
Spectral Decision Diagrams Using Graph Transformations�

Mitchell Thornton Rolf Drechsler
Department of Electrical and Computer Engineering Siemens AG

Mississippi State University Corporate Technology

Mississippi State, MS 39762 81730 Munich, Germany

mitch@ece.msstate.edu rolf.drechsler@mchp.siemens.de

Abstract

Spectral techniques are powerful methods for synthesis
and verification of digital circuits. The advances in DD rep-
resentations for discrete valued functions in terms of com-
putational efficiency can be exploited in the calculation of
the spectra of Boolean functions. The classical approach in
computing the spectrum of a function by taking advantage
of factored transformation matrices as used in the “Fast
Fourier Transform” may be reformulated in terms of DD
based graph algorithms resulting in a complete representa-
tion of the spectrum. The relationship between DD based
interpretations and the linear algebra based definitions of
spectral methods are described.

1 Introduction

The proliferation of the use of spectral techniques for
signal analysis and linear systems analysis and design mo-
tivates researchers to look for ways to apply these methods
to digital systems. The pioneering work of Karpovsky [14]
and Lechner [15] are generally regarded as the basis of sub-
sequent work in this field.

Many digital system design tasks can be performed in
the spectral domain. The principles of spectral methods
have been applied to many areas in digital systems engi-
neering. Some of these include synthesis [14] [9] [13] [16]
[20] [22] [4] [18], partitioning techniques [14] [15][1] [26]
[27], testing [6] [12] [19] [24], function classification [13]
[8], verification [25] and others. It has been shown that cer-
tain problems such as disjoint decomposition [1] [26] and
function classification [13] cannot be solved with less com-
plexity in the Boolean domain than in the spectral domain.
Unfortunately, many of these techniques have not seen prac-
tical application since the computation of the spectrum was
too costly. The relevance of the result presented here is that
the spectrum may be computed directly using graph algo-
rithms without resorting to exponentially large numerical
calculations in many instances.

�This work was supported by the NSF under grants CCR-0000891 and
INT-0096008 and DaaD grant 315/PPP/gü-ab.

The Decision Diagram (DD) structure allows for the
compact representation of discrete functions in the Boolean
domain (BDDs) [2] and the spectral domain as a Spectral
Decision Diagram (SDD). It is possible to formulate the
spectral transformation operation as a graph traversal al-
gorithm resulting in the direct conversion of a BDD into
a SDD [17] [23]. This can be accomplished without us-
ing graph-based vector-matrix operations such as those de-
scribed in [4][10] by utilizing the � � � transform matrix
and traversing the BDD functional representation applying
the �� � transformation to each vertex visited in the BDD.
Once all vertices have been transformed, the resulting struc-
ture is the SDD of the function.

From [7], it is observed that one characterizing factor
of a DD is the decomposition type existing at each internal
vertex. Given a BDD representing a function to be trans-
formed, it is possible to visit each vertex and to change
(transform) the vertex decomposition into a type represent-
ing the desired spectrum. When all such vertices have been
transformed, the result is a SDD representing the spectrum.
This observation is the basis for developing graph algo-
rithms for the determination of the spectrum of a Boolean
function and allows relationship between DD and spectral
interpretations to be easily seen.

Since the vertices are transformed individually utilizing
the �� � transformation matrix, this type of spectrum com-
putation is the graph-algorithm based method of the “fast”
transform discussed in [5] for the discrete Fourier trans-
form. Each vertex transformation represents the application
of a “butterfly” operation. Such operations are termed as
“butterflies” due to the shape of the signal flow graph rep-
resenting the basic operation. It is possible that the appli-
cation of the butterfly to a particular DD vertex can lead to
adding or removing other vertices from the DD undergoing
a transformation. This is to be expected as it is clear that a
BDD is not necessarily topologically identical to SDDs in
the spectral domain.

2 Transformations of Shannon Trees

It is insightful to present the “fast” transformation tech-
nique based on DDs by first considering the case of transfor-
mations over trees. Although this technique is impractical

