
It is important that the methodology utilized in procuring
sensor data is both quick and reliable. Many tools exist which
allow users to simply monitor sensor data in a graphical
user interface; however our prototype required the automated
retrieval and parsing of sensor data at specific intervals in time.
Both tools utilized in this experiment can be used to either
write data to a file for future analysis or provide a feature
vector of real-time sensor data to a prediction model. Writing
data to a file allows for the direct comparison of machine
learning algorithms in as far as how they would have predicted
the state of the system given the same input data. Prior to
reading any sensor values, a command can be issued that
returns a comma separated list of sensor names and categories
that can then act as a header for future sensor data. In order to
access the sensor data a command is issued to the command
line that returns a string of comma separated sensor values in
the same order as the header string.

D. Building Training Data Sets

The training data needs to represent periods of operation
in a system both while under attack from ransomware and
while not under attack. The ransomware was implemented
as a daemon that ran in two hour blocks with each block
having a predefined encryption method for all attacks. During
the two-hour collection period, the system is either in a
state of “normal operation” or “under attack”. Normal op-
eration is any time the system is not being attacked with
the simulated ransomware script while “under attack™ is any
time that the simulated ransomware script is active. For each
simulated ransomware attack, the method of attack is different
by randomly selecting one or more starting positions in the
file system for recursive searches. Additionally, the script
randomly determines if the attack will use detection avoidance
through randomizing the timing of directory access and file
encryption. Before the two hour training block initiates, the
time required to encrypt all target directories with the selected
encryption method is measured. The script then begins in a
state of “normal operation” for the amount of time that was
previously measured before launching the encryption attack.
During the time that the script is logging the sensor data, it is
also adding system state labels so that a supervised machine
learning model can be utilized. After the simulated attack is
completed the logging stops and system is decrypted. There
is a waiting period of two minutes for the system to return
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to a state of normal operation before logging continues and a
new cycle is begun. Each of the five encryption methods is run
in 12 different two-hour test blocks. Each encryption method
is then repeated after additional CPU load activity is initiated
so that the training data can contain examples of sensor data
with various amounts of background activity present in the
runtime profiles. Test loads of 0%, 25%, 50%, 75%, and close
to 100% system activity are each applied to the system in
three separate two hour testing blocks for each encryption
method. The complete training data set consists of 24 hours
of regular training and 30 hours of simulated load training for
each of the five encryption methods. The sensor readings and
the CPU load of the system are polled every second during
the training periods and labeled with a timestamp and either
“normal operation” or “under attack.” Data from each two-
hour training block is collected in separate CSV files.

System Sensors System Files
H&rdvya re _| Data Collection R R::::r?:ve:re
onitor " Process i
Program Process

'

Training/Test
Data File

Fig. 1. Experimental Data Collection Diagram

E. Training Prediction Models

The collected training data was used to to create several
different prediction models available in the Python Scikit-learn
library [16]. In total, models were generated using 12 different
machine learning algorithms that comprised 280 different
combinations of parameter settings. Numerous combinations
of methods were investigated including: data scaling method,
feature selection method, prediction method, and moving
average method (i.e., smoothing of the output predictions).
The process of chaining methods together is often referred to
as classification “pipelining” [17], [18]. For test deployment,
each model was stored in its own Python pickle file for use
in various online tests.

The prediction method includes two options, binary classifi-
cation and ordinal regression. Binary classification models are
trained with a dependent vector of binary values indicating true
for “under attack” and false for “normal operation.” Ordinal
regression models are trained with a dependent vector consist-
ing of values with seven being the highest and representing
the highest likelihood of being “under attack” and zero being
the lowest and representing the highest likelihood of being in
“normal operation.” Whenever the predicted value is greater
than three, a prediction of “under attack” is made. Conversely,
whenever the predicted value is less than or equal to three a
prediction of “normal operation” is declared.



The data scaling methods investigated include four options:
feature standardization, data normalization, feature min-max
scaling, and no scaling.

The dimensionality reduction method includes seven varia-
tions including the use of PCA, feature selection, and no di-
mensionality reduction. Several principal component analysis
data reductions are performed, using the cumulative explained
variance to guide the number of components chosen. Three
variations of PCA dimensionality reduction are investigated
based upon if the components maintain at least 70%, 80%, or
90% of the total variance. Feature selection is performed such
that only the top 50%, 70%, or 90% of features are selected
using F-tests from the Scikit-learn library to analyze variance
in the training data [16].

Once the features are scaled and selected, they are used
to train one of twelve different classification or clustering
techniques. For clustering techniques, the methods are used
as unsupervised classification methods where each cluster
is assigned as a particular class and the total number of
clusters equals the total number of classes. Parametric and
non-parametric classification methods are employed, as well
as supervised and unsupervised methods. The following algo-
rithms are investigated:

o Parametric Trees Methods: Decision Tree [19], Random
Forest [20], Extremely Randomized Trees [21], One-
versus-one Tree Ensemble, One-versus-rest Tree Ensem-
ble

o Parametric Methods: Linear Regression, Logistic Re-
gression, Support Vector Machine [22], Naive Bayes, Two
Layer Neural Network

o Non-parametric Method: K-Nearest Neighbors

o Unsupervised Method: K-Means

Each classifier is trained to classify every second of data
from the sensors streams, resulting in a binary stream of pre-
dictions. This output stream is smoothed using various moving
average methods. The moving average method consists of five
options including simple moving average with window sizes
of two and four, weighted moving average with window sizes
of two and four, and no moving average.

III. TESTING PREDICTION MODELS
A. Building Test Data Sets

Test data was collected in one-hour test blocks in which
a single ransomware attack would occur at a random time.
The ransomware attack parameters were selected randomly for
each attack. During training, the amount of time the system
was recorded to be in the state of “normal operation” was
similar to the amount of time the system was recorded in the
state of “under attack” in order to create a balanced training
set. However, during testing the use of a balanced set is not
appropriate because most of the time a system would be in the
“normal operation” state. Therefore, the testing was conducted
in a manner such that there was a disproportionate amount
of time the system was in the “normal operation” state. The
purpose of this approach was to determine how many times
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the attacks would be correctly detected, the frequency of false
positive predictions, and most importantly; how fast attacks
were predicted. Each of the five encryption methods underwent
24 of the one-hour test blocks. Afterward, each of the five
encryption methods was tested with additional CPU loads of
0%, 25%. and 50%. Each of the encryption methods was tested
in six different one-hour time blocks with each of the three
additional CPU load levels. During each one-hour test block of
the additional CPU load testing, there was a single ransomware
attack that occurred at a random time. During the collection
of data for testing the method, the total system CPU load is
recorded each time the sensor data is polled. This CPU load
data is not recorded during training and not used as a feature
in the prediction models.

The initial phase of test data collection represents a system
which is sitting unused and only running regular background
processes. This phase of testing was designed to determine the
performance of the proposed method in favorable conditions
for detection. Ideally the models should have a low number
of false positive attack predictions while being able to quickly
determine when the system is under attack. The second phase
of test data collection represents a system which has different
levels of user activity in addition to the regular background
processes from the initial phase of testing. This phase of
testing was designed to determine if the prediction models
are able to perform in a more realistic scenario in which the
physical state of the machine is more dynamic.

B. Predicting System States

This experiment tests twelve different machine learning
algorithms. The test data is collected and stored in CSV
files with labels that indicate what the actual state of the
system was each time the sensor data was probed. The models
for each of the different algorithms are all used to make
predictions with the same data set. Any of the models which
use sliding windows for their final prediction (such as when
a moving average is used) have the initial prediction vector
iterated through in order to generate a final prediction vector.
The predictions are generated using the Python Scikit-learn
library by loading the previously constructed model from it’s
saved file. Models which use data preprocessing (such as
scaling or feature selection) also have the appropriate data
structures loaded. The performance prediction is determined
by comparing the actual system state vector from the test data
to the final prediction vector generated from the prediction
model.