x1S

x2S x2S

x3W x3S x3S x3S

0 -2 -1 +1 -1 +1+1 -1

0

0

0 0 0 0

0

1 1 1 1

1 1

1
x1S

x2S x2S

x3W x3W x3S x3S

0 -2 0 -2 -1 +1+1 -1

0

0

0 0 0 0

0

1 1 1 1

1 1

1

x1S

x2W x2S

x3S x3S

-1 +1+1 -1

0

0

0 0

0

1 1

1 1

1
x1S

x2S

x3W x3S

-1 +10 +2

0

0 0

0

1 1

1

1

x1S

x2S

0

0 1

1
x1S

x2W x2W

0

0 01 1

1

x1W0 1

x3W x3W

0 -4 0 0

0 01 1

x2W
0 1

x3W x3W

0 -4 0 0

0 01 1

x2W
0 1

x3W x3W

0 -4 0 0

0 01 1
x3W

0 +2

0 1
x3W

0 -2

0 1
x3W x3W

0 -4 0 0

0 01 1
x3W

0 0

0 1
x3W

0 +4

0 1

x2W x2W
0 01 1

x3W x3W

0 -4 0 +4

0 01 1

x3W

0 -4

0 1

x3W

0 -4

0 1

Figure 2. Example of a Series of Shannon Trees Undergoing a Walsh Transformation

x1S

x2S x2S

x3S x3S x3S x3S

-1 +1 -1 +1 -1 +1+1 -1

0

0

0 0 0 0

0

1 1 1 1

1 1

1

Figure 1. Example Shannon Tree with Integer-
Valued Terminal Vertices

for implementation, it does allow for the basis of the method
to be easily explained.

A Shannon tree is a binary tree representation of a fully-
specified single output function. Unlike the BDD represen-
tation, Shannon trees are complete and consist of �� � �
non-termianl vertices and �� terminal vertices. The decom-
position type at each non-terminal obeys the Shannon de-
composition relationship. As an example of the Shannon
tree for the three-variable function, � � �� �� � ���� �

������, consider the diagram in Figure 1.
Note that the terminal vertices are labeled with inte-

gers +1 and -1 as opposed to the Boolean values 0 and 1.
This labeling allows us to apply the one-variable transform
(or butterfly operation) directly. Consider the Walsh trans-
form with Hadamard ordering. This transform can be repre-
sented in terms of Kronecker products as discussed in [13].
Note that in terms of graph operations, the one-variable
transform simply replaces the subtree ������ with that of
������ � ��	���� and correspondingly replaces the sub-
tree, ��	����, with that of ������ � ��	����. This is the
butterfly operation for the Walsh transform [21] as phrased
in terms of graph operations. It is easy to see this is the case
upon examination of Equation 1.

�
������ �
��	���� �

�
�

�
�� ��
�� ��

� �
�������
��	�����

�
(1)

After the butterfly operation is performed on the Shan-
non decomposed vertex, �� , it is transformed into the Walsh
decomposed vertex, �� . The variable ordering in the tree
is important since each butterfly operation may only be ap-

plied of the subtrees have already been transformed. Ini-
tially, transforming the terminal vertices to the integers ��
allows for the non-terminal nodes at the bottom of the tree
to be transformed. By successively applying the transfor-
mations in a bottom-up manner, the Shannon tree is trans-
formed into a Walsh tree and the Walsh spectrum is present
in Hadamard order from left to right. Figure 2 illustrates
the state of the tree at various points in the application of
the transformation from the Shannon to the Walsh decom-
posed tree.

The analogy between this type of transformation and
the commonly known fast transform butterfly diagrams is
shown in Figure 3 where the Shannon tree is shown with the
corresponding butterfly diagram rotated ��Æ and appearing
under the tree.

x1S

x2S x2S

x3S x3S x3S x3S

- 1 + 1 - 1 + 1 - 1 + 1+ 1 - 1

0

0

0 0 0 0

0

1 1 1 1

1 1

1

 0 - 2 0 - 2 0 - 2 0 + 2

 0 - 4 0 0 0 + 4 0 0

 0 - 4 0 + 4 0 - 4 0 - 4

Figure 3. Example of Shannon Tree Under-
going a Walsh Transformation with Butterfly
Diagram

This technique can be stated in a succinct form as a top-
down, depth-first search algorithm as:

Walsh_Transform (f) {
if ((low(f)==(terminal

|| walsh_vertex)) &&
(high(f)==(terminal

|| walsh_vertex))) {
Walsh_Butterfly(f);
return; }

else if ((low(f)!=(terminal
|| walsh_vertex)))

Walsh_Transform(low(f));
else if ((high(f)!=(terminal

|| walsh_vertex)))
Walsh_Transform(high(f)); }

Walsh_Butterfly (f) {
low(f) = low(f) + high(f);
high(f) = low(f) - high(f); }

3 DD Algorithm for Fast Transformation

The tree based algorithm offers no computational advan-
tage over the direct computation of the spectrum using ma-
trix algebra since the size of the tree is exponential in the
number of dependent function variables. In order to take ad-
vantage of shared topological isomorphic subgraphs as are
found in reduced DD structures, the tree based algorithm
must be modified to account for the case when non-terminal
variables are present along a path without subsequent val-
ued level indices. This case never occurs in a tree, but often
results in a reduced DD. As an example, consider the case
where the function � � �� �� � ���� � ������ is to be
transformed to the Walsh domain. Figure 4 contains a di-
agram representing the reduced BDD of this function with
variable order, �� � �� � ��. As is easily seen, the path
specified by �� � � and �� � � skips the intermediate vari-
able, ��. This occurs due to the fact that �� is redundant
in this case because both 0-cubes �� �� �� and ������ are
members of the set,
����, and are present in the reduced
BDD as the path representing the merged cube, �� ��. How-
ever, in modifying the decomposition of non-terminal ver-
tex, ��, from a Shannon to a Walsh type, the absence of a
vertex representing variable �� cannot be ignored and must
be inherently included.

Consider a portion of the BDD shown in Figure 4. This
is the part of the BDD corresponding to the path �� � � and
�� � �. In Figure 5, a subscript is used with each variable
to indicate if the corresponding vertex is decomposed using
the Shannon or Walsh relationships. Initially, the bottom
vertex labeled with variable ��� in Figure 4 undergoes a
transformation yielding the vertex ��� as shown in the DD
in Figure 5. This DD is a hybrid case consisting of both
Shannon and Walsh vertices. In this initial case, the bottom
vertex labeled ��� in Figure 4 pointed directly to terminal
vertices and the transformation is performed in the same
manner as is done for the tree-based approach.

x1S

x2S

x3S

x3S

- 1 + 1

+ 1 - 1

0

0

0

0

1

1

1

1

Figure 4. ReducedBDD for the Example Func-
tion

Next, the top vertex, ��� , in Figure 4 must be transformed.
However the level value of ��� differs by that for ��� by
more than one (i.e. 	 � � � �) indicating that intermedi-
ate variables in the ordering are not present in the DD. Due
to the decomposition relation for the Walsh n=vertex, the
“skipped” vertex must be considered. By applying the the
transformation to “skipped” ��� resulting in ��� , we see
that the resulting DD does indeed contain vertex ��� . Fur-
thermore, this case can be stated as a general decomposition
rule as originally described in [17]. Whenever a path con-
tains to adjacent vertices with level values that differ by two
or more, the “skipped” variable, �, must be re-introduced
into the resulting Walsh spectral DD with ��	���� pointing
to terminal value 0 and ������ pointing to the original sub-
graph multiplied by two. This occurs since the Walsh de-
composition when applied to two identical subtrees, �, re-
sults in ��� and ��� � �. Similar transformation rules
apply to other spectral transforms that can be described in
terms of Kronecker products.

As a complete example, the function under considera-
tion above can be completely transformed by undergoing a
series of vertex transformation during a graph traversal as
shown in Figure 5. The tree based algorithm outlined above
may be modified to operate over DD structures by adding
a check for non-sequential index values in a path during
traversal and then performing the appropriate transforma-
tion.

3.1 Edge Value Attributed DDs

It is noted that the use of attributed edges may also be
incorporated into these algorithms resulting in more com-
pact DDs and hence, reduced transformation computation
time. As an example, negative-edge attributes in the BDD
representation of the function can be extended into arith-
metic sign attributes for the spectral MTBDD. Also, edge-
values can be used to further reduce the size of the spec-
tral DD allowing it to be represented as a BMD or hybrid
MTBDD/BMD as described in [3]. In [11], it was shown
that the SDD with edge attributes containing Haar spectral
coefficients is isomorphic to the BDD representing the func-
tion in the Boolean domain.

4 Conclusion

An algorithm for computing the spectral transformation
of a Boolean function represented as a BDD is presented.
The technique is based upon the factored matrix formula-
tion used in the development of the FFT. Butterfly opera-
tions are implemented in terms of graph addition and sub-
traction operations resulting in a technique that is imple-
mented through the use of graph manipulations only. This
method takes advantage of the compactness inherent in DD
structures and can be more effective for Boolean function
transformations than traditional approaches. This technique
can be used for any transformation that has a Kronecker-

product based transformation matrix resulting in a SDD
with the coefficients appearing in a natural order.

References

[1] R.L. Ashenhurst. The decomposition of switching
functions. In Int’l Symp. on Theory Switching Funct.,
pages 74–116, 1959.

[2] R.E. Bryant. Graph - based algorithms for Boolean
function manipulation. IEEE Trans. on Comp.,
35(8):677–691, 1986.

[3] E.M. Clarke, M. Fujita, and X. Zhao. Hybrid decision
diagrams - overcoming the limitations of MTBDDs
and BMDs. In Int’l Conf. on CAD, pages 159–163,
1995.

[4] E.M. Clarke, K.L. McMillan, X. Zhao, M. Fujita, and
J. Yang. Spectral transforms for large Boolean func-
tions with application to technology mapping. In De-
sign Automation Conf., pages 54–60, 1993.

[5] J. W. Cooley and J. W. Tukey. An algorithm for the
machine calculation of complex fourier series. Math.
Computation, 19:297–301, 1965.

[6] T. Darmala. Generalized transforms for multiple val-
ued circuits and their fault detection. IEEE Trans. on
Comp., 41:1101–1109, 1992.