C. Performance Evaluation Methodology

1) Binary Classification Evaluation: In this experiment ma-
chine learning algorithms are each used to make a prediction
about the binary ransomware attack status of a system. The
final prediction vector of a model and the actual system
state vector are compared to obtain the distribution of the
four types of binary classification. The distribution of the
four classifications was used to compute five metrics which
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offer more insight into prediction performance: sensitivity,
precision, specificity, fallout, and accuracy.

2) Matthews Correlation Coefficient (MCC): The Matthews
correlation coefficient (MCC) takes into account true and
false positives and negatives and is generally regarded as a
balanced measure which can be used even if the classes are of
considerably different sizes such as the data in this experiment.

The MCC is a correlation coefficient between the observed
and predicted binary classifications. Values range between -
1 and +1. A coefficient of +1 represents a perfect predictor,
0 represents the same as random prediction, and -1 indicates
total disagreement.

3) Rate of Attack Recognition (RAR): When testing, an
actual attack time series exists which defines the time periods
during which there is an attack. Attack instances starts when
a labeled system state of “normal operation” transitions to a
labeled state of under attack”. Conversely, an attack instance
ends when a labeled system state of “under attack™ transitions
to a labeled state of “normal operation”. If a positive predic-
tion exists during the period of time representing an attack
instance then the attack is considered detected. Ideally there
should exist at least one positive prediction during each attack
instance which would result in a 1.0 or perfect rate of attack
recognition.

4) Mean Time to Attack Recognition (MTAR): The initial
labeled system state of “under attack” for each attack instance
in the actual attack time series represents the time interval
at which the attack began. The first instance of a positive
prediction in the corresponding prediction time series at or
after this initial “under attack” state and before the next
“normal operation” system state represents the initial attack
recognition. Ideally the initial “under attack” state itself would
be a positive prediction, but in practice it is more likely that
the sensors would need a small amount of time to reach the
values at which positive prediction occurs. This metric counts
the number of time intervals until the first positive prediction
is recorded for every attack instance which was successfully
recognized. Afterwards all values are averaged to determine
the mean time to attack recognition.

IV. EXPERIMENTAL RESULTS

A. Optimal Parameters for Algorithms

Stratified ten-fold cross validation is performed for each
algorithm using the balanced training dataset in order to
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TABLE 1
ACCURACY ANALYSIS MTAR RESULTS

HP ENVY m4-1015dx MacBook Air Mid 2013

Algorithm Avg MTAR | Algorithm Avg MTAR
Decision Tree | 48.10 MLP 0.3891
K -Means 52.01 One-V-Rest 0.4044
Extra Tree 53.03 SvC 0.4050
Rand Forest 59.60 Decision Tree | 0.4113
Log Reg 61.99 Rand Forest 0.4539
N Bayes 65.08 Extra Tree 0.4794
KNN 66.41 Log Reg 0.4924
MLP 69.47 Lin Reg 0.5600
One-V-One 69.81 One-V-One 0.5700
One-V-Rest 69.81 KNN 0.5812
SVC 69.81 N Bayes 1.511
Lin Reg 70.97 K -Means 54.31

determine how well various test configurations are likely to
perform. There exist a total of 280 different combinations of
the test parameters that are all tested individually for each
algorithm. The test parameters include the prediction method,
data scaling method, dimensionality reduction method, and
moving average method. For each combination the training
data is separated into ten equal-sized subsets. Ten different
MCC values are found by ten different tests in which each
subset acts as the sole training data once and is part of
the test data nine times. The ten MCC values are averaged
to obtain the average MCC of the algorithm for a specific
test parameter combination. The 280 average MCC values
are ordered from greatest to least with the highest value
belonging to the test parameter combination which is most
likely to result in the highest performance during testing. The
highest performing test parameter combination is used for the
appropriate algorithm for the duration of testing instance.

B. Prediction Evaluation on Test Data

The test data analysis is performed for each of the twelve
machine learning algorithms. There exists five different en-
cryption modes with each having separate training and testing
data. Every combination of encryption modes of every size
from one to five has a prediction model trained, and the same
combination of testing data is used to assess how well the
model performs when making predictions for data it has been
trained with. The prediction models from the sensor poor
system all scored below 0.5 while all of the prediction models
from the sensor rich system, except K-means clustering, score
above 0.95. The prediction models used on the sensor poor
system, with the exception of K-means clustering, were all
able to detect every ransomware attack while maintaining low
false positive rates. The accuracy scores for these prediction
models were all above 0.9.

The majority of the prediction models for the sensor poor
system took over one minute to make a prediction of “under
attack.” The sensor rich system is able use its prediction
models to make the first “under attack” prediction in less than
one second for all algorithms except two. The ten prediction
models that had a mean time for attack recognition of less than
one second were able to detect all of the ransomware attacks



TABLE I
ROBUSTNESS ANALYSIS MCC RESULTS

HP ENVY m4-1015dx MacBook Air Mid 2013

Algorithm Avg MCC | Algorithm Avg MCC
Log Reg 0.4952 Extra Tree 0.9980
One-V-One 0.4885 Log Reg 0.9980
One-V-Rest 0.4885 Rand Forest 0.9979
SVC 0.4885 KNN 0.9978
Extra Tree 0.4864 Lin Reg 0.9960
MLP 0.4747 One-V-Rest 0.9958
Rand Forest 0.4707 SvC 0.9958
KNN 0.4526 N Bayes 0.9839
Lin Reg 0.4433 Decision Tree | 0.9559
N Bayes 0.4125 MLP 0.9378
Decision Tree | 0.4013 One-V-One 0.9040
K-Means 0.1363 K-Means 0.7681

during the accuracy testing with an average MCC score of
0.989.

C. Robustness of Prediction Ability

The robustness analysis is performed for each of the twelve
machine learning algorithms. Robustness, in the context of
this analysis, is used to refer to the ability of an algorithm
to perform well given encryption modes it has been trained
to predict as well as encryption modes it has not been
directly trained to predict. This analysis will convey whether
models that have not been explicitly trained to detect certain
encryption modes can still detect them with relative success.
The algorithm with the highest MCC average in both the
previous analysis and robustness analysis is selected and used
in the remainder of the tests.

D. Effect of Training Time on Performance

The effect of training time on the prediction performance of
the model was tested with the highest performing algorithm
for each test system. Based on the outcome of the accuracy
and robustness testing Logistic Regression was selected for
further evaluation with the sensor poor system as it had the
highest average MCC score during both tests. Likewise, the
Extra Tree model was selected for further evaluation with
the sensor rich system as it also had the highest average
MCC score during both tests. Twelve prediction models where
created for each system from training data collected over 24
hours. The first model was trained with only the first two
hours of the data and subsequent models were trained with
an additional two hours of data until all 24 hours worth of
training data were utilized. The performance of the sensor poor
system was highest after 4 hours of training with additional
training causing the performance to decrease until leveling off
around 18 hours. The sensor rich system showed very little
change in performance after 4 hours with the MCC score
only increasing to a maximum of 99.85% and the mean time
to attack recognition only dropping by 0.1166 seconds at its
peak performance after 20 hours of training. While the results
of this experiment do indicate that there is small increases
in performance with additional training time the models with
the least amount of training time are still able to perform at
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a comparable level. This conclusion seems especially true in
the sensor rich system which seems to indicate that systems
with a large array of sensors are able to be effectively trained
quickly.