[7] R. Drechsler and B. Becker. Binary Decision Dia-
grams - Theory and Implementation. Kluwer Aca-
demic Publishers, 1998.

[8] C. R. Edwards. The application of the rademacher-
walsh transform to boolean function classification and
threshold logic synthesis. IEEE Trans. on Comp.,
pages 48–62, 1975.

[9] C. R. Edwards. The design of easily tested circuits us-
ing mapping and spectral techniques. Radio and Elec-
tronic Engineer, 47, no. 7:321–342, 1977.

[10] M. Fujita, J. C.-Y. Yang, E. M. Clarke, X. Zhao, and
P. McGeer. Fast spectrum computation for logic func-
tions using binary decision diagrams. In Int’l Symp.
Circ. and Systems, pages 275–278, 1995.

[11] J.P. Hansen and M. Sekine. Decision diagram based
techniques for the haar wavelet transform. In Interna-
tional Conference on Information, Communication &
Signal Processing, pages 59–63, 1997.

[12] T. C. Hsiao and S. C. Seth. An analysis of the use of
rademacher-walsh spectrum in compact testing. IEEE
Trans. on Comp., 33:931–937, 1984.

[13] S.L. Hurst, D.M.Miller, and J.C.Muzio. Spectral Tech-
niques in Digital Logic. Academic Press Publishers,
1985.

x1S

x2W x2S

x3 W x3S x3S

0 - 4 - 1 + 1+ 1 - 1

0

0

0 0 0

0

1 1 1

1 1

1

0

x1S

x2W x2S

x3 W x3W x3S

0 - 4 - 1 + 10 + 2

0

0

0 0 0

0

1 1 1

1 1

1

0

x1S

x2W x2S

x3 W x3W x3W

0 - 4 0 - 20 + 2

0

0

0 0 0

0

1 1 1

1 1

1

0

x1S

x2W x2W

x3 W x3W

0 - 4 0 + 40

0

0

0 0

0

1 1

1 1

1

0

x1W

x2W x2W

x3 W

0 - 4 - 40

0

0

0

0

1

1 1

1

x3W

0 + 4

0 1

Figure 5. BDD Undergoing Walsh Transformation for the Example Function

[14] M. Karpovsky. Finite Orthogonal Series in the Design
of Digital Devices. Wiley and JUP, 1976.

[15] R. J. Lechner. Harmonic analysis of switching func-
tions. In A. Mukhopadhyay, editor, Recent Develop-
ments in Switching Theory, pages 121–228. Academic
Press, 1971.

[16] A. M. Lloyd. A consideration of orthogonal matrices,
other than the rademacher-walsh types, for the synthe-
sis of digital networks. J. Electronics, 47:205–212,
1979.

[17] D. M. Miller. Graph algorithms for the manipulation
of boolean functions and their spectra. In Congres-
sus Numerantium, pages 177–199, Winnipeg, Canada,
1987.

[18] D. M. Miller. A spectral method for Boolean function
matching. In EuropeanDesign & Test Conf., page 602,
1996.

[19] D. M. Miller and J. C. Muzio. Spectral fault signatures
for single stuck-at faults in combinational networks.
IEEE Trans. on Comp., 33:765–768, 1984.

[20] M.A. Perkowski, M. Driscoll, J. Liu, D. Smith,
J. Brown, L. Yang, A. Shamsapour, M. Helliwell, and
B. Falkowski. Integration of logic synthesis and high-
level synthesis into the DIADES design automation
system. In Int’l Symp. Circ. and Systems, pages 718–
751, 1989.

[21] J. L. Shanks. Computation of the fast walsh-fourier
transform. IEEE Trans. on Comp., 18:457–459, 1969.

[22] M. Stanković, Z. Tošić, and S. Nikolić. Synthesis of
maitra cascades by means of spectral coefficients. IEE
Proceedings, 130, no. 1:101–108, 1983.

[23] R. S. Stanković, T. Sasao, and C. Moraga. Spectral
transforms decision diagrams. In T. Sasao and M. Fu-
jita, editors, Representation of Discrete Functions,
pages 55–92. Kluwer Academic Publishers, 1996.

[24] A. K. Susskind. Testing by verifying walsh coeffi-
cients. IEEE Trans. on Comp., 32:198–201, 1983.

[25] M. Thornton, R. Drechsler, and W. Günther. Logic
circuit equivalence checking using haar spectral coef-
ficients and partial bdds. In VLSI Design, to appear,
2000.

[26] V. M. Tokmen. Disjoint decomposability of multiple
valued functions by spectral menas. In Int’l Symp. on
Multi-Valued Logic, pages 88–93, 1980.

[27] D. Varma and E. A. Trachtenberg. Design automation
tools for efficient implementation of logic functions
by decomposition. IEEE Trans. on CAD, 8:901–916,
1989.