E. Effect of User System Load on Performance

The previous testing demonstrated the viability and potential
of the new ransomware detection method under favorable
system conditions. Testing with additional system loads rep-
resent a more complex and realistic situation which in turn
requires a more complex prediction model. Figure 3 shows
the more complex model used for detecting ransomware when
unknown additional system loads are present. This method
uses a collection of five prediction models which implement
the the same machine learning algorithms selected for each
of the two systems during the training time testing which
are trained with 0%, 25%, 50%, 75%, and 100% additional
system loads present. Each of the five models provides a
confidence score for a state of “normal operation” and a state
of “under attack” from the same input vector of sensor data.
In order to determine which of the five models to utilize the
ransomware attack process is run with only regular background
processes and monitored to determine a value to use as the
additional CPU load the processes is likely to introduce on
the system. During testing the current system CPU load is
used to determine which of the models to use for a normal
operation” confidence score and which of the five models
to use for an “under attack” confidence score. Given that
no ransomware is attacking the system the behavior of the
system would be best represented by the model trained with an
additional CPU load closest to the current CPU load resulting
in a higher "normal operation” confidence score. However,
given that there is currently ransomware attacking the system
the current system CPU load minus the CPU load which the
ransomware process is likely to place on the system would
be used to select the prediction model to supply an “under
attack” prediction. The two confidence scores are compared
and the higher score is used as the final system state prediction
for the ensemble model. The ensemble model is first tested
with no additional CPU load present on the system, similar to
the previously conducted tests. However, unlike the previous
tests which always used the prediction model generated with
no additional system load this more complex model has to
select a model which may not always be the right one. The
performance of the model decreased due to the requirement
of determining which models to use, but in the case of the
sensor rich system there was still MCC scores above 90%.
The ensemble prediction model was more effective with rising
additional unknown CPU loads. All MCC scores for the
sensor rich system were above 90% with additional CPU loads
of 25% and 50%. Even with the additional requirement of
detecting ransomware attacks with unknown additional system
loads the new ransomware detection method was able to detect
all attack instances with most mean time to attack recognition
results just over 7 seconds on the system with a large array
of sensors.
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V. CONCLUSION

System side channel data has commonly been used to attack
systems in which an attacker has knowledge of how a process
is physically carried out on a machine. Instead of attacking a
system with side channel data we show that it is possible to
defend a system by training machine learning algorithms to
detect intricate patterns in the physical behavior of a system
which correlate to a malicious process. Specifically, we show
that ransomware attacks can be effectively detected in a rapid
manner before significant amounts of data are encrypted dur-
ing an attack. Once the machine learning algorithms have been
trained and a predictive model has been generated, predictions
about the state of a system are calculated quickly and with a
low computational overhead.

Perhaps the most important aspect of this experiment is
the speed in which an attack may be detected. Detection
speed is a very important security concern in attacks on
critical infrastructure as the paramount concern is reducing any
downtime. Rapid detection could mean a significant reduction
in downtime from an attack as less of the system would
be corrupted. In experimental testing, the highest performing
system had an average time to attack recognition which was
as little as 1.3 seconds and never exceeded 13 seconds in even
the lowest performing models. However, it has been found that
even the best predictive models generate some false positive
predictions. For this reason it is believed that the most effective
method for implementing this technique would occur when
more detailed analysis follows the indication of a positive
prediction. When the quick acting predictive model indicates
a positive prediction some degree of preventative measures
would be taken to slow or stop the ransomware process from
inflicting further damage. These preventative measure could
include stopping the system for more in depth analysis in the
most sensitive environments, briefly enforcing stricter firewall
rules to defend against further attacks on network entities, or
even simply notifying the user to potential risk.

While this experiment focused on detecting ransomware
attacks with side channel data it may be possible to apply this
method in a more broad manner to detect different processes
which have predictable behavior. The predictive models only
require training data which demonstrates the behavior of the
system in a “normal” state and also demonstrates the behavior
of the system when the target process is active. This idea opens
up the possibility for advanced sensor based monitoring of a
system which could include sensors that have been added to
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the system for the sole purpose of augmenting its ability to
physically model a computational process.
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